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Abstract In this paper, for the solution of the torsion problem about the equation Au = —2 with homogeneous
Dirichlet boundary conditions in a bounded convex domain in R™, we find a superharmonic function which
implies the strict concavity of u% and give some convexity estimates. It is a generalization of Makar-Limanov’s
result (Makar-Limanov (1971)) and Ma-Shi-Ye’s result (Ma et al. (2012)).

Keywords convexity estimate, superharmonicity, maximum principle, torsion problem

MSC(2020) 35B45, 35B50, 35E10, 35J05, 35J25

Citation: Jia X H, Ma X-N, Shi S J. Remarks on convexity estimates for solutions of the torsion problem. Sci
China Math, 2023, 66: 1003-1020, https://doi.org/10.1007/s11425-021-1957-7

1 Introduction

Let © be a smooth, bounded convex domain in R™ (n > 2). In this paper, we consider the following
torsion problem:
Au=-2 in Q,

1.1
u=20 on If). (1.1)

In 1971, Makar-Limanov [12] considered the boundary value problem (1.1) in a bounded plane convex
domain Q. He introduced the function

P, = 2udet D?u + 2ujusuys — ullug — UQQU%

and proved that P; is a superharmonic function. Then he could obtain that uz is strictly concave. In
1983, Korevaar [7] introduced a very useful technique to study the convexity of the solutions for a class
of elliptic equations. To different extents, Kawohl [5] and Kennington [6] improved Korevaar’s method,

which enabled them to get that u? is concave in higher dimensions. In particular, Kennington [6] pointed

out that the concavity number 1 of u is sharp in the problem (1.1). Singer et al. [14] and Caffarelli

and Friedman [1] introduced a new deformation technique to deal with the convexity. Caffarelli and
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Friedman [1] established the strict convexity of the solutions for some equations in 2-dimensional convex
domains. Korevaar and Lewis [8] generalized the deformation method to higher dimensions, and obtained
the strict concavity of u* in (1.1) in higher-dimensional cases.

In 2012, Ma et al. [10] found a new corresponding auxiliary function

n
ddet D?
Py = (=2)""udet D*u 4+ (—2)"""! Z %uiuj,
ij=1 v

which is superharmonic modulo the gradient terms under the strict concavity assumption of u?. So from
the minimum principle, the authors got the convexity estimates for the solution of (1.1) via boundary
data. Combining the deformation method, they can give a new proof of strict concavity of v = /u,
and obtained the Gaussian curvature estimate for the graph of v = \/u in the problem (1.1) using the
curvature of the boundary of the domain. There is much literature on studying convexity estimates for
partial differential equations through finding auxiliary curvature functions. For example, Chen et al. [2]
considered the Monge-Ampere equation det D?u = 1 and Shi [13] gave the case for the Green’s function.

When n = 2, the function P; introduced in [12] is superharmonic. Unfortunately, when n > 2, the
function Ps introduced in [10] is not really superharmonic. In this paper, we introduce a new function,
which is superharmonic. Our results are as follows.

Theorem 1.1.  Let Q be a smooth, bounded conver domain in R™ (n > 2), and u be the solution for
the problem (1.1). If v = —\/u is a strictly convex function, then for

"~ Jdet D?
Y = (—v)" 2 det D*v = (=2) "udet D*u + (—2) "} %uiuj,
ij=1 i
p = 1/Jﬁ is a superharmonic function. Namely, the function ¢ perfectly satisfies the differential
inequality
Ap <0 inQ. (1.2)

The level sets of the solution in the problem (1.1) are convex with respect to the normal direction Vu,
and the Gaussian curvature K of the level sets of the solution u can be expressed as

n

e 0 det D?u (nt1
DY oy, IVl ),
7,7=1
Corollary 1.2 (See [10]).  Under the conditions in Theorem 1.1, we have the following estimate for
the solution of the problem (1.1):

¥ = (—v)""2det D?v > 2~ (D IS}ZHK%H |V (1.3)

where K is the Gaussian curvature of 0S). Moreover, the function v attains its minimum in Q if and
only if Q is an ellipsoid (ellipse).

