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ABSTRACT. Trudinger-Wang introduced the notion of k-Hessian measure associated with
k-convex functions, not necessarily continuous, and proved the weak continuity of the asso-
ciated k-Hessian measure with respect to local L1 convergence in 1999. In this paper we find
a special divergence structure for the σk-Yamabe operator which is conformally invariant,
and prove the weak continuity of the σk-Yamabe operator with respect to local L1 conver-
gence.

1. INTRODUCTION

Let (M, g) be a Riemannian manifold of dimension n ≥ 3 with a metric g. The well-
known Yamabe problem states whether there exists metrics which are pointwise conformal
to g and have constant scalar curvature. The Yamabe problem was solved through the work
of Yamabe[25] , Trudinger[19] , Aubin[1] and Schoen[17]. Denote Ric and R as the Ricci
tensor and the scalar curvature, respectively. Then the Schouten tensor is

Ãg
ij =

1

n− 2

!
Ricgij −

1

2(n− 1)
Rggij

"
. (1)

Now transform the (0, 2)-tensor Ãg
ij to a (1, 1)-tensor Aij by Ag = g−1Ãg.

We are always interested in locally conformally flat (lcf) manifolds. We say a Riemannian
manifold (M, g) is lcf if the metric g can be locally written as g = v−2|dx|2 for some smooth
v > 0, where |dx|2 is the usual Euclidean metric. Then the (1, 1)-tensor Aij becomes

Aij(v) = vvij −
1

2
|∇v|2δij. (2)

For λ = (λ1, · · · ,λn) ∈ Rn, we define

σk(λ) :=
#

1≤i1<···<ik≤n

λi1 · · ·λik . (3)

Let λ{Aij(v)} be the eigenvalues of Aij(v), then we define

Sk(v) := σk(λ{Aij(v)}). (4)

We call Sk the σk-Yamabe operator. For the related σk-Yamabe problem, there has been a
lot of work, for instance, Chang- Gursky- Yang [2, 4], Gursky- Viaclovsky [12], Li- Li [14],
Guan- Wang [11], Sheng- Trudinger- Wang [18], Ge-Wang[7].

1991 Mathematics Subject Classification. 58C35, 28A33, 35J60,
Key words and phrases. σk-Yamabe problem, Hessian measure, Conformal invariant, Riemannian measure

space.
1



XI-NAN MA AND WANGZHE WU

Trudinger - Wang [20] introduced the notion of k-Hessian measures, for k-convex func-
tions defined on domains in Euclidean space, and proved the weak continuity of k-Hessian
measures with respect to locally uniform convergence of functions. In the sequel paper,
Trudinger - Wang [21] introduced the notion of k-Hessian measure associated with k-convex
functions and proved the weak continuity of the associated k-Hessian measure with respect
to local L1 convergence. In [22], Trudinger - Wang extended to the case of mixed k-Hessian
measures associated with k-tuples of k-convex functions on domains in Euclidean space, and
gave some applications of the k-Hessian measure theory to the Dirichlet problem. In Dai-
Trudinger-Wang [5] and Dai-Wang-Zhou [6], they generalized the Hessian measure result
to higher order curvature operator with respect to almost everywhere convergence. For the
Hessian measure on Heisenberg group, Trudinger-Zhang [23] proved the weak continuity
of Hessian measures with respect to locally uniform convergence of functions through the
monotonicity formula for k-convex functions on Heisenberg group.

On the other hand, the σk-Yamabe operator Sk(v) is conformally invariant, which comes
from the result of Chang- Gursky- Yang [3] :

Proposition 1.1 ([3] ). Let λ be any real number. Then the tensor

T = T (g, f)

= Ric(g) +
n− 2

n
∇2

gf +
1

n
(∆gf)g +

n− 2

n2
df ⊗ df − n− 2

n2
|∇f |2g

+ λ

!
R(g) +

2(n− 1)

n
∆gf − (n− 1)(n− 2)

n2
|∇f |2

"
g, (5)

is a pointwise conformal invariant. More precisely,

T (e2wg, f + nw) = T (g, f). (6)

Letting λ = − 1
2(n−1)

, we define T̄ := 1
n−2

g−1T1(g, n log v) and Y m
k (g, v) := σk(λ{T̄}).

If g = |dx|2, then

T̄ (g, v) = v−1vij −
1

2
v−2|∇v|2δij. (7)

Thus in this case we have Y m
k (|dx|2, v) = v−2kSk(v) and for locally conformally flat mani-

folds, the operator Y m
k (g, v) is conformally invariant by Proposition 1.1 :

Y m
k (e2w|dx|2, ewv) = e−2kwY m

k (|dx|2, v). (8)

Our Corollary 4.1 will show Y m
k (|dx|2, v) is a measure when v is just continuous.

In this paper, we will introduce the σk-Yamabe measure Sk(v) and prove the weak conti-
nuity of the associated σk-Yamabe measure with respect to convergence in measure of v.

We recall that the Gårding’s cone is defined as

Γk = {λ ∈ Rn : σi(λ) ≥ 0, ∀1 ≤ i ≤ k}. (9)
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Define

Sij
k :=

∂Sk

∂Aij

,

Φ̃k(Ω) :=
$
u ∈ C2(Ω) : u > 0,λ{Aij(v)} ∈ Γk

%
,

Φk(Ω) :=
$
u ∈ L1

loc(Ω) : u > 0, and there exists a sequence {u(m)} ∈ Φ̃k(Ω) ,

such that u(m) converges to u in L1
loc

%
,

(10)

where Ω is a bounded domain in Rn. Corresponding to Theorem 1.1 in Trudinger-Wang
[21], we shall establish the following characterization of σk-Yamabe measure on Φk(Ω).

Theorem 1.1. For any u ∈ Φk(Ω), there exists a Borel measure µk[u] in Ω such that
• µk[u] = Sk(u) for u ∈ C2(Ω).
• If {u(m)} is a sequence in Φk(Ω) converging locally in measure to a function u ∈
Φk(Ω), then the corresponding measure µk[u

(m)] → µk[u] weakly.
Note that from well known properties of subharmonic functions and the relation between

Sm(v) and vmσm(λ{vij}) in Lemma 2.3, as Trudinger-Wang [21] mentioned, we have the
inclusion, Φk(Ω) ⊂ Φ1(Ω) ⊂ L1

loc(Ω) and convergence in measure is equivalent to conver-
gence in L1

loc(Ω).

In order to prove the above theorem, we introduce a monotonicity formula with respect to
σk-Yamabe operator.

