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BEST CONSTANT AND EXTREMAL FUNCTIONS FOR A CLASS
HARDY-SOBOLEV-MAZ’YA INEQUALITIES

DAOWEN LIN AND XI-NAN MA

ABSTRACT. We derive an integral identity for a class p-Laplace equation, and then classify
all positive finite energy cylindrically symmetric solutions of the equation (1.2) for 3 < k <
n — 1, with the help of some a prior estimates. Combining this with the result of Secchi-
Smets-Willem[22], as a consequence, we obtain the best constant and extremal functions for
the related Hardy-Sobolev-Maz’ya inequalities.

1. INTRODUCTION

In this paper, we study the positive extremals for the following Hardy-Sobolev-Maz’ya
inequalities when s = 1,k > 3.

Theorem 1.1. [4] Let n > 3, 2 < k < n, and p, s be real numbers satisfying 1 < p < n,
0 < s <pands <k, There exists a positive constant S, s = S(p, s,n, k) such that for all
u € DYP(R"), we have

p(n=>s)

(/ WLP m) g&m(/|vm%m>, (1.1)

where for p > 1, we define the space D*?(R") as the closure of C2°(R™) with respect to the

norm
1
P
lullprsiey = [ 19upa)”

For s = 1, the Euler-Lagrange equation associated to (1.1) is

(1.2)

u € D"P(R™),
where p*(1) = 2220 2 — (y, 2), R® = RF x R"F,

o

Ifs=p,(.1)is Ze)m extension of the classical Hardy inequalities.

The case s = 0 corresponds to the classical Sobolev inequalities, whose finite energy
extremal functions have been classified by [21] and [26], or see [12] for the convex cone
case via integral by part method and a priori estimates.

In more general case 0 < s < p and k = n, the best constant have been computed in [17],
their extremal functions are, up to dilations and translations,

Ue) = (L |of5)
1
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More general inequalities have been considered by Caffarelli-Kohn-Nirenberg[6]:

(/ |a?|_bquqda?> ' < Cup (/ |x|_ap|Vu|pdx) ’
R4 R4

wherep > l,a<b<a+1,q= %,O <a< g —1,Cup = Cup(d,p,a,b,q). They
turn out to be of the same form as in the case a = 0, for general, we refer to [14] and [11]
for the recent progress.

When k£ < n, extremal functions cannot be anymore radially symmetric. Cylindrical
symmetry of some extremal functions has been proved Secchi-Smets-Willem [22], by sym-
metrizations arguments.

For p = 2, s = 1, Mancini-Fabbri-Sandeep [19] classified all positive finite energy so-
lutions using moving plane method and a differential identity from [16] with some a prior
pointwise estimates.

Independently, Alvino-Ferone-Trombetti also investigated when s = 1 in [1], they have a

conjecture as follow in their article, but they could only address whenn = 3,k = 2,p = 2.

Conjecture 1. [/] Let ug be the function given by
uo(w) = uo(y, 2) = Crnal (L4 y])* + 277075, (13)

n—p _n—p

where C,, . . = (k — 1)?831) (n—p) » (p—1)" » . Then u is an extremal function for (1.1)
ifuly,z) = )\n%puo()\y, Az + 2y) for some \ > 0 and z, € R,

Invoking the cylindrical symmetry results in [22], we generalize the differential identity
in [16], which is motivated from the idea by Jerison-Lee [18]. But unfortunately, we can’t
get the similar a prior point estimates for p-Laplace equations. Since what we need to char-
acterize the cylindrically symmetric solutions of (1.2) are almost integral estimates, with the
help of sharp C? estimate in [15], the gradient estimates using the ideas from Xiang [27] and
Antonini-Ciraolo-Farina[2] . We can tackle some cases:

Theorem 1.2. For s = 1,n > 4,3 < k < n — 1, u is a cylindrically symmetric solution of
(1.2) then u(y, z) = )\%uo()\y, Az + z) for some \ > 0 and z, € R"7*,

From the above theorem, we can give a positive answer for the conjecture by Alvino-
Ferone-Trombetti[ 1] when &£ > 3. Since we can’t get the a priori estimates, the case k = 2
is still open.

As we had remarked that the best constant of Hardy-Sobolev-Maz’ya inequalities (1.1)
achieve at some cylindrically symmetric functions [22].