The results in Corollary 1.2 were first obtained in [10]. We can give the proof of strict concavity of
v = y/u from the estimate (1.3) by the deformation method as in [10].

Remark 1.3.  When n = 2, 8¢ is exactly P; introduced in [12].

Remark 1.4. For the harmonic functions u with convex level sets, Ma et al. [9] got the Gaussian

1
curvature estimates of the level sets of u. Recently, Ma and Zhang [11] proved that ¢ = (|Vu|* "3 K)=—1
is superharmonic.

In geometric function theory and nonlinear elasticity, the superharmonicity for the logarithm of the
Jacobian determinant plays an important role in studying the diffeomorphism problem (see the examples
in [4]). In higher-dimensional cases, Gleason and Wolff [3] studied the diffeomorphism for the gradient
mapping of the harmonic function u, and the superharmonicity for the log |det D?u| is still the main
ingredient in their proof.
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We focus on the proofs of Theorem 1.1 and Corollary 1.2 in Section 2. The main technique in the
proof of Theorem 1.1 consists of regrouping terms involving the third-order derivatives and maximizing
them in each group.

2 Proofs of Theorem 1.1 and Corollary 1.2

We first give the following two lemmas.

Lemma 2.1. Let B be an (n — 1) X (n — 1) symmetric matriz, n > 2, * = (x1,...,Tp_1), b =
(bi,...,bp_1) €ER" ! and f(x) = xBx™ + 2bx™. If B <0, i.e., B is negative definite, then

f(x) < —bB~'bT.

Proof.  Since B < 0, f(x) has the unique critical point and takes the greatest value at this point. At
the critical point, we have
2Bz" +2b" =0,

ie., 2T = —B~'b". Therefore,

f(x) < (=B "' B(—B'bT) + 2b(—~B~'b")

=bB'b" —2bB'b" = -bB'b".

This completes the proof. O
Lemma 2.2. Let & = (&1,6,...,&) €R (1= 1). If & > 1 for any i € {1,2,...,1}, then we have the
following inequality:

1 l 1 1

(i1 &) Zj:l é + Zj:l §+9> i gi — (1 +6)

<. (2.1)

Proof.  Because

(Cim1 &) e & + X5 & +950, & — 11 +6)
Y &+ A 42
(i)Y e (=) &+ (9 ) i & 1 - 10)
i &+ 42

—1

and
l l 1
SN GHY —+4-2>4>0,
j=1 =

the inequality (2.1) is equivalent to

i=1 j=1 j=1 i=1
Let
l l 1 l 1 l
[, &) = <Zfi) o= (1=9) - (1-1)) & +1(1-10).
i=1 j=1 fﬂ j=1 gﬂ j=1
Then
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and
f 1
i S s?sz g - (=1
RISTSTR
1< > 1<5<1
J#i J#i

Since §; > 1 for j =1,2,...,1, we have

L 0
——(1-1)<0, 1-9- > & <0 and 6f<0
g™ 1<j<! Si
7 I
Thus
f,...8) < f(1,...,1)=0,
and (2.1) holds. -

Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1.  Let u be the solution for the problem (1.1) and v = —y/u. Then v is strictly
convex from our assumption and satisfies the following problem:

1+ V)
Av=-—p— & (2.2)
v=0 on 0N).
For
ddet D?u
Y = (—v)" 2 det D*v = (=2) "udet D*u + (—2)" " ! Z ° —u,u;,

U
1,j=1 a”

we show that ¢ = wﬁ satisfies the differential inequality Ay < 0, which implies that ¢ is a
superharmonic function.
Letting a = 15, we have

i = a((—v)" "2 det D?v)* 1 ((—v)" "2 det D?v);

and

Ap = a(a — 1)((—v)" 2 det D?v)* 2 i:((—v)"+2 det D%v)?

+ a((—v)" "% det D*0)* " A((—v)" T2 det D%v). (2.3)

In order to prove (1.2) at an arbitrary point x,, we can choose the coordinates at z, such that the
matrix (vi;(z,)) (1 < 4,j < n) is diagonal. From now on, all the calculations will be done at the
fixed point x,. Because v is strictly convex, the Hessian matrix (v;;) is positive definite. Let A\; = vy,
A= (A, A0, ) and or (A [4) = 300 o Ak (0= 1,2,...,n). Let (v") be the inverse matrix of (v;;).