Theorem 1.2. Let u, v ∈ Φ2(Ω) ∩ C2(Ω̄) satisfy u ≥ v in Ω and u = v on ∂Ω. Then there
exists Λ < 0, such thar for any α ≥ Λ, it follows that :

&

Ω

k#

l=0

blu
α|∇u|2lSk−l(u)dx ≤

&

Ω

k#

l=0

blv
α|∇v|2lSk−l(v)dx, (11)

with'
(

)

b0 = k, (12)

bl =
*
(k + l)α + kn+ 2kl

+
· (α + n)(α + n+ 1) · · · (α + n+ l − 1)

2ll!(α + n)
, for l = 1, · · · , k. (13)

This monotonicity formula is the most important tool to obtain Theorem 1.1. It is different
from the usual monotonicity formulas on k-Hessian measure by Trudinger-Wang in [20],
Dai-Wang-Zhou in [6]. In some sense, it is similar to the monotonicity formula for k-convex
functions on Heisenberg group by Trudinger-Zhang [23].

[16] The plan of this paper is as follows. In the next section we give various properties of
σk-Yamabe operator, especially we obtain the relation between Sm(v) and vmσm(λ{vij}) in
Lemma 2.3. In Section 3, we first use the special divergence structure with respect to the σk-
Yamabe operator to get a differential identity in Lemma 3.1, which will be also used to get
the upper bound estimates via Moser iteration in Section 5. Then we prove the monotonicity
formulas i.e. Theorem 1.2. The new idea on this step is that we introduce the combination of
ψ(v) = ψα

k (v) :=
,k

l=0 blv
α|∇v|2lSk−l(v) to replace the usual term σm(λ{vij}) in Trudinger

- Wang in [20]. Then we give comparison principle as a consequence of the monotonicity
3
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formulas. In Section 4, we complete the proof of Theorem 1.1 for k > n
2
. In this case we use

the Hölder estimate Theorem 2.7 and integral estimate Theorem 3.1 in Trudinger-Wang [20],
and we use the monotonicity formulas Theorem 1.2. The proof of the weak continuity result,
Theorem 1.1 is then completed for k > n

2
. In Section 5, we first obtain the interior L∞ bound

with related to the σk-Yamabe operator for 1 ≤ k ≤ n
2

via Moser iteration. As a consequence
we get a local uniform integral estimates from the differential identity Lemma 3.1. Finally,
in Section 6, we use the integral estimates to complete the proof the weak continuity result,
Theorem 1.1 for 1 ≤ k ≤ n

2
. In this step we also follow that idea from Trudinger-Wang in

[20].
Acknowledgment: The first author would like to thank the helpful discussion and encour-

agement from Prof. X.-J. Wang on this subject. The authors were supported by the National
Natural Science Foundation of China (grants 12141105) and the first author also was sup-
ported by the National Key Research and Development Project (grants SQ2020YFA070080).

2. PROPERTIES OF σk-YAMABE OPERATOR

In this section, we will give some fundamental properties of σk-Yamabe operator which
will be widely used in this paper. The first lemma appeared in Li-Nguyen-Wang [15], for
completeness we contain its proof. In this paper we always use the notation Sk := Sk(v) :=
σk(λ{Aij(v)}) and σk := σk(v) := σk(λ{vij}).

Lemma 2.1. [15] If u, v ∈ Φ̃k(Ω), then u+ v ∈ Φ̃k(Ω).

Proof of Lemma 2.1. Define w := u+ v, then

Aij(w) = (u+ v)(uij + vij)−
1

2
|∇u+∇v|2δij

= (u+ v)(u−1Aij(u) + v−1Aij(v)) +
1

2
(u+ v)(u−1|∇u|2δij + v−1|∇v|2δij)

− 1

2
|∇u+∇v|2δij

= (u+ v)u−1Aij(u) + (u+ v)v−1Aij(v) +
1

2
δij(vu

−1|∇u|2 + uv−1|∇v|2 − 2∇u ·∇v).

Since
vu−1|∇u|2 + uv−1|∇v|2 − 2∇u ·∇v ≥ 0, (14)

and Γk is convex , we get that
λ(Aij(w)) ∈ Γk. (15)

□
By González [8, 9, 10], we know that

Lemma 2.2. If v ∈ Φ̃k(Ω), then for any 0 ≤ l ≤ k, the matrices (Sij
l ) defined in (10) is

nonnegative-definite and
#

j

∂jS
ij
l+1 = −(n− l)Slviv

−1 + n
#

j

Sij
l+1vjv

−1. (16)

Here we give a different proof from the one in [8].
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Proof of Lemma 2.2. We prove the conclusion by induction. If l = 0, since Sij
1 = δij and

S0 = 1, the conclusion (16) holds. Then we suppose (16) holds for any 0 ≤ l ≤ m with
0 ≤ m ≤ k − 1. At this time, we have
#

j

∂jS
ij
m+1 =

#

j

∂j(Smδij − Sjq
mAqi)

= Sjq
m∂iAjq − (∂jS

jq
m · Aqi + Sjq

m · ∂jAqi)

= Sjq
m (∂iAjq − ∂jAqi)− ∂jS

jq
m · Aqi

= Sjq
m (vivjq − vpivpδjq − vjvqi + vpjvpδiq)− ∂jS

jq
m · Aqi

= Sjq
m (vivjq − vjvqi)− (n−m+ 1)Sm−1vpivp + Sji

mvpjvp − ∂jS
jq
m · Aqi

= Sjq
m

!
v−1vi

-
Aqj +

1

2
|∇v|2δqj

.
− vjvqi

"
− (n−m+ 1)Sm−1vpivp + Sji

mvpjvp

+
/
(n−m+ 1)Sm−1vqv

−1 − nSjq
mvjv

−1
0
Aqi

= mv−1Smvi +
1

2
(n−m+ 1)v−1|∇v|2Sm−1vi − Sjq

mvqivj

− (n−m+ 1)Sm−1vpivp + Sji
mvpjvp + (n−m+ 1)Sm−1vqv

−1Aqi − nv−1Sjq
mvjAqi

= mv−1Smvi − nv−1Sjq
mvjAqi

= −(n−m)Smviv
−1 + nSij

m+1vjv
−1, (17)

where we used the fact that the matrix (Sij
l )i,j is symmetric for any 1 ≤ l ≤ k which means

that #

j

Sji
m+1vj =

#

p

Sip
m+1vp, (18)

⇒
#

j

1
Smδji −

#

q

Sjq
mAqi

2
vj =

#

p

1
Smδip −

#

j

Sij
mAjp

2
vp, (19)

⇒
#

j,q

Sjq
mAqivj =

#

j,p

Sij
mAjpvp, (20)

⇒
#

j,q

Sjq
mvqivj =

#

j,p

Sij
mvjpvp. (21)

□
Let λ = (λ1, · · · ,λn) be the eigenvalue vector of the matrix (vij) and b := 1

2
|∇v|2. Define

σk := σk(vij) =
#

1≤i1<···<ik≤n

λi1 · · ·λik . (22)

Next we will show λ(vij) ∈ Γk if λ(Aij(v)) ∈ Γk.