We give some more reference for the best constant and extremal function on the Hardy-
Sobolev-Maz’ya inequalities on p = 2, please see the recent progress in [[5], [7], [8], [O],
[20], [25]] etc., they used the hyperbolic symmetry or the moving plane methods.

The paper is organized as follows. In section 2, we first review the cylindrically symmetric
for the extremal function by Secchi-Smets-Willem [22]. Then we give the sharp C? estimate
by Dutta [15], the gradient estimates using the idea from Xiang [27] and Antonini-Ciraolo-
Farina[2]. In section 3, we give a generalization of the differential identity for a class p-
Laplace operator via the ideas from Serrin-Zou [23], [16] and [19], as we noted which is
motivated from the idea Jerison-Lee [18] for the Laplace operator case. Then, using this
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generalized differential identity and the integral estimates in section 2, we complete the
proof of Theorem 1.2.

2. CYLINDRICALLY SYMMETRY PROPERTIES AND A PRIORI ESTIMATES

In this sections, we first show briefly that the best constant of Hardy-Sobolev-Maz’ya in-
equalities achieve at some cylindrically symmetric functions in Secchi-Smets-Willem[22],
and we state the C° estimates by Dutta [15]. Then we mainly obtain the integral gradi-
ent estimates in Lemma 2.4 and Lemma 2.5, where we use the ideas from Xiang [27] and
Antonini-Ciraolo-Farina[2]. These integral estimates will be used in next section to get the
proof of the main theorem.

As in [22], we consider the minimization problem

|u|P” (D)
Sp.s = S(p,s,n, k) =inf {/ |VulPlu € Dl’p(R"),/ o = 1} : (2.1)
n n y

Let u € L*(R™) be a non-negative function. Let us denote by u*(x, z) the Schwarz sym-
metrization of u(*, z) and u**(y, %) the Schwarz symmetrization of u*(y, *). It is clear that
u*™* depends only on (|y/|, |z]). Let us define

DP(R") = {u € D"?(R")|u=u"},

and

|u

n

p*(1)
= 1} ) (2.2)

S;:*S:S**<p,s,n,k>=mf{ [ 1vulrtue i, [ .

From [22], first we have the following property.
Proposition 2.1. [22] S, ; = S;;,.

Then we know the best constant of Hardy-Sobolev-Maz’ya inequalities (1.1) achieve at
some cylindrically symmetric functions.
Now we state a priori C° estimates for the Euler-Lagrange equation (1.2) from Dutta [15].

Proposition 2.2. [15] Let u be a solution of (1.2), then for any x € R", there are universal
constants c, C' such that

c C
—— Ju() £ ——py. (2.3)
L+ fof S
We state a a priori gradient estimates for a class p-Laplace equation from Xiang [27].
Proposition 2.3. [27] Let Q2 be a domain in R" and f € L%(Q). Let w € W,5P(Q) be a
weak solution to equation
—Apw = f

in Q, that is,

/ IVw[P2Vw - Vi = / fo, Yo e C(Q).

Q Q

Then, for any ball Bys(xy) C €2, there holds

sup |Vw| < C (5_"/ o |Vw|7”)p "‘C‘Sﬁ“ngjBé(mo)- (2.4)
Bs(zo

B%(Io)
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We shall use the Proposition 2.2 and Proposition 2.3 to get the following integral estimates
(2.6) when k& > 2p.

Lemma 2.4. Let u be a solution of (1.2), for any z € R"™* we have

[Vu(y, 2)| < (2.5)

C
]
as ly| — 0.

If k > 2p, then for any v € R" and any v € R, we have the following integral estimates.

9 n_2p(n=1) ~(n—p)
|Vu|Pudzdy < C(1+ R" »=1 ~ »=1 ), (2.6)
Br
Proof. For K > 1, we define v(y, z) = K> Tu(Ky, Kz), then v € L*(R™\B;(0)) inde-

pendent of K by Proposition 2.3 and v satisfies

n(p 1)

A = in{1 < |y <4} x {|2| < 2}. 2.7)

K Kyl
By standard regularity of p-Laplace equation [13] or [24], we have
Vol < C'in{2 < |y| <3} x {|]z| <1},
where C' is independent of K, which is
IVu(Ky, K2)| < CK %1 in{2 < |y| < 3} x {|2| < 1}.
And since
2K < |(Ky, Kz)| < V10K,

in other word,

C
|Vu(z)| < 77”,

1+ |z|»-

for |y| > 2.