Taking the first- and second-order derivatives of ¢ = (—v)" 2 det D?v, we have

((—=v)" "2 det D?v);
n 2
—(n 4+ 2)(—v)"y; det D?v + (—v)" T2 Z kali

—(n +2)(—v)"u;det D*v + (—v)" "2 det D*v Z Ukki (2.4)
k=1
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and
A((—v)"2 det D?v)
= (n+2)(n+ 1)(—v)"|Vv|* det D*v — (n + 2)(—v)" Tt Av det D*v
n n
ddet D*v 0? det D?*v
—2(n + 2)(—v)" v ————— g + (—v)" 2 = UkliVsti
o 3 ST (o 3 e
", §det D%v
_ o \n+2 A
+( ’U) Z 78’[}]61 Vil -
k=1
Since Av = —M, we have
A((—v)""? det D*v)
= (n+2)(n+1)(—v)"|Vo|? det D*v — (n 4 2)(—v)™(1 + |Vv|*) det D%v
- ddet D%y - 0? det D%*v
-2 2)(—v)"*! iUkt + (—v)" — . UkliUsti
(n+2)(-v) Z Vi Gy K + (—v) Z Do dve, Vst
k,lii=1 k,l,s,t,i=1
“~ Odet D?v (1 2
L (.
k=1 UK v ki
n(n + 2)(—v)"|Vo|? det D*v — (n + 2)(—v)™ det D*v
- ddet D%v " 9%det D*v
—2(n+ 1)(—v)"*! Vg + (—v)"? ————VkliVUsti
( )( ) k,l’ziil % aukl kli ( ) S 87}klavst kliUsti
" ddet D%v [ _vipvy vivvie 14 |Vol? 1+ |Vo?
—v)"t2 2/ = 44— -2 . 2.5
e k,l,zizl Qv ( oy T T 5 kU (25)
It follows that
A((—v)"2 det D?v)
= n(n + 2)(—v)"|Vo|? det D*v — (n + 2)(—v)™ det D*v
—2(n +1)(—v)" " det D*v Z v; Ukki
- Ak
k,i=1
" 1
+ (—v)" 2 det D*v Z Y (vrkivi: — viy;)
1<k, Lig<n
k£l
A7 vIA 1+ |Vo|? 1+|Vol?
n+2 2 LAk 2
+ (—v)""*det D vz < U+4 2 + 2 /\k2U3vk>
— (—0)"™* det D? Okt Vhie ) | g0, 1 q) 3 YUk
( U) ¢ U( Z < Ak AL * (TL+ ) Z v Ak
1<k, li<n k,i=1
kAl
n |Vol|? " o1(A) v}
+ (—v)"+? detD2v<(n2+3n+6)v2 +QZT1T§ : (2.6)
k=1

Substituting (2.4) and (2.6) into (2.3), we have

1
—((=v)"*? det D*v)"*Ag

a
—(a—l)((n+2)2vz| + 3 B ir2) Y ””’““)
v

YN oA
k=1 RN fim1 k

2 n
VkkiVlli Vi1i Vi Vkki
_ D) 1 t
+ > ( .y M)+ (1) >

1<k,1Li<n k=1
k#l
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2 [Vo[? — 01(A) v

n

vl%lci VkkiVlli vl%li
=(a=1) > F+a ) - 2 3

; z Ak .
k,i=1 1<kl i<n 1<k, i<n
k#l k#l
" v |Vol?
i Ukki 2
+(2(n+2)a—-2) E W +((n+2)%a—n+2) 2
k,i=1
n 2
o1(A) vi
2 —.
+ l; )\k U2