Lemma 2.3. If v ∈ Φ̃k(Ω), then we have

Sk(v) = vkσk −
k#

l=1

(n− k + l)!

l!(n− k)!
Sk−lb

l, with b :=
1

2
|∇v|2. (23)
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Therefore there exists C = C(n, l, q) > 0, such that

vlσl(v) ≥ C|∇v|2qSl−q, with 1 ≤ q < l ≤ k, (24)

and
Sm ≤ vmσm, with 1 ≤ m ≤ k. (25)

Proof of Lemma 2.3 . Let µi = vλi − b. Then λi = v−1(µi + b) and

vkσk = σk(µ1 + b, · · · , µn + b)

= Sk(v) +
k#

l=1

(n− k + l)!

l!(n− k)!
Sk−lb

l. (26)

□

3. MONOTONICITY FORMULA

In this section, inspired by Lemma 3.3 in González [8], we give a special divergence
structure with respect to the σk-Yamabe operator.

Lemma 3.1. For any α ∈ R, we have
k−1#

l=0

al(v
α+1|∇v|2lSij

k−lvi)j +
k#

l=0

blv
α|∇v|2lSk−l = 0, (27)

with
'
333333(

333333)

a0 = −1, (28)
b0 = k, (29)

al = −(α + n+ 1) · · · (α + n+ l)

2l · l! , for l = 1, · · · , k − 1, (30)

bl =
*
(k + l)α + kn+ 2kl

+
· (α + n)(α + n+ 1) · · · (α + n+ l − 1)

2ll!(α + n)
, for l = 1, · · · , k. (31)

Proof. Writing S−1 = 0. Using Lemma 2.2 and direct computation, we have

(vα+1|∇v|2lSij
k−lvi)j

=(k + l)vα|∇v|2lSk−l + (α + n+ l + 1)vα|∇v|2lSij
k−lvivj − 2lvα|∇v|2l−2Sij

k−l+1vivj

− 1

2
(n+ l + 1− k)vα|∇v|2l+2Sk−l−1.

(32)
Combining (28), (29),(30), (31) and (32), we get (27).

□
Remark 3.1. We find that when

α ≥ max

4
−n− 1,−kn+ 2kl

k + l

5
=: Λ, (33)

it holds that bl ≥ 0 and al ≤ 0. This Λ is the constant in Theorem 1.2.
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From now on, let us define

ψ(w) = ψα
k (w) :=

k#

l=0

Blw
α|∇w|2lSk−l(w), (34)

where Bl ∈ R and w ∈ Φk(Ω).

Lemma 3.2. Let Bl = bl for l = 0, · · · , k in (29) and (31). For any u, v ∈ Φk(Ω) ∩ C2(Ω)
and α ∈ R, we have

∂

∂t
ψ(w) =

k−1#

l=0

bl

*
wα+1|∇w|2lSij

k−l(v − u)i

+

j

+
k−1#

l=0

*
2(l + 1)bl+1 − (α + n+ l + 1)bl

+*
wα|∇w|2lSij

k−lwi(v − u)
+

j
,

(35)

where
w = w(x, t) := (1− t)u(x) + tv(x). (36)

Proof of Lemma 3.2. By direct computation, we get

∂

∂t
(wα|∇w|2lSk−l)

=(α + k − l)wα−1|∇w|2lSk−l(v − u) +
1

2
(n+ l + 1− k)wα−1|∇w|2l+2Sk−l−1(v − u)

+ 2lwα|∇w|2l−2Sk−l∇w ·∇(v − u)− (n+ l + 1− k)wα|∇w|2lSk−l−1∇w ·∇(v − u)

+ wα+1|∇w|2lSij
k−l(v − u)ij.

(37)
Firstly we deal with the term wα+1|∇w|2lSij

k−l(v − u)ij in above formula.

wα+1|∇w|2lSij
k−l(v − u)ij

=
*
wα+1|∇w|2lSij

k−l(v − u)i

+

j
− (α + 1)wα|∇w|2lSij

k−lwj(v − u)i

− 2lwα+1|∇w|2l−2Sij
k−lwjmwm(v − u)i

− wα+1|∇w|2l(v − u)i ·
*
− (n− k + l + 1)w−1Sk−l−1wi + nw−1Sij

k−lwj

+

=
*
wα+1|∇w|2lSij

k−l(v − u)i

+

j
− (α + n+ 1)wα|∇w|2lSij

k−lwj(v − u)i

− 2lwα+1|∇w|2l−2Sij
k−lwjmwm(v − u)i + (n− k + l + 1)wα|∇w|2lSk−l−1∇w ·∇(v − u).

Noting that

wSij
k−lwjm = Sij

k−l

-
Ajm +

1

2
|∇w|2δjm

.
= Sk−lδim − Sim

k−l+1 +
1

2
|∇w|2Sim

k−l, (38)

we obtain

wα+1|∇w|2lSij
k−l(v − u)ij

7
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=
*
wα+1|∇w|2lSij

k−l(v − u)i

+

j
− (α + n+ 1)wα|∇w|2lSij

k−lwj(v − u)i

− 2lwα|∇w|2l−2wj(v − u)i

-
Sk−lδij − Sij

k−l+1 +
1

2
|∇w|2Sij

k−l

.

+ (n− k + l + 1)wα|∇w|2lSk−l−1∇w ·∇(v − u)

=
*
wα+1|∇w|2lSij

k−l(v − u)i

+

j

+ 2lwα|∇w|2l−2Sij
k−l+1wj(v − u)i − (α + n+ l + 1)wα|∇w|2lSij

k−lwj(v − u)i

− 2lwα|∇w|2l−2Sk−l∇w ·∇(v − u) + (n− k + l + 1)wα|∇w|2lSk−l−1∇w ·∇(v − u).
(39)

Secondly we deal with the term wα|∇w|2lSij
k−lwi(v − u)j . Using (32), we have

wα|∇w|2lSij
k−lwi(v − u)j

=
*
wα|∇w|2lSij

k−lwi(v − u)
+

j
− (k + l)wα−1|∇w|2lSk−l(v − u)

− (α + n+ l)wα−1|∇w|2lSij
k−lwiwj(v − u)

+ 2lwα−1|∇w|2l−2Sij
k−l+1wiwj(v − u) +

1

2
(n+ l + 1− k)wα−1|∇w|2l+2Sk−l−1(v − u).