F‘or‘() < |yo| < 2, we consider (2.7) in {|y| < 3} x {1 < |z| < 4}. Atzo = (yo, 20), tO use
Proposition 2.3 we take ) = %. By scaling the standard cut-off function, we have a smooth
function 1(z) satisfies n = 1 in Bs(1p), 0 < 1 < 1, = 0 outside Bas(1p) and [V| < .
By testing (2.7) with

(R

We have
p(n—1)

v P —1,p—1
[VolPpPdx < —+p Vo’ "~ | Vilv.
By (x0) Bys (o) |y| Bas(zq)

By Young’s inequality, we arrive at

p(n—1)

v n—p np
/ |VolPnPdx < C / — +/ vP|Vn|P
Bas (o) Bas (o) |y| Bas (o)

< C5mP,
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Then from the estimates (2.3) and (2.4), we have

sup |Vu| < C61,
B%(ro)

which implies

C
|Vo(yo, 20)| < ool (2.8)

Let K = 1, which is

Vuly, ) < <, aslyl = 0.

ly|’

From (2.8), we get
1
Vo < ——, if k> 2p.
|y[?
We combine it with the estimates (2.3), for any v € R, and k£ > 2p, we have

/ Vol <
B>\B1
1) n—p

_2p(n=1) __n-p
/ |Vu|ulde < CK™™ »=1 Vo1,
Bar\Bk

up to scaling which is

Let K = 1, arguing as above in {|y| < 3} x {|z| < 4}. we get

|Vu|*udx < C.
B1

Combining these, it follows that

2p(n—1) n—p

/ |Vul*ude < C(1+ R" "»1 7o1). (2.9)
Br

O

For the other case p > g > %, we shall use the technique from Antonini-Ciraolo-Farina[2]
to get the integral gradient estimates.

Lemma 2.5. Let u be a solution of (1.2), for p > g > %, we have |Vul|? € Llloc, and for any
q > 1,7 € R, we have the following estimates.

n—1) n—p

/ |Vu|"ude < C(1 + R e, (2.10)
Br

Proof. We show it by iteration. As Lemma 3.1 in [2], we consider the following equation.

. ) PT*2 _ .
div((e + |Vue|*) = Vu,) = f. in By, @.11)
u: = u on 0By,

where the boundary condition is to be intended as
u. —u € WyP(By).
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p(n—1)
Here f = “ |Lyf‘p € LFv(B)) forany k > v > 0. Let f. = min{f, e}, f. €
L>®(By),|f:| <|f]- Then f. — fin L(By), where

2n
o=2ifp> ,
p_n+2
k 2
U:Laif_§p< n7
np—n+p 2 n+ 2
since —2 _ < " — p < 3.

np—n-+p np—mn
We apply [[2] Lemma ] our case, we have for ¢ € [0, 1), there is a unique solution

in WhP(B,) = u+ W, *(B;) an

u. — u strongly in W (By),
up to a subsequence, we have u. — u, Vu., — Vu a.e.

Anagin by [[2] Lemma 3.2], we also have
u. € H2 (B1) N CY(By), (2.12)

and

|Vu|P~*Vu. € H..(By; R"). (2.13)
From (2.11), it follows that

—0;(A (Vu.)0jmuz) = O f-

where AY = (¢ 4 |Vu.|?)"z 5,j +(p—2)(e+ |VuP) = 0u50 U
The above equation is understood in the sense that for all ) € C§°(By),

/ AV (Vu)0jmu0p = | O ft). (2.14)
By

By

In (2.14), we shall set ¢ = w?2 d,,u.n?, where n € C°(B;), a > 0and w = € + |Vu.|%
From the regularity of u. (2.12) and (2.13), the above equality (2.14) also holds for .
First we have

o = w%&-muen2 + %w%_laiwﬁmugf + 2w%8mu57]8m. (2.15)
Since |0, f2| < |0 f], and
n(p—1)
amf:p(n—l)UH 8mu+up(:p1)8 <1) 2.16)
n—p |yl ]
We know u is bounded from (2.3), [0,,u| < from (2.5) and |0,,(ly|™H)| < Cly|™% Tt
follows that
w s
|Om fot0] < | B (2.17)