So we have the following formulas:
1
—((=v)"*? det D*v) Ay

a
n U2 ) VkkiVlli ’U2 ) U? )
_ -1 kki LYl 2 kki kli
(a=1 Y Sgt+a 3, S5E-2 ) >

Ak

ki=1 "k 1<k,1,i<n 1<k, i<n kAl k#i,l1#i
k#l ki
U Vkki > IV 2 A) vi
2 2)a — 2 — 2 2 2 =
R+ 2a=2) 3 D (2 —n+2) S Z %
—~ Uik Uk ki Vlli Vs
g(a_l) k]zcl Ta Z [ 71_2 Z kki
kyim1 Ak 1<k li<n Akl 1<k,i<n AkAi
k#l ki
5 5 5 "0 Vkki 5 9 |Vv|2 9 - o1(A) v?
+(2(n+2)a— )Z;)\k +((n+2)%a—n+2) + Z N o
k,i=1 k=1
We claim that for 1 < i < n,
no2
— Vkki VkkiVlli vk,ﬁ
Ai=(a—-1)> \2 +ta > o 2 ) Y
k=1 1<k,I<n 1<k<n
k#l Teti
U; Vkki
+(2(n+2)a—2)— rk
v )\k
k=1
v? o1(A) v?
+((n+2)? a—n+2)—12+2 i )7;
/\i v
<0. (2.7)
From the claim, we arrive at the conclusion that
Ap < a((—v)" " det D*0)* > " A; 0. (2.8)
i=1
We firstly express (2.7) in another way by the equation Av = —M. Taking the first-order derivative
of the equation Av = —M, we have
2); A))v;
(Av); = — BTN

v
ie.,
(2/\ + 0'1

Unni = =~ Z Vkki - (29)
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Substituting (2.9) into (2.7), we obtain that for 1 <i<n —1,

a—1 n a— 1 2 2a 9
\2 e A, )

Z a—l_ 2 +a—1_ 2 _ 2a o2
2NN A A A

1<jsn—1

J#i

a a—1 2 2a

" ( + - - >Ukkiv"i
1<k§g:n_1 AkAj N Aidn A, 33

k)

n—1

U; a—1 2 a
w2\ A 20 + o1(A
*vj1<<xz o ) 2N )

a—1 2 112 2\ + o1 v?
2 Sig 2)a — 1)L T
(5 M)(Am) Y2 Da- PN
02 2
z 01()‘)112'
and for i = n,
“Xla—-1 a-1 2 2
A, = _ _ 2
j—1( A e AjAn >\j/\n)vm
a a—1 2a
> (Akx+ X2 A )”jj"”kk"
1<j,k<n—1 J n Jon
oy
v, A a—1 a 1 1
n -
+U;(2< TR )(2)\n—|—01()\))+2((n—|—2)a—1)()\j—>\n>>vjjn
a—1 5 V2 2\, + o1 v2
+ 2 2\, + 01)? U—Z 2((n+2)a—1)TU—2
by 2
+((n+2)a—n+2) sy A( )Z—g. (2.11)
n

From (2.10) and (2.11), we can see that for any 1 < i < n, A; is a quadratic polynomial about

T3] = (v114, V2235 - - - av(n—l)(n—l)i)

and has the form
A; = T[4 Bi:n[j;] + 2b[i]wﬁ] + d;.

Now, we prove the claim for ¢ = 1 and i = n, and the others are the same as i = 1 completely.
(1) (Proof of Ay < 0) Let By be the corresponding matrix of A;. From (2.10), By has the form

—By =E, + F, — Gy,

where

n—1
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1
1 2 1
FRr=|—+— 1,1 1
1 ()\% )\1>\n> (aa ’)a
1
11
A1 An
STl (1 111 1 1)
Gl_a I N N TN ) - N
>\1 /\n /\2 )\n )\n—l )\n
1 _ 1
An 1 An

In order to use Lemma 2.1, we need to prove that By < 0. Firstly, letting

A1
A2
V1+252

Cl = . )
An—l
14224=1

we have
Ci(-B1)C1 =1+ I/E]I/[l] - 6”7[1:1]77[1]7 (2.12)

where I is the identity matrix of order n — 1, v1; and n1) are vectors, and

1 2

Yl =4/ e +m(1717--~71)c1
1 2 )\2 )\nfl
=4/ — A 2.13
)\%+/\1/\n< 1 ) ) nl>’ ( )