(40)
Substituting (39) and (40) into (37), we get for any 0 ≤ l ≤ k,

∂

∂t
(wα|∇w|2lSk−l)

=
*
wα+1|∇w|2lSij

k−l(v − u)i

+

j
+ 2l

*
wα|∇w|2l−2Sij

k−l+1wi(v − u)
+

j

− (α + n+ l + 1)
*
wα|∇w|2lSij

k−lwi(v − u)
+

j

+
*
(α + k − l) + l(n+ l − k) + (α + n+ l + 1)(k + l)

+
wα−1|∇w|2lSk−l(v − u)

− 2l(k + l − 1)wα−1|∇w|2l−2Sk−l+1(v − u)

− 1

2
(α + n+ l)(n+ l + 1− k)wα−1|∇w|2l+2Sk−l−1(v − u)

− 4l(α + n+ l)wα−1|∇w|2l−2Sij
k−l+1wiwj(v − u)

+ 2l(2l − 2)wα−1|∇w|2l−4Sij
k−l+2wiwj(v − u)

+ (α + n+ l + 1)(α + n+ l)wα−1|∇w|2lSij
k−lwiwj(v − u).

At last we obtain

∂

∂t
ψ =

k#

l=0

Bl

*
wα+1|∇w|2lSij

k−l(v − u)i

+

j

8
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+
k−1#

l=0

*
2(l + 1)Bl+1 − (α + n+ l + 1)Bl

+*
wα|∇w|2lSij

k−lwi(v − u)
+

j

+
$
B0

*
α + k + (α + n+ 1)k

+
− 2kB1

%
wα−1Sk(v − u)

+

6
Bk

*
α + kn− 2k(α + n+ k − 1)

+
+Bk−1(α +

1

2
n+ k)(α + n+ k − 1)

7
wα−1|∇w|2k(v − u)

+
k−1#

l=1

6
Bl

*
α + k − l + l(n+ l − k) + (α + n+ l + 1)(k + l)

+
− 2(l + 1)(k + l)Bl+1

− 1

2
(α + n+ l − 1)(n+ l − k)Bl−1

7
wα−1|∇w|2lSk−l(v − u)

+
k−2#

l=0

8
Bl(α + n+ l + 1)(α + n+ l)− 4(l + 1)(α + n+ l + 1)Bl+1

+ 4(l + 2)(l + 1)Bl+2

9
wα−1|∇w|2lSij

k−lwiwj(v − u). (41)

Letting Bl = bl for l = 0, · · · , k in (29) and (31) , we get

∂

∂t
ψ =

k−1#

l=0

bl

*
wα+1|∇w|2lSij

k−l(v − u)i

+

j

+
k−1#

l=0

*
2(l + 1)bl+1 − (α + n+ l + 1)bl

+*
wα|∇w|2lSij

k−lwi(v − u)
+

j
.

(42)

□

Now we can get the following monotonicity formula:

Proof of Theorem 1.2. Using Lemma 3.2, Remark 3.1 and letting Bl = bl for l = 0, · · · , k,
we get when

∂

∂t

&

Ω

ψdx =

&

∂Ω

k−1#

l=0

blw
α+1|∇w|2lSij

k−l(v − u)iνjdS ≥ 0, (43)

where ν(x) = (ν1, · · · , νn) is the outer normal vector of ∂Ω at x ∈ ∂Ω. □

Using monotonicity formula and (41) , we can get one comparison principle directly. But
the proof is different from the Hessian measure case in [20] and [21].

9
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Theorem 3.1. Let B0 = k and Bl ≥ 0 for 1 ≤ l ≤ k. Suppose {Bi}ki=0 satisfies:
'
3333333333333(

3333333333333)

B0

*
α + k + (α + n+ 1)k

+
− 2kB1 < 0, (44)

Bk

*
α + kn− 2k(α + n+ k − 1)

+
+Bk−1(α +

1

2
n+ k)(α + n+ k − 1) ≤ 0, (45)

Bl

*
α + k − l + l(n+ l − k) + (α + n+ l + 1)(k + l)

+
− 2(l + 1)(k + l)Bl+1

−1

2
(α + n+ l − 1)(n+ l − k)Bl−1 ≤ 0 for 1 ≤ l ≤ k − 1, (46)

Bl(α + n+ l + 1)(α + n+ l)− 4(l + 1)(α + n+ l + 1)Bl+1

+4(l + 2)(l + 1)Bl+2 ≤ 0 for 0 ≤ l ≤ k − 2. (47)

If u, v ∈ C2(Ω̄) ∩ Φk(Ω) satisfy
'
3(

3)

k#

l=0

Blv
α|∇v|2lSk−l(v) ≤

k#

l=0

Blu
α|∇u|2lSk−l(u) in Ω, (48)

v ≥ u on ∂Ω. (49)

Then v ≥ u in Ω.

Proof of Theorem 3.1. Define Ω1 := {x ∈ Ω : u(x) > v(x)} and ψ(u) =
,k

l=0 Blu
α|∇u|2lSk−l(u).

Suppose the set Ω1 is not empty. Then we know that
4

u > v in Ω1, (50)
v = u on ∂Ω1. (51)

Let w := (1− t)u+ tv. Then combining (41) and (48) and using conditions (45), (46), (47),
we get

0 ≥
&

Ω1

ψ(v)dx−
&

Ω1

ψ(u)dx

≥
& 1

0

∂

∂t

&

Ω1

ψ(w)dxdt

≥
& 1

0

&

Ω1

k#

l=0

Bl

*
wα+1|∇w|2lSij

k−l(v − u)i

+

j

+
k−1#

l=0

*
2(l + 1)Bl+1 − (α + n+ l + 1)Bl

+*
wα|∇w|2lSij

k−lwi(v − u)
+

j

+
$
B0

*
α + k + (α + n+ 1)k

+
− 2kB1

%
(v − u)wα−1Skdxdt

=

& 1

0

&

∂Ω1

k#

l=0

Blw
α+1|∇w|2lSij

k−l(v − u)iνjdSdt

+

& 1

0

&

Ω1

$
B0

*
α + k + (α + n+ 1)k

+
− 2kB1

%
(v − u)wα−1Skdxdt

10
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≥
& 1

0

&

Ω1

$
B0

*
α + k + (α + n+ 1)k

+
− 2kB1

%
(v − u)wα−1Skdxdt.

By condition (44) , we obtain
& 1

0

&

Ω1

(v − u)wα−1Skdxdt = 0. (52)

Since w, u− v > 0 in Ω, we deduce that Sk(w) = 0 in Ω1. By the proof of Lemma 2.1 and

the fact that σ
1
k
k is concave, we get

vu−1|∇u|2 + uv−1|∇v|2 − 2∇u ·∇v = 0 in Ω1, (53)

⇒|∇ log u−∇ log v| = 0 in Ω1, (54)
⇒u ≡ v in Ω1, (55)

which is impossible. Therefore the set Ω1 is empty. □

Such {Bi}ki=0 exists for some special α. For example, letting B0 = k, Bl = 0 for 1 ≤ l ≤
k, k < n

2
and α = −n, then the conditions (44) - (47) are all satisfied.