From [[2] Proposition 4.3], for any ¢ € (0, 1) and for any open ball By, C By, we have

2
||V |P~2Vu, [2de < C[r‘”( / \VUEV’_I) + 72 / ff], (2.18)
B, BQT\BT' Bay
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2
/ \V(|Vu€|p_2Vu€)\2dxSC{T‘”_2< / ‘Vu€|p_1d$) + / ffda;}, (2.19)
% B2T\B7“ Bar

where C' is only depending on n, p.
Since k > 3, f € Lloc and Vu, — Vu in LP, so from (2.18), (2.19) we have

|||vu6|p_2vu5||H}OC <C,

C is independent of €. Therefore, by Hardy-Sobolev-Maz’ya inequalities (1.1) with p = 2
and s = 0 or s = 2 to |Vu.|[P"*Vu,, we get

n 2 ﬁLp 1 ‘vu5|2p 2

IVu.|[P~2Vu, € Lloc N €L,

then
n(p—1) p Pl

weL"™ NL?

loc

eLL. (2.20)

foe? Jy[2

and the norms are independent of €.
Summing up all m = 1, ..., n, we obtain
Aij (Vua)ajmuaaﬂb

a+p—2

=w 2 |Ogmu"n’ + (p — 2w

T (Oimuciue)2n’

i %wa+P ) W, U Ot + #ww8jmu€8iw8mu€8iu€8ju€n2
+ 20" OO + 2(p — 2)w%p748jmu50muan0m0ma(9jue

2 V20 202 + %H atp=t |Vw|?n # - 6\Vw Vu.|*n
+ 20" 9O + 2(p — 2w F OO undmiudsue.

Since d;w = 20;u0;ju., |Vw|? = 4|0jud;juc|* < 4|Vu[*|Vu.]* < 4w|V?u.|?. And for
a>0,p> %, using Cauchy inequality we get

%wMQ 4|Vw| # S 4\Vw Vu|*n* > (I)T%)\Vw Vu|*n* >0,
and
%wa+§ % €|2772+p 2 w Vw2 > P2,
It follows that there exist ¢y, c; > 0 depend on p such that
2 AT (V)00 > crw ™5 V20?4 cu™F | Vwl?p? — Cw™3 |V
(2.21)
Then we get

IV (w2 <C(/ waTﬂ)‘Vn|2—|—/ wz) (2.22)
B By B Y|
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[N

For oy = 0, then from (2.20), w?, WE € Ll(B%), applying (1.1) with p = 2,5 = 2 to

p
nw4, we have

o
w 2

c LY(B
€ L

),

D=

and applying (1.1) with p = 2, s = 0 to nw1, we also have

).

w2 € LY(B

Then if w2 o € L'(B,), we have w2=2 | oz € L'(B,,), where r,o < 1.
Let o1 = min{ %5 + %, a; +p — 1}, then
2
Qi+1 — @ > min {—p,p — 1} (2.23)
n—2

Then a; — oo as i — oo, after scaling we have w? € L'(B;) for any ¢ > 1.
By Fatou Lemma,

|Vu|tu = / lim (| Vue|? 4 €)2u” < lim/ wiu’ < C.
B B e—0 e—0 B

A scaling argument completes our proof.
O

From the second estimates for the p-Laplace equation in [3] and [10], we have the follow-
ing regularity result.

Lemma 2.6. Let u be a solution of (1.2), then for k > 3, |Vu|[P~*Vu € WL (R™).

loc

Proof. For k > 3, we have “p*f;‘) = L? (R™). Using the standard result in [3] or [10], we
have done.

O

Lemma 2.7. Let u be a solution of (1.2), and Z := {x € R" : Vu(z) =0} and W, :={zx €
R™: |y| > e}, then |Z N W,| =0andu € C*(WN\Z).

Proof. We have ““"" ¢ [>(.), so from [2], u € C“#(W.) and Z has zero measure

|y]
up*(l)fl

since “—— > 0. By a bootstrap argument, u € C(WA\Z).