A A 1 A 1
:(1—{,(1—;>,...,<1— Al) ) (2.14)
Y N> N =
Since C1 is positive definite and diagonal, if we obtain that Cq(—B1)C} is positive definite, then By is

negative definite. Now we prove that Cy(—B1)C1 is positive definite.
From (2.12)—(2.14), the first-order leading principal minor of Cy(—B1)C1 is

A\ A\
14— ) —all——] .
(3) (-3
Thus, the first-order leading principal minor of C1(—Bj)C1 is greater than 0 for a = ﬁ Moreover,
for any 2 < k < n— 1, from (2.12), the k-th-order leading principal minor of Cy(—B1)C1 is

det (I + V[le] V[1k] — an[le]n[lk]),

where I} is the identity matrix of order k, v[ix) is a vector whose components are from the first &
components of v[1], and 7] is a vector whose components are from the first k components of 7). Let

D[lk:] =1+ I/[rl;k]ll[lk].
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Then
det(Tk + Vg V11w — Ny mpk) = det(Dpg) — anp Mk

1
— det ( 77[1kr]F )
0 Dpak) — a1 M1k

1
= det ( T "Nkl )
anpig D

-1 T
— det (1 - ‘"’[WTD e Mak) O >
a1 Di1w)

=(1- an[lk]Dﬁ}c]nEk]) det Dy1].
Because D1y is a positive definite matrix, we only need to prove
1— an[lk]D[_l}c]n[le] >0, (2.15)

and then we obtain that the k-th-order leading principal minor of Cq(—B1)C1 is greater than 0.
From the definition of D[}, we have

VT V[lk]
D=l — _[kTUED
[1k] k T+ vam
and then
Inprg 12+ kg Plvpe | — pegvie)?
N [1k]
L —anuk Dyjyipeg =1 —a T . (2.16)
Since
1 2 Ao Mg >
ik = | ~5 + Ar, k),
R mn< N TN

it follows that

k A2

)\1)2 (1_,\7)

mual’ = (1-55) +2 —2%
|[1k]| < \, 1+2)\7J

j=2
1A2 A\ An
=-—= 1+2— | —2k+2)|1+2—
‘“\%(( * )\1) (b >< * )\1>+9)

172 M e~ 1 ~ A\
+4%<<1+2/\1) Z1+2M+Z<1+2/\1>>’ (2.17)

1 1
+> — + — +4- 2k> (2.18)
S+ 1423

and

g | v * — (e Vi)’
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k 2
An 1 A s
14220 )Y — —J)
( /\1> 2% (An An

1012

= I+
k 2
1 An 1 AN
) (:3)
2( A Z (1+2ﬁ)(1+2%) A An
() (S 02) (Sre)
=-21 o 14222 >
472 A = J21+2
k

“2( i”)(i(uz ) 9ZH12§§—(16—1)(1€+5)>~ (2.19)

ik ,
Jj=2

Jj=2

For convenience, let p; = 1+ 2% for 2 < j < n. From (2.17)—(2.19), we can conclude that

e + 2 viw I — pwvpieg)?

— 1>‘%(1+2;\’;>(<im+ )<Z Mln) * (ém+ﬂn>>

- 2
4)‘71 i=2 j=2 /’(‘]
172 u
+4A2<1+2) (9(2 +) —k(k+6)>
Jj=2 Hn
and
, 12 k 1o
L+ P = 5 53 1+2— it t+d —+—+22-k) ).
n j=2 j=2 :u_] Hon
Then
e + I P vim P — (g vfieg)?
L+ |vpgl?
k k k k
(Dima i + pin) (305 =0 ﬁ + i) + Do i T i 90 i + 9% — k(k +6) (2.20)

Zj 2uj+un+2j Qu +—+2(2—1<;)

Using Lemma 2.2 and (2.20), we have
e + I P vim I — (g vfieg)? o
1+ ‘V[lk] |2 ’

a1 < %
C1(—B1)C4

n

and then the k-th-order leading principal minor of C;(—B1)C1 is greater than 0 for a =
To sum up, all the leading principal minors of C; (—B17)C; are greater than 0. Therefore,

is positive definite and By < 0.
Furthermore, using Lemma 2.1 and (2.10), we can obtain that
2)\1 + 01 U%