Corollary 3.1. If n > 2k and u, v ∈ C2(Ω̄) ∩ Φk(Ω) satisfy
4

v−nSk(v) ≤ u−nSk(u) in Ω, (56)
v ≥ u on ∂Ω. (57)

Then v ≥ u in Ω.

4. LOCALLY UNIFORM CONVERGENCE FOR n < 2k

In this section, we will prove Theorem 1.1 for the case n < 2k. Firstly by Lemma 2.3 and
Theorem 2.7 in [21], we get:

Lemma 4.1. For n < 2k, we have Φk(Ω) ⊂ C0,α(Ω) for α = 2 − n
k

, and for any Ω2 ⊂⊂
Ω1 ⊂⊂ Ω with u ∈ Φk(Ω),

‖u‖C0,α(Ω2) ≤ C

&

Ω1

udx. (58)

So in this case, u(m) converges to u in L1
loc(Ω) means that u(m) converges to u in C0

loc(Ω).
Then we have the following result:

Theorem 4.1. For any u ∈ Φk(Ω), there exists a Borel measure µk[u] in Ω such that

• µk,α[u] = uαSk(u) for u ∈ C2(Ω).
• If {u(m)} is a sequence in Φk(Ω) converging to u locally uniformly in Ω, then the

corresponding measure µk[u
(m)] → µk[u] weakly.

Recalling the identity (23) and Lemma 2.3, together with the Lemma 2.2 in [20] and
Theorem 3.1 in [21], we get:

11
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Lemma 4.2. Let u ∈ Φk(Ω) ∩ C2(Ω) satisfy that |u| ≤ M in Ω1 ⊂⊂ Ω. Then
&

Ω2

k#

l=0

|∇u|2lSk−ldx ≤ C(oscΩ1 u)
2k, if Ω2 ⊂⊂ Ω1. (59)

Next, let us introduce a special convex function in B2 := {x ∈ Rn : |x| ≤ 2}. Define
η = C, if |x| ≤ 1,

η = (r − 1)3 + C, if 1 ≤ |x| ≤ 2,
(60)

where C > 0 is a constant, we know η ∈ C2(Rn).

Lemma 4.3. There exists C0 depending only on n, such that the matrix

Aij(η) = ηηij −
1

2
|∇η|2δij, (61)

is nonnegative-definite in B2 for any C > C0.

Proof of Lemma 4.3. Recall that

ri =
xi

r
,

rij =
1

r
δij −

xixj

r3
,

with r = |x|. Then we know that when r > 1

ηi = 3(r − 1)2
xi

r
,

ηij = 6(r − 1)
xixj

r2
+ 3(r − 1)2

-
1

r
δij −

xixj

r3

.

=
3(r − 1)(r + 1)

r3
xixj + 3(r − 1)2

1

r
δij,

and

Aij(η) =
*
(r − 1)3 + C

+
·
*3(r − 1)(r + 1)

r3
xixj + 3(r − 1)2

1

r
δij

+
− 9

2
(r − 1)4δij

=
*
(r − 1)3 + C

+
· 3(r − 1)(r + 1)

r3
xixj +

*(r − 1)3 + C

r
− 3

2
(r − 1)2

+
3(r − 1)2δij.

So if we let C > 3, then the matrix (Aij(η)) is always nonnegative-definite in B2. □
Now we can give the proof for n < 2k:

Proof of Theorem 4.1. We divide this proof into two steps.
• Step1: Firstly we can follow the idea in [20] and [24] to prove the weak convergence

of ψα
k , which is defined by (34). Suppose u ∈ Φk(Ω), {u(m)} ⊂ Φk(Ω) ∩ C2(Ω) and

u(m) → u locally uniformly in Ω. By Lemma 4.2 and letting Bl = bl , the integrals
&

Ω′
ψα
k (u

(m))dx (62)

are uniformly bounded for any subdomain Ω′ ⊂⊂ Ω (the bound also depends on
α). Hence there is a subsequnce {ψα

k (u
(mp))} that converges weakly to a Borel

12
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measure µα
k [u]. Firstly we need to prove that the measure µα

k [u] is uniquely de-
termined by the function u. Assume there exist two sequences {u(m)}, {v(m)} ⊂
Φk(Ω) ∩ C2(Ω) which both converge to u locally uniformly, but the corresponding
sequences {ψα

k (u
(m))} and {ψα

k (v
(m))} weakly converge to Borel measure µ̃1 and µ̃2,

respectively. Let BR = BR(x0) ⋐ Ω and fix some σ ∈ (0, 1). Define

η = C̃, if |x− x0| ≤ σR,

η =
(r − σR)3

(R− σR)3
+ C̃, if σR ≤ |x| ≤ R.

(63)

Then by Lemma 4.3, we know that when C̃ is large enough, then the matrix

Aij(η) = ηηij −
1

2
|∇η|2δij, (64)

is nonnegative-definite in BR. So η ∈ Φk(BR). For fixed ε > 0, it then follows from
the uniform convergence of {u(m)} and {v(m)} on B̄R, that

− ε

2
≤ u(m) − v(m) ≤ ε

2
in B̄R, (65)

for sufficiently large m. Hence

u(m) + ε

-
1

2
+ C̃

.
≤ v(m) + εη on ∂B̄R. (66)

Define

Ωm :=

4
x ∈ BR : u(m) + ε

-
1

2
+ C̃

.
> v(m) + εη

5
. (67)

Without loss of generality, we may assume that ∂Ωm is sufficiently smooth so that
from Lemma 1.2, when α ≥ 0,

&

Ω

ψα
k

-
u(m) + ε

-
1

2
+ C̃

..
dx ≤

&

Ω

ψα
k (v

(m) + εη)dx. (68)

Using α ≥ 0 and Lemma 2.3, and expanding Sk

:
um + ε

:
1
2
+ C̃

;;
as the sum of

mixed k-Hessian operators, we get that
&

Ω

ψα
k (u

(m))dx ≤
&

Ω

ψα
k

-
u(m) + ε

-
1

2
+ C̃

..
dx. (69)

Recalling Lemma 4.2 and expanding ψα
k (v

(m) + εη) as the sum of mixed k-Hessian
operators, &

Ω

ψα
k (v

(m) + εη)dx ≤
&

Ω

ψα
k (v

(m))dx+ εC, (70)

where the constant C depends on n, k, σ, u, R,α. Since η = C̃ in BσR, by the
definition of Ωm, we have BσR ⊂ Ωm and hence

&

BσR

ψα
k (u

(m))dx ≤
&

BσR

ψα
k (v

(m))dx+ εC. (71)

13
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Letting ε → 0 and m → ∞, we then obtain

µ̃1(BσR) ≤ µ̃2(BσR). (72)

By interchanging {u(m)} and {v(m)}, we have µ̃1(BσR) = µ̃2(BσR).
• Step2: By the conclusions of Step 1 , we get the weak convergence of the Borel

measure

ψα
k (u) =

k#

l=0

bl(α)u
α|∇u|2lSk−l(u). (73)

By the locally uniform convergence of u(m), we get the weak convergence of the
Borel measure

ϕα
k (u) :=

k#

l=0

bl(α)|∇u|2lSk−l(u). (74)

Using (31), we find that for any 0 ≤ l ≤ k, bl ≈ Clα
l when α > 0 is large enough.