O

3. CLASSIFICATION OF CYLINDRICALLY SYMMETRIC SOLUTIONS

In this section, we prove Theorem 1.2. First, we derive an identity.
Let u be a cylindrically symmetric solution of (1.2), r = |y|,t = |z| and we define

u(y,z) = ko(r,t) "7,
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where ~ is constant to be determined later. Then ¢ shares the regularities with u. In the
coordinate r, s, then

k — —k—1
Ayu = (p=2)|VulP = w2+ 20t s U+ | Vu P~ 2[uw+ ur+u58+n7us].
3.1
It follows that
k — np—1)|VolP a
8o+ S g, 4 T E T L ggpag, - MUV 0 )
p ¢ r
p%p:l) b1
where a = %, and we will compute x by a.
We define X' = [V, X} = (Vo). Bl = X — "85, i j=rt,
k — — k-1
ho— phtpeket R %h.
r

For ¢ > 0, we do the following calculations in W.\ Z since ¢ is smooth in W_.\Z. Now,
we begin to compute,

(EiX7¢'"h); =EE!¢""h + (EL);|V [P~ 2¢,0' "h+
(1 =n)E}NV P 20;0:0 "h + EI V[P 2¢;0' " h;
=I+IT+1II+1V.
To deal with /], we note that

(B = 5(8,0);

Let
n(p—1) Vo[
Ayp = + f,
p® ’ 5 f
where
a k—
f=t - E e, - T TP,
Then

—1
(8p0);IVEIP 200" "h =n(p — 1)| VO *¢:0,6:;6"h — %\ww—l_w
FiIV o0 .

For the second term 11,
_ n nip—1 1en
I =nlp = D[V~ 60,050™h — "L [Tgprei s
fy‘v¢|p 2@ - "h — _( p¢) ‘v¢|p 2¢J¢1 "h.
And for the third term III,

TIT =(1 — n)([V P 20),6:0,| Vol 26h — -

Apg|Vo[Po™"h
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=(IVo[P%¢;);0:;|VO|P2¢"h — n(p — 1)|V | di¢;i;0 "

N
Since
(IVOIP~2¢5) i = (p — 2)| VO Pig;didicr; + [V |2 ijih;
= (p— DIV di;id;,
and

1
IV = (|V¢|p_2¢i)j|V¢|p_2¢jhi¢l_n — §Ap¢|v¢|p_2¢ihi¢l_n-
It follows that we have

i Y J Al-n i g 11-n nip —1 —1-n - -n
(E;X7¢'""h); =E;E]¢'"h — %IWI% rh 4 IV h0t " h

1
- §(Ap¢)j\v¢|p_2¢j¢l_nh + (VeI 20) ;0105 VoIP 27"
1—n
2

+ (IVoIP20:);IV P2 djhip" " — %AP¢‘V¢|p_2¢ihi¢l_n

AGIVSPGh

~io = ML oo 4 £V e,0
(V20,006 [V 6P 207"+ (Vo6 [V ol ~26,hid! =
1 1
— LAV R0 L + 2 (80)0

since

— (8,0 VO 20

= SHAB)IVOI 206! B+ 5 (8,00

F IS AIVOPG h 4 S80IV O 2 0ihg

Observe that
LIV a)eh|
L IV 0us006 "+ [VOP D007
+ VoI 2gihi¢™" — n|V o[~ "h),

then

(IVOIP20:) ;005 |V IF 207" h =(p — 1)V dips10 "D
P V0P (TP 20007~ P Vol 00
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-1
- Z)T|V¢|2p_2hi¢i¢_n +

No we get
(E;X76'"h),
=EiEl¢""h —
1
+5(O0P 6 h = S A0 T6PG " h + A,

where,

n(pp_ 1) |v¢|2p¢—1—nh.

S BntAV 2006+ ESIVOMIVOP 000

A= Ewm?ﬁ—%mm—" + (IS 200; [ Vol 2hiy6' ™" + fi6:| Vol 20"k

1k — p—1n—k—-1

I—T—WWWW 26,07 h —
kE—1
2

t

2617 — V66,01 h +

If we multiply (3.2) with [V @[P¢!~"h, then

38021 h — A0l T0 o h + A

:%(AP¢>2¢1—nh o
k—1
2

- -n a - -n
462 h = |Vl 26,0' " h +

To eliminate 2 |V¢|pgb‘"h we introduce

—{(IVel?60)r¢

VoIVl 6™
k

n—k—1 _ T
Ve .