—1,T a 1 2 27}%
N o7
+ ((n+2)? a—n+2) +2 YRR

To compute —b[l]Bl_lb[Tl], letting
s=(1- a|77[1]|2)(1 + |V[1]|2) + a(Tl[l]V[Tl])z,
we have s > 0 from (2.15) and (2.16). Let Py be an (n — 1) x (n — 1) matrix and
1+ v l* ¢ 77[1]'/[2] T

1 —alnp?
Py=1 - —— 2wl + o nhyn) — oy
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T
Ny
0y (2.21)

—a

By direct computations,
(C1(=B1)C1) Py = Py + viyvp P — anfynp Py

CleamP e Ll

=1 S Skl P ALEY
T T
AL NV
—a S[ ]n[Tl]V[l]—a - ]V[T:L]n[l]
1 —alnpqy)? 77[1]VT1
+ vl + oy
T 2
nuvn 1+ |y
a— T ais[ Ly
-1

We have that Py is the inverse matrix of C(—B1)C1, and then

- B{'=C,PiCy,
— b[l]Bflba] = b[l]Clpl(b[l]Cl)T.

/ )\n 2>\1+01(>\)

2)\1 + O'1(>\)a
An

Let

and
h[l] = (n + 2)a —

From the definition of by,

1 9 1 1 1 1 V1
R A - —— ) )
[1] < 911 )\% +)\1/\n( s ) )+ [1]<)\1 /\n7 7/\n71 /\n>) v

Combining (2.13) and (2.14), we obtain

v
b Cr = (—gpwpy + by
Therefore,
b11C1 Py (b C1)”
2
v
= U%(—g[l]'/u] + hpynpy) P(—gmvpg + haynpg)*
2
v
= U%(Q[Zu’/[l]PlV[j;] — 29y Pavyyy + hhynpg Pingy)- (2.22)
From (2.13), (2.14) and (2.21), we obtain
1
V[1]P1V[T1] = g((l - a|77[1]|2)\1/[1]|2 + a(ﬂ[l]V[Tﬂ)Q)a (2.23)
1
NPy = g’?[uV[Tl], (2.24)
1
N Pingy = g((l + ) I P = (pgviy)?)- (2.25)
Substituting (2.23)—(2.25) into (2.22), we have
v? 1
b)C1P1(bC1)" = U%;(gﬁ]((l — alnp ) v ? + alnpgviy)?) — 2000 kpmavi)
L0 (1 o) l? — gy
025 e = (pgvg)).
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From the definitions of gj;) and hj;j, we can conclude that

a—1 2 v? oA\ + o V3
Ay < by C1 Py (b3 Ch)" + ( Y m)ml +01)’ 5 =2+ Ya— 1)~
2 by 2
+((n+2)2a—n+2)%+201)\(1 )%
v2 1
= U%;(gﬁ]((l — alnp ) v ? + alnpgviy)?) = 2900 hpmav)
F I L ( P) mgl? — Orgesy?)
02 s 1 ()i MY
2 hZ .2 2
2 U1 1] V1 1) vy
_g[l]vﬁ_*_ a’1}2+<n+6+2A1_a>1}2
2 h2 2 2
_ v LM 2 1) vi
Since
A (2/\1 —|—O’1)2
2 n
gy = (1 + 2/\1) T
h 2)\1 + o1 2)\1 + 01
B _ 2 -
W= (P wen) eea(B5E ) o
and
h 2\ + 01 A1 1A :
1+228 —n+2)2 )+ =22
" — Vaggma| = (1232 (Va2 - et )+

1425 2\ A
+5 (f(ljal—(rwz)/\f)

=2 1+2X

we obtain that

hp)
7’/[11 Vagump

//\

h?
(1] 2
U2 ( . It

where

)\ )\1 2/\1+01 /\1
—o(14oln ) 2L (22T (g 49yt
2 ( + Al)A ( Nt ))\n>
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il 425e 2\ + 01 Aj
& - 2
2 Z:1-1-2>\ An ( An (n+ ))‘n>