So there always exist α0,α1, · · · ,αk > 0, such that

det(Hij) ∕= 0, (75)

where
Hij = bj(αi), with i, j = 0, · · · , k. (76)

So for any 0 ≤ l ≤ k, we get the weak convergence of the Borel measure

|∇u|2lSk−l(u). (77)

□

By the above proof, in fact we have already got:

Corollary 4.1. For any u ∈ Φk(Ω), α ∈ R , 0 ≤ l ≤ k and n < 2k, there exists a Borel
measure µk,l,α[u] in Ω such that

• µk,l,α[u] = uα|∇u|2lSk−l(u) for u ∈ C2(Ω).
• If {u(m)} is a sequence in Φk(Ω) converging locally in measure to a function u ∈
Φk(Ω), then the corresponding measure µk,l,α[u

(m)] → µk,l,α[u] weakly.

Define

Ψk(Ω) :=
$
u ∈ C0(Ω̄) : u > 0, and there exists a sequence {u(m)} ∈ Φ̃k(Ω) ,

such that u(m) converges to u uniformly in Ω̄
%
.

(78)

Then using Corollary 4.1, we can extend the result in Corollary 3.1 to Ψk(Ω).

Corollary 4.2. If n > 2k and u, v ∈ Ψk(Ω) satisfy
4

v−nSk(v) ≤ u−nSk(u) in Ω, (79)
v ≥ u on ∂Ω. (80)

Then v ≥ u in Ω.
14
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5. L∞ ESTIMATE

In this section, we will give interior L∞ bound with respect to the σk-Yamabe operator
and prove Lemma 5.1. We use the idea from González [10] to use the Moser iteration, see
also Li-Nguyen-Wang [15] the related works.

Lemma 5.1. If v ∈ Φk(B3) , for 1 ≤ k ≤ n
2

there exists a positive constant C which only
depends on n, k , such that we have

sup
B1

v ≤ C‖v‖L1(B2). (81)

Proof of Lemma 5.1. By Lemma 4.1, we only need to consider the case that n ≥ 2k. The
proof is based on standard Moser iteration. It is similar to the ones in [9] and [10] by
González. By Remark 3.1 , we know that when α > Λ,

bl > 0, for any 0 ≤ l ≤ k. (82)

By Lemma 3.1, we get
k−1#

l=0

al(v
α+1|∇v|2lSij

k−lvi)j +
k#

l=0

blv
α|∇v|2lSk−l = 0,

⇒
k#

l=0

blv
α|∇v|2lSk−l = −

k−1#

l=0

al(v
α+1|∇v|2lSij

k−lvi)j.

(83)

Suppose 1
2
≤ r < R ≤ 2. Let cut-off function η ≡ 1 in Br and η ≡ 0 in Rn\BR. When

α > Λ and δ > 4k, we have bl > 0 and
& k#

l=0

blv
α|∇v|2lSk−lη

δdx ≤ C

& k−1#

l=0

alv
α+1|∇v|2l

<<Sij
k−lvi(η

δ)j
<< dx. (84)

Since Sij
k−l is nonnegative-definite, it follows that for any 0 ≤ l ≤ k − 1,

&
alv

α+1|∇v|2lSij
k−lvi(η

δ)jdx

≤
&

C|al|(R− r)−1vα+1|∇v|2l+1Sk−l−1η
δ−1dx.

(85)

By Cauchy-Schwarz inequality, we have
&

(R− r)−1vα+1|∇v|2l+1Sk−l−1η
δ−1dx

≤
&

[C(R− r)−2vα+2|∇v|2lSk−l−1η
δ−2 + C−1vα|∇v|2l+2Sk−l−1η

δ]dx.

(86)

Because we are using the method of Moser iteration, it is necessary to explain the case when
α tends to +∞. There are two different cases depending on α.

• When Λ < α < 2n, substitute (85) and (86) into (84):
& k#

l=0

vα|∇v|2lSk−lη
δdx ≤

k−1#

l=0

C(R− r)−2

&
vα+2|∇v|2lSk−l−1η

δ−2dx. (87)

15



XI-NAN MA AND WANGZHE WU

So by induction, we finally get
& k#

l=0

vα|∇v|2lSk−lη
δdx ≤ C(R− r)−2k

&
vα+2kηδ−2kdx. (88)

• When α ≥ 2n, we have α + n+ l ≤ 2α and

|al| =
(α + n+ 1) · · · (α + n+ l)

2l · l! ≤ αl

l!
, for l = 0, 1, · · · , k − 1, (89)

and

bl ≥
(k + l)αl

2ll!
, for l = 0, 1, · · · , k. (90)

In this case, the same as above argument , by (84) we get
& k#

l=0

αlvα|∇v|2lSk−lη
δdx

≤C

& k−1#

l=0

alv
α+1|∇v|2lSij

k−lvi(η
δ)jdx

≤
k−1#

l=0

C|al|
&

(R− r)−1vα+1|∇v|2l+1Sk−l−1η
δ−1dx

≤
k−1#

l=0

Cαl

&
(R− r)−1vα+1|∇v|2l+1Sk−l−1η

δ−1dx

≤
k−1#

l=0

[Cαl−1

&
(R− r)−2vα+2|∇v|2lSk−l−1η

δ−2dx+ C−1αl+1

&
vα|∇v|2l+2Sk−l−1η

δdx],

(91)
the last inequality follows from Cauchy-Schwarz inequality. Then we deduce that

& k#

l=0

αlvα|∇v|2lSk−lη
δdx ≤

k−1#

l=0

Cαl−1

&
(R− r)−2vα+2|∇v|2lSk−l−1η

δ−2dx. (92)

By induction, we finally get that
& k#

l=0

αlvα|∇v|2lSk−lη
δdx ≤ Cα−k

&
(R− r)−2kvα+2kηδ−2kdx, (93)

it folows that

α2k

&
vα|∇v|2kηδdx ≤ C(R− r)−2k

&
vα+2kηδ−2kdx. (94)

Let δ = 4k, then
& <<<∇(v

α+2k
2k η2)

<<<
2k

≤ C(R− r)−2k

&
vα+2kη2k,

⇒‖∇(v
α+2k
2k η2)‖L2k(BR) ≤ C(R− r)−1‖v

α+2k
2k ‖L2k(BR).
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By Sobolev inequality, it holds that

‖v α+2k
2k ‖

L
2kn
n−2k (Br)

≤ C1‖∇(v
α+2k
2k η2)‖L2k(BR) ≤ C(R− r)−1‖v α+2k

2k ‖L2k(BR),

⇒‖v‖
L

(α+2k)n
n−2k (Br)

≤ C
2k

α+2k (R− r)−
2k

α+2k ‖v‖Lα+2k(BR).