—1)2 —
n(p ] 1) ‘v¢|2p¢—1—nh _ p_12|v¢‘p¢—”h (34)
p por

n—k—1 _ n
e )

"Ry, (3.5)

R ,
Differentiating (3.2) with respect to r, we get
p_l‘v¢|p) 1—n 1k n 1 ‘V(Zﬂ ¢7‘ 1-n
B= (=77 he 2 2 VPR 1 h
(p¢T¢+ L iwapen+ Pt -
o (p—1) |V¢Ip n
+{— | 2<Z>T—npp ( 5 )r+%}¢1 h
= (L= (19620, % + (VoP 60, Syt
1k — k—1
— 7_|V¢|p¢ - - ¢T¢1—nh+%¢1—nh’
(3.6)
if we show
p—1 |V¢|p) p—1 |V¢|p¢r p—2 p—2 Ot
y (¢ P (vap200, % - (vore0 & =0
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Indeed, note that

¢ ¢ ¢ ¢

it is equivalent to verify that

(p - 1)|V¢‘p_2(¢r¢rr + ¢t¢tr> = (‘v¢|p_2¢r>r¢r + (V¢‘p_2¢t)r¢ta

which is correct by direct computation.

<|V¢|p) PV (brbors + i) VO 0

So we combine (3 3) and (3.6), (3.3) + 5B gives

(E;X7¢'""h); + [ POV O 2 dip""h); — (IWV’\WIP i "h);
a p— 1 ‘v¢|p -n p— -n p— -n
{5 e - v s 1| - tvore0t
2
BRIt sy \M T ) ¢
(k=D(n—k=1) [IVI" 20 |Vo|'~20, a 1.
+ n—2 { t r +(k—1)7} o' "h,
by
1 n(p—1)|Velr\* 1 n(p —1)* |[Ve|*
n—2 (AP¢_ P ¢ ) FalMer - T
2
_n Ag 2r—1) |V¢|P)
2(n—2) < T e )
and
1 Vo [P~2¢, Vo6, a]”
- [(n—k—l)it (k= 1) —;}

E—1 2a . n—k—1 - a?
+— =V~ e + Vol 4¢3+m
(k=D —-k-1) [\Vcblp ‘o VP20, L r
- (-2 t r (k—1)r]| -

Therefore, if we define
-1 P -1 P

p ¢ k=1\ p ¢ ")
and
_ ytyr ¢ t_p_1|v¢|p t t
G=XX"+X;X ’ 5 X - 1X

and let Y be vector field

= (F(ﬁl_nh, G(ﬁl_nh) = (ij — 2%1 |V$|p5ij> (Xj 7 i 157«j) ¢1_nh.

(3.7)

(3.8)

(3.9

(3.10)
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We have the following key differential identity.
Proposition 3.1. For any € > 0, the following identity holds in W\ Z.

p\ 2

+<k—1>7§n_—2 —1> {W: b W:QZ@ +(k_a1)rr -
() (25
+(k—1)75n_—2 —1) {W: 261 |v¢\:—2¢r +(k_a1>rr S > 0

(3.11)

Proof. From (3.7), we get the differential identity in (3.11), in order to prove the right of
(3.11) is nonnegative, it suffices to show

i p—l‘v¢|p ) ( j p—l‘v¢|p ) ( i _1‘v¢|p )
xi P oWVORs ) (xi P 2IVO s ) s o xi— 5 )
( p ¢ Y ' p ¢ 7 Z e\ p ¢ 7

for some ¢ > 0. From the Lemma 4.5 in [10], we only need to show that

‘ —1|Vo¢lP
where N, is positive define and N, is symmetric.
First,
; —1|Vol?
Xy - T| j| 57,] = N3N4 +N57
where Ny = [Vo["~2¢;;, N3 = (p— 2) s +6;; and N = 22 25,
define with eigenvalues 1 and p — 1. Ny ' = §;; — —f @j" .

It follows that

, p—1|V
Xj— Vol ——6ij = N3(Ny + N3 'Ns)
p 9
where N, + N; ' N5 is symmetric.
Setting Ny = N3, Ny = Ny + N3 ' N5, we have done. O

In order to get the integral estimates, we need the following estimates.