2\ + o1 (2/\1 + 0'1)2
2 — 2 142720 ) 2= =2
+( oo ) (* ) z2

n—1

— 1 A2
+<n+6+2> +(1+2")(+ZX;>>
Sl
)\1> n—1 1 ( /\j)Q
1=-=) 2y —— (12

=2

J

n—1 2

An 1 AL

+<1+2)Zx<—J>

Mg 128\ A
n—1

1 An 1 VDV
+-(1+2+ 1—J> ,
2( Al) Z (1+2Ai)(1+2§§)(>\n An

i,j=2

A\ A2 R 1425 2 A\ A2 122z
Jy= (14222 )+ Log 1ol (123 ) - MY
- - — :

We can easily get J; = Jo = J3 =0, so A3
(2) (Proof of A, < 0) The proof of 4,
skipped.
Letting B,, be the corresponding matrix of A,,, according to (2.11), we have

//\ //\

0 is similar to the proof of A; < 0, so some details will be

By = (bj)1<ij<n—1,

where

B,, has the form

where
1 2
T,
1 2
5 T
n — b)
1 2
PN WP
1
1 1
Fn = )\72 (]-a 15 ) 1)7
1
1 1
A A
. v 111 1 1 1
= -~ |1l -----— — — — _
" )\1 )\n’ )\2 )\n7 7)\nfl )\n
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Let
A1
1+23L
A2
C, — 14252
An—1
Y1r2ln-t
Then
Cn(_Bn)Cn =1+ Vg,,]u[n] - fm[Tn]ﬂ[n]a
where
1

I/[n] = )\7(1’ 1, ey 1)Cn

and

B ( 111 1 1 1 ) c
K O P P T D VD W Al
It is easy to verify that the first leading principal minor of C,,(—B,)C,, is greater than 0. For

2 < k < n—1, from a similar proof for A; < 0 above, that the k-th-order leading principal minor of
Cr(—B,,)C,, is greater than 0 is equivalent to the inequality

|17[nk]| + k) P Vs [P = (i Vi)

> 0,
1+ [V 2

where V[, is a vector whose components are from the first k& components of v, and 1, is a vector
whose components are from the first k components of 1y,
By direct computations, we have

2
1 Y 1
2= § 1+222) —6k 9§

Jj=1

k k
1 i 1 k2

2 2 T 2 i
|"7[nk:]| |V[nk]| - (n[nk]’/[nk]) = Z (Z (1 + 2>\n)> Z v Z’

i=1 = L2t

1 by
L+ Vi) = 4(Z<1+2/\J>+4—2k+21+2 >

n

Let

;@:1—#2%, 1<7<n—-1.
Then

M + M) P Vinkg [* = (s Vi)
1+ |V[nk:] |2
k ~
_ (ZZ:MM)Z] 1 M JFZ] 1!‘] +921 1 j —k(k +6)

By Lemma 2.2,

kg * + 10k 2V > = Dk V)

< k.
1+ [V 2

So the k-th-order leading principal minor of C,,(—B,,)C,, is greater than 0 for a = —.

n—1
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In conclusion, all the leading principal minors of C,(—B,)C, are greater than 0, and then

C,(—By)C,, is positive definite and B,, < 0. By Lemma 2.1, we have
V2

2/\ + o1 v
v2 a1 () v?
2)%a —n +2)2 +2 .
+((n+2)%a—n+ )1)2 + N o2
In the following, we calculate —by,)B;, 1b[1;1]. Letting
5= (1= a1+ v *) + a@pmvpm)?
and
1- CLl'r][n]| 1+ |V[ ]‘ n[n]V[Tn] T
Po=I-—"7"— VinV[n] + G——=—n (m) ] — M[n)V[n]
Mn 1V[Tn]
—a V[n]n[np

we have that P, is the inverse matrix of Cp,(—B,,)Cy, and —B,,;} = C,, P,,C,,. Thus,
13T
—bi B, by = b(n)Cr P (b Cn) "