Following the proof of Theorem 4.1 in [13] and using the fact that

‖v‖Lp1 (B1) ≤ C‖v‖Lp2 (B1), if p2 > p1 > 0, (95)

we finally get that
sup
B1

v ≤ C‖v‖L1(B2). (96)

□
Now we can give the locally uniform bound:

Lemma 5.2. Let u ∈ Φk(B3) ∩ C2(B3) and n ≥ 2k. Then for α > Λ and α ≥ −2k , there
exists a positive constant C which only depends on n, k,α such that

&

B1

k#

l=0

uα|∇u|2lSk−ldx ≤ C‖u‖2k+α
L1(B2)

. (97)

Proof of Lemma 5.2. Let cut-off function η ≡ 1 in B1 and η ≡ 0 in B3\B2. By Lemma 3.1
& k#

l=0

blu
α|∇u|2lSk−lη

δdx

=−
& k−1#

l=0

al(u
α+1|∇u|2lSij

k−lui)jη
δdx

=

& k−1#

l=0

alu
α+1|∇u|2lSij

k−lui(η
δ)jdx

≤C

& k−1#

l=0

uα+1|∇u|2l+1Sk−l−1η
δ−1dx.

Using Cauchy-Schwarz inequality and Lemma 2.3, we get

⇒
& k#

l=0

blu
α|∇u|2lSk−lη

δdx ≤ C

& k−1#

l=0

uα+2|∇u|2lSk−l−1η
δ−2dx,

⇒
&

uα+kσkη
δdx+

& k#

l=0

blu
α|∇u|2lSk−lη

δdx ≤ C

&
uα+k+1σk−1η

δ−2dx+ C

&
uα+2kηδ−2kdx.

By iteration and Lemma 5.1 , we get if δ = 4k,

⇒
& k#

l=0

uα|∇u|2lSk−lη
δ ≤ C

&
uα+k+2σk−2η

δ−4dx+ C

&
uα+2kηδ−2kdx

≤ · · ·
17
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≤ C

&
uα+2kηδ−2kdx

≤ C‖u‖2k+α
L1(B2)

.

□

6. WEAK CONTINUITY FOR n ≥ 2k.

In this section, we will prove Theorem 1.1 when n ≥ 2k.

Proof of Theorem 1.1. We divide the proof into two steps. Letting Bl = bl, suppose u ∈
Φk(Ω), {u(m)} ⊂ Φk(Ω) ∩ C2(Ω) and u(m) converge locally in measure to u.

• Step1: In this step, we will show that for any α ≥ 1−2k , it follows that ψα
k (u

(m)) →
ψα
k (u) weakly. Our proof follows the idea of Trudinger-Wang in [21]. Define

w = w(x, t) := (1− t)u(m1)(x) + tu(m2)(x), (98)

and let η ≡ 1 in Br(y) and η ≡ 0 in Ω\B2r(y) with B3r(y) ⊂⊂ Ω. Letting Bl = bl
and using Lemma 3.2:

&

B2r(y)

ηψα
k (u

(m2))− ηψα
k (u

(m1))dx

=

& 1

0

&

B2r(y)

η
∂

∂t
ψα
k (w)dxdt

=

& 1

0

&

B2r(y)

η

6
k−1#

l=0

bl

*
wα+1|∇w|2lSij

k−l(u
(m2) − u(m1))i

+

j

+
k−1#

l=0

*
2(l + 1)bl+1 − (α + n+ l + 1)bl

+*
wα|∇w|2lSij

k−lwi(u
(m2) − u(m1))

+

j

7
dxdt

=

& 1

0

&

B2r(y)

6
k−1#

l=0

bl(ηj · wα+1|∇w|2lSij
k−l)i(u

(m2) − u(m1))

−
k−1#

l=0

*
2(l + 1)bl+1 − (α + n+ l + 1)bl

+
ηj · wα|∇w|2lSij

k−lwi(u
(m2) − u(m1))

7
dxdt.

(99)

By Lemma 2.2, we have
<<<<<
#

i

∂i(S
ij
k−l)

<<<<< ≤ Cw−1|∇w|Sk−l−1. (100)
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Then by direct cpmputation , we find that
*
wα+1|∇w|2lSij

k−lηj

+

i

=(α + 1)wα|∇w|2lSij
k−lηjwi + 2lwα+1|∇w|2l−2Sij

k−lηjwimwm + wα+1|∇w|2lSij
k−lηij

+ wα+1|∇w|2lηj · ∂i(Sij
k−l)

=(α + 1)wα|∇w|2lSij
k−lηjwi + 2lwα|∇w|2l−2Sij

k−lηjAimwm + lwα|∇w|2lSij
k−lηjwi + wα+1|∇w|2lSij

k−lηij

+ wα+1|∇w|2lηj · ∂i(Sij
k−l)

=(α + 1)wα|∇w|2lSij
k−lηjwi + 2lwα|∇w|2l−2ηjwm(Sk−lδmj − Smj

k−l+1) + lwα|∇w|2lSij
k−lηjwi

+ wα+1|∇w|2lSij
k−lηij + wα+1|∇w|2lηj · ∂i(Sij

k−l)

≤Cwα|∇w|2l+1Sk−l−1 + Clwα|∇w|2l−1Sk−l + Cwα+1|∇w|2lSk−l−1,
(101)

and
wα|∇w|2lSij

k−lwiηj ≤ Cwα|∇w|2l+1Sk−l−1. (102)
So by Cauchy-Schwarz inequality, we get that

&
ηψα

k (u
(m1))− ηψα

k (u
(m2))

≤
k−1#

l=0

& 1

0

&

B2r(y)

8
Cwα|∇w|2l+1Sk−l−1(u

(m2) − u(m1))+ + Cwα+1|∇w|2lSk−l−1(u
(m2) − u(m1))+

9
dxdt

≤
k−1#

l=0

& 1

0

&

B2r(y)

8
Cwα+1|∇w|2lSk−l−1(u

(m2) − u(m1))+ + Cwα−1|∇w|2l+2Sk−l−1(u
(m2) − u(m1))+

9
dxdt.