Lemma 3.2. For any € > 0, we have

(55 ) (o e 25 ) (£

C(OIGI*(IX* +1).
(3.13)
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Proof. The same notations as above, from (3.12), we have

p—1|VoP

Xt — 4 = ACTBC,
oop 9 Y
where (' is a orthogonal matrix,
ct=0c"
bid;

A is a symmetric matrix, (B);; = (p — 2) oo T d;; where B is positive define with
eigenvalues 1 and p — 1, and (BC');; = N\idij, M =p— 1, A = 1,0 = 2, ..., n. It follows that
tr(ACT BCD)
=(AC")i;(BC) 1, Dy
:(ACT)z'jAiji
SE(ACT)?]- + C(e) D},
<etr(ACT(ACT)T) + C(e)tr(D?)
and
tr(ACTBOACT BO) = (ACT);\j(ACT) ;i\ > Ntr(ACT (ACT)T)
where A = min{1,p — 1}. Then we have
tr(ACTBCD) < etr(ACT BOACT BC) + C(e)tr(D?) (3.14)

Substituting (D);; = (X7 — +%50,;)¢ and using

a a ,
_e 2 536G < C(X? + )¢
. 5,6 < O(XE + DG

we have completed the proof. U

r(D?) = (X' = 258060 -

Now we begin the proof of the main Theorem 1.2, as in the paper by Mancini-Fabbri-
Sandeep [19], we shall use the key differential identity (3.11) , the C° estimates (2.3) , the
integral gradient estimates in (2.6) and (2.10).

Proof of Theorem 1.2. Let R > 0 and define

Qr={(r,t): 0 <r*+t* < 4R?}.

Let ¢ (r, t) be cut-off function in R? with ¢ = 1in (r2+¢2)2z < R, =0in (r2+ %)z > 2R
and [V(| < €.
T.={(r,t): 0 <r <e},

Let ¢(r,t) be a smooth function in R? with ¢ = 0in 7., ¢ = 1 outside T, and ; = 0,

o] < 5.
Since Z has zero measure, for the vector field Y in (3.10), integration by parts gives

/ oM divY = / O'¢™Y - vdH — / V(e'¢™) -, (3.15)
Qg (2955

Qr
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where m, [ > 2 are big, and v is the outward normal to Q) and dH" is the surface measure
on the boundary.

/ @lchVdle_/ (plcmGle_nhdHl—/ gOlCmFle_nhdHl
. ! re (3.16)
+ / O'¢MY - vdHY,
r24+t2=4R?

where I'y = 0Qp N {t =0}, 'y = 0Qr N {r =0}.
From the symmetry of ¢, we have ¢,(r,0) = 0. We observe that G = 0 on I'; since
IVo|P~2¢, = ([Vo|P2¢;), =0onTy, o =0o0nTyand ¢ = 0 onr? +t?> = 4R?, therefore

/ O'¢™Y - vdH' = 0. (3.17)
g
Now we need to deal with
[ wgemy vy = / AV Y —m [ JOIVC Y. (Ba8)
Qg Qr Qg

By the definition of Y = <XJZ — % W(f‘p 6ij) (X7 — £226,;) ¢* "h and using Lemma 3.2
we have,

. _ P . _ p

¢ ¢
C p—1 2 1-n l -m—2
+ (Vo + 1% he! (2,
(3.19)
in the support set of V( C QR\Q%.
Using Lemma 2.4 and Lemma 2.5 (with ¢ = 2p) we have
/ Vul =0 < (/ \Vulz”l”) p (/ “) D <C(+ RTHVTES) (3.00)
BR BR BR
Then
/ |v¢|2p—2¢1—nrk—ltn—k—l — C/ |vu|2p_2up(::p1)_% < 0(1 + R2—g)’
Qpr Baor
(3.21)
Besides, by Proposition 2.2 we have ¢; (1 + r? + t?) -1 <<l +72+12) ) , then
/ PRl < (14 RTT). (3.22)
Qr
So by (3.21) and (3.22), we get
1
-3 PVl + C)?¢ T h < CRTT, (3.23)
R 2\ g

where 7 = min{?=}, 2}.
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Let
Q: = QrN{T2\T.} C Qg (3.24)
Next, we estimate

/ (Pl_lngC Y = / QOl_lchOTFqbl_n’f’k_ltn_k_l. (325)
QR €

For k£ > 3, the same as (3.19),

, —1 P  p—1
(Pl_lgmh@q«F‘Qﬁl_nh <0.01 (X]z . P |V¢‘ 52]) (XZJ . |V¢‘ w) © Cm¢l np
p ¢ p ¢