Let )
ag
9n] = 1)\ +2
and ™
o1
hin) =< N, ) 1
From (2.11), we have
1 1 1 1 1 Un,
b= | — —(1,...,1 h — = —— )| —
[n] 9[n] )\n( ) ) )+ [n]()\l )\n’ 7)\71—1 )\n):| v
and v
B O = (=91m¥in) + hinjMim)) -
Therefore,
—bin) By, bl = b(n)CnPr (b Cr)"
2
vn
= 2 (Z90¥m) + i M) Pr (= g1 ¥ing + ) )
v2 1
= 2 3 Wi (1 = alng )W) I° + a(m)v5))7) = 290 A Mn) Viny)
v’r27,1 2
+ 230 (1 + WD) g [ = Mpmyvpng)?)
and ) ) 5
T 9 Vs 2\, + o1 V5
2 2
a1(A) vy
2 — 2 2 —
+ ((n +2)%a n+) + N 02
= L2 (1= P g+ 0l y)?) — 201y
= 02 39ml Mn]l)1V(n) M[n]¥[n] 9(n) n) Mn]¥[n]
vil , T \2
+ﬁ§h[n]((l+|u 1) g1 = (g Nn)Vn))”)
vy 2 h[zn] o 1
—&-1}2(—9[”] +T+n+6+22— a)
v 1 W | [ hing N\, 2 1
:?5 —g[2n]+7+ fU[n]—fg n) Mn] ) 2(n+6+2)\n—a).

(2.26)
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We can get
A, <0
O

from a similar proof for A; <0 above
Therefore, by A; <0 for 1 <7 < n and (2.8), we complete the proof of Theorem 1.1
Corollary 1.2 is the direct results of the maximum principle and the proof can be found in [10]. Here

we give the proof from Theorem 1.1, which is slightly different from that in [10].

0, ¢ attains its minimum on the boundary 902 by the standard

Proof of Corollary 1.2.  Since Ay <
minimum principle. Therefore, ¢ attains its minimum on the boundary 02 and

Y = (—v)" 2 det D*v
> min(—v)""? det D*v
o
9~ (n+D) min{ K |Vu[" "1}
> 2~ (1) mmKrgm |V

o0

which is the estimate (1.3).
If  attains its minimum in Q, then ¢ is constant from the strong minimum principle, and Ap = 0

From the process of the proof for Theorem 1.1, we can see that
k # 1,

Uijk:()v 7’7&]7 ]#kv
AiZO, i:1,2,...,7’b
Since A; = 0, by Lemma 2.1, we have
Vin—1)(n—1)1) = —b By ",

L) = (v111,v221, - - -,

= melPlCl = 7( g + h[1]77 1])P101

and then
) = —bp By

From the expression of P;,
= hpyv vy

lov
Ty = ;?1((—9[1}(1 - CL|77[1]|2)
(—agummva " + (1 + v *)mpg) Ca.

Let
p=—gp (1 —aln*) = by ©

and
q = —agnmuvp)* + hp L+ v ).

By direct computations, we get

b= s 1 5((2;&)2/@—(n—lo)jé;j—(n—z);ﬂ]
+(n—1)(n—11)>
0=t jjun((gm);;—(n—w)gj—(n—zém
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Therefore, we have

v v
T = _%(\/Nny[l] +mp))C1 = _;1(3)\17/\27~~~7)\n71)7

and then .

220 + o1 A — V1
Unnl = —(A - kakl =——A1

v v

k=1

A similar computation gives
Uj . . . .
_;)\J7 l#]> 2<Z<na 1<]<’I’L,
Vjji =

3%, i=j, 2<i<n, 1<j<n
v
In conclusion, the equality Ay = 0 holds if and only if for 1 < 4,7,k < n,

(% . . .
_iAj, ? 7{ Js J= ka
v
Vjki = _3%Al7 { :.7 = k7

0, i#j, j#k k#L

Because of u = v?,

Ujjk = 2(vivjk + vjvik + VRV + ’I)Uijk).

Note that the matrix (v;;) is diagonal by the choice of the coordinates, and we have
up =0, 1<4,5,k <n,

i.e., all the third-order derivatives of u vanish. Since
Q={zeR"|ux)>0}

is convex, Q2 must be an ellipsoid (ellipse). On the contrary, if  is an ellipsoid (ellipse), then we can
easily get that v is constant and attains its minimum in {2 naturally. O
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