Fix ε ∈ (0, 1) and N so that for

Oε := {x ∈ B2r(y)||u(m2) − u(m1)| > ε}, (103)

we have |Oε| < ε if m1,m2 ≥ N . Besides, we can suppose

sup
m

&

B3r(y)

u(m) ≤ K, (104)

for some fixed constant K. We then have&
ηψα

k (u
(m1))− ηψα

k (u
(m2))dx

≤
k−1#

l=0

& 1

0

&

B2r(y)

[Cwα+1|∇w|2lSk−l−1(u
(m2) − u(m1) − ε)+ + Cεwα+1|∇w|2lSk−l−1

+ Cwα−1|∇w|2l+2Sk−l−1(u
(m2) − u(m1) − ε)+ + Cεwα−1|∇w|2l+2Sk−l−1]dxdt. (105)

Since n ≥ 2k and α ≥ 1− 2k, we get α > Λ− 1. So using Lemma 5.2, we have
& 1

0

&

B2r(y)

wα+1|∇w|2lSk−l−1dxdt ≤ CK2k+α−1,
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and
& 1

0

&

B2r(y)

wα+1|∇w|2lSk−l−1(u
(m2) − u(m1) − ε)+dxdt

≤
& 1

0

&

Oε

wα+1|∇w|2lSk−l−1(u
(m2) − u(m1) − ε)+dxdt

≤CK

& 1

0

&

Oε

wα+1|∇w|2lSk−l−1dxdt.

Then it follows that for m1,m2 ≥ N ′ ≥ N , for a further constant N ′ depending on
ε, r,

& 1

0

&

B2r(y)

wα+1|∇w|2lSk−l−1(u
(m2) − u(m1) − ε)+dxdt ≤ Cε. (106)

So far, we obtain that
&

ηψα
k (u

(m1))− ηψα
k (u

(m2))dx ≤ Cε. (107)

This means that ψα
k (u

(m)) converges weakly to a Borel measure in Ω.
• Step2: Note that

&

B2r(y)

[η(u(m1))γψα
k (u

(m1))− η(u(m2))γψα
k (u

(m2))]dx

=

& 1

0

&

B2r(y)

η
∂

∂t

*
wγψα

k (w)
+
dxdt

=

& 1

0

&

B2r(y)

wγ ∂

∂t
ψα
k (w)η

H1

+ γwγ−1ψα
k (w) · (u(m2) − u(m1))η

H2

dxdt.

Choose γ > −2k − α + 1, then by (33) we know that γ > Λ − α + 1. Using the
same arguments as Step1, we deal with the term H1 similar to (99) and the term H2

similar to (105) So we get (u(m))γψα
k (u

(m)) converges weakly to a Borel measure in
Ω. So for any γ̄ > 1− 2k and α ≥ 1− 2k, we get the weak convergence of the Borel
measure

ϕα,γ̄
k (u) :=

k#

l=0

bl(α)u
γ̄|∇u|2lSk−l(u). (108)

Since for any 0 ≤ l ≤ k, bl ≈ Clα
l, there always exist α0,α1, · · · ,αk > 0, such that

det(Hij) ∕= 0, (109)

where
Hij = bj(αi), with i, j = 0, · · · , k. (110)
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So for any 0 ≤ l ≤ k and γ̄ > 1 − 2k, we get the weak convergence of the Borel
measure

uγ̄|∇u|2lSk−l(u). (111)
□

By the above proof and combining Corollary 4.1 , in fact we have already got:

Corollary 6.1. For any u ∈ Φk(Ω), α > 1 − 2k , 0 ≤ l ≤ k , there exists a Borel measure
µk,l,α[u] in Ω such that

• µk,l,α[u] = uα|∇u|2lSk−l(u) for u ∈ C2(Ω).
• If {u(m)} is a sequence in Φk(Ω) converging locally in measure to a function u ∈
Φk(Ω), then the corresponding measure µk,l,α[u

(m)] → µk,l,α[u] weakly.
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[10] Marı́a del Mar González. Removability of singularities for a class of fully non-linear elliptic equations.
Calc. Var. Partial Differential Equations, 27(4):439–466, 2006.

[11] Pengfei Guan and Guofang Wang. A fully nonlinear conformal flow on locally conformally flat manifolds.
J. Reine Angew. Math., 557:219–238, 2003.

[12] Matthew J. Gursky and Jeff A. Viaclovsky. Prescribing symmetric functions of the eigenvalues of the
Ricci tensor. Ann. of Math. (2), 166(2):475–531, 2007.

[13] Qing Han and Fanghua Lin. Elliptic partial differential equations, volume 1 of Courant Lecture Notes in
Mathematics. Courant Institute of Mathematical Sciences, New York; American Mathematical Society,
Providence, RI, second edition, 2011.

[14] Aobing Li and Yanyan Li. On some conformally invariant fully nonlinear equations. Comm. Pure Appl.
Math., 56(10):1416–1464, 2003.

[15] YanYan Li, Luc Nguyen, and Bo Wang. On the σk-Nirenberg problem. Amer. J. Math., 146(1):241–276,
2024.

[16] Grisha Perelman. The entropy formula for the ricci flow and its geometric applica tions. preprint, 2002,
arXiv: math/0211159.

[17] Richard Schoen. Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ-
ential Geom., 20(2):479–495, 1984.

21



XI-NAN MA AND WANGZHE WU

[18] Wei-Min Sheng, Neil S. Trudinger, and Xu-Jia Wang. The Yamabe problem for higher order curvatures.
J. Differential Geom., 77(3):515–553, 2007.

[19] Neil S. Trudinger. Remarks concerning the conformal deformation of Riemannian structures on compact
manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 22:265–274, 1968.

[20] Neil S. Trudinger and Xu-Jia Wang. Hessian measures. I. volume 10, pages 225–239. 1997. Dedicated to
Olga Ladyzhenskaya.

[21] Neil S. Trudinger and Xu-Jia Wang. Hessian measures. II. Ann. of Math. (2), 150(2):579–604, 1999.
[22] Neil S. Trudinger and Xu-Jia Wang. Hessian measures. III. J. Funct. Anal., 193(1):1–23, 2002.
[23] Neil S. Trudinger and Wei Zhang. Hessian measures on the Heisenberg group. J. Funct. Anal.,

264(10):2335–2355, 2013.
[24] Neil S. Trudinger and Wei Zhang. Weak continuity of the complex k-Hessian operators with respect to

local uniform convergence. Bull. Aust. Math. Soc., 89(2):227–233, 2014.
[25] Hidehiko Yamabe. On a deformation of Riemannian structures on compact manifolds. Osaka Math. J.,

12:21–37, 1960.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI,
CHINA

Email address: xinan@ustc.edu.cn

INSTITUTE OF MATHEMATICS, ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACAD-
EMY OF SCIENCES, BEIJING, 100190, CHINA

Email address: wuwz18@mail.ustc.edu.cn

22