C
+ S(Vopt+ 1R,

(3.26)
in the support set of i, C Q..
We have

1 C 2e 2R (1—n)
= [ ¢7"h< 5 / / (1472 + £2) 20 " h =Lk =1y
= e e o (3.27)
C 2  p2R (n—1)p C 2e '
<= / (14 t*)" 261 R e e < —2/ rFldr < k2.
8 € E €
o _(n=1)p
Here we use — (7; Up 1= _% —k,s0 [[C(1+¢*) 20" h1dt < C. And
by Holder’s inequahty, we have

2p—2 q—2p+2
1 B . C . Ta . q
= / Vo[ ™h < ( [Vo|'g! h) ( / ¢! h) . (28
For k > 2p, we set ¢ = 2p, if k < 2p, we set ¢ = 21 , by Lemma 2.4 and Lemma 2.5
it follows that
/ V|76 "h < / Veltg! it = C / Vultu"5=" "5 dz < C(R).
e Qr Bar

(3.29)
Thus, by (3.28) and (3.27),

q—2p+2
1 C(R q C(R q—2p
_2/ |V¢‘2p—2¢1—nh < (2 ) (/ ¢1—nh> < (2 )6k( §+2) _ C(R)g“7
& JQ. € . €
(3.30)
where
k(g —2 2
— w —9 (3.31)
q
For k > 2p, q = 2p, then = % — 2> 0. For k < 2p, ¢ = 2Z54%, then
k(zﬁzik 2pkk 2412;, + 215 2412) 4'1(5?
= 2o D% —2= 2% —2=21-2=0.1,

k—2.1 k—2.1
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we have ;1 > 0 in both cases.
Combing (3.30) and (3.27),

5 | (wept vz < camyen (6.32)
Qe
Using the fact (3.24), then we arrive at
/ o' divy
Qg
: — 1[Vol . p—1[VeP -
= [ e XZ.—p——éi») (X?—— 5 )| 6"
/QR 76 < oop o9 Y oop 9 Y
1 L m 2(p_ 1) |V¢‘p ? 1-n
+ el (Am ) e
(k=D -k=1) , , [IVeP¢  |Vo[r 20, o 1P (33
+ n—2 - t r +(k—1)r ¢ "h .
—— [ vy =m [ demveey -t [ iemeF
Qr Qr Qe
. p—1|Vol? )( . p—1|VolP ) I 1—
§0.11/ <X? - — 0;i X —————0; mp T h
o\’ p 0 Y p ¢ 7 pLe
C -1 2 11—-n l rm—2 C -1 2 11-n -2 ,m
+ = [ (Ve[ + 1% "he' (" 4+ 5 [ (Ve[ +1)%0 " he (™
R% /g, €2 Jo.
From (3.23), (3.32), we have
1
5/ ©'¢mdivy < CR™™ 4 C(R)e". (3.34)
Qr
For any R > 0, let ¢ — 0, we have
1 ("divY < CR™T, (3.35)
2 Jan
then let R — oo,
1 / divY = 0. (3.36)
2 r>0,t>0
Therefore by Proposition 3.1,
divY =0, (3.37)
which means
EJZ =0, (3.38)
_ p
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Now we focus on Z¢ since ¢ € C°(Z° N {(r,t) : > 0,t > 0}). From (3.38), we have
(IVI¢r)e = 0, (VP en), = 0, (3.40)

and

(IV61720,), = (V617 200) = 2 00 G41)
If we differentiate (3.40), then there is a constant b such that

(IVolP=2¢,), = (IVI"¢1), := b,
then
[Vo[P=2h, = br + du, [VoIP ¢y = bt + do,

for some constants d;, ds.
By (3.39) and (3.2),

a
dl L — 17 d2 Oa
which is
Vo126, = br+ . |Vo|" 6, = . (3.42)

By (3.39)

-1

6= |Vol".
pb

If we take a = (k — 1)(-25)P~!, then

p—1 2 P \p-1\2 )
¢:W[(bt> +(br+(m) )7)]Ze=D

n—p n—p

P (p - 1)_77

k= (k= 1)/ (n - p)
then
u(y, z) = )\n%puo()\y, Az),
where ug is as in Theorem1.2 in Z¢. Since u is continuous and Z has zero measure, then

u(y, z) = )\%uo()\y, Az) in R™.
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