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Multigranular Event Recognition of Personal
Photo Albums

Cong Guo ~, Xinmei Tian

Abstract—People are taking more photos than ever before in
recent years. To effectively organize these personal photos, the
photos are usually assigned to albums according to their events.
An efficient way to manage our photos would be if we could
recognize the events of the albums automatically. In this paper,
we study the problem of recognizing events in personal photo
albums. Recognizing events in photo albums is a new challenge
since the contents of photos in albums are more complicated
than in traditional single-photo tasks, since not all photos in an
album are relevant to the event and a single photo in an album
often fails to convey the meaningful event semantic behind the
album. To solve this problem, we introduce an attention network
to learn the representations of photo albums. Then, we adopt a
hierarchical model to recognize events from coarse to fine using
multigranular features. We evaluate our model on two real-world
datasets consisting of personal albums; we find that our model
achieves promising results.

Index Terms—Photo album, attention

network, hierarchical structure.

event recognition,

I. INTRODUCTION

ITH the fast development of cameras and mobile de-
W vices, people are taking more photos than ever before.
It was reported that there were about 1.6 trillion photos taken
annually in 2013 [1]. The explosive growth of digital photos
leads to a growing need for tools to automatically manage them.
Usually, in consumer photo albums or online social networks,
photos are organized in albums according to their events. How-
ever, it will cost a lot of time for users to label their photo
albums. To solve this problem, automatic event recognition in
photo albums is highly demanded.

There are already many works which focus on single-image
understanding. However, only a few works pay attention to event
recognition in photo albums. In general, photos will represent
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Fig. 1. Examples of photos in personal albums in the PEC dataset [2], where
each row corresponds to an event. Photos in the first two rows are from “Road
Trip” and “Hiking”. The photos in them share some ambiguous contents, includ-
ing roads and mountains. The Photos in the last two rows are from “Children
Birthday” and “Birthday”. If only given a family photo with babies, it is difficult
to distinguish “Birthday” from “Children Birthday”. Personal albums usually
consist of “relevant” and “non-relevant” photos. For example, roads in “Road
Trip”, mountains in “Hiking” and a cake in “Children Birthday” and “Birth-
day” are “relevant” photos. The yachts in “Children Birthday” and the road in
“Birthday” are “non-relevant” photos since their contents are not related to the
subject of the events.

highly relevant visual content for a specific object or scene in
single-photo recognition tasks. These photos are “typical” to
the events since we can directly recognize an event with only
a single photo. Extracting features that precisely represent spe-
cific visual contents can facilitate understanding these photos.
Compared with single-photo recognition tasks, photos in al-
bums have several unique properties: 1) Personal albums often
consist of “relevant” and “non-relevant” photos. In most cases,
the event-level semantics can not be concluded based on a sin-
gle photo and must be determined based on the whole album.
The “relevant” photos can only describe parts of the event. The
“non-relevant” photos are the ones which contents are not re-
lated to the events. Some examples are given in Fig. 1. 2) Even
given the same event label, albums exhibit significant variation
in their content composition since photographers have their own
photo styles and focus points. 3) Different events may include
the same visual contents. 4) Photographers sometimes need to
take a few extra photos to ensure that they obtain the perfect
focus. Thus, there exists a great deal of information redundancy
among the photos of albums. 5) An event is a higher level con-
cept than other subjects such as objects and scenes. Therefore,
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it will be helpful to understand an event from various perspec-
tives. These features render it more difficult to distinguish an
event within personal photo albums than within individual pho-
tos. Fig. 1 shows some examples of photos from personal photo
albums in the PEC dataset [2].

In this paper we study the event recognition problem in per-
sonal photo albums from three aspects: photo-level, album-level
and event-level. Photographers record their lives by a serious of
photos. These photos will be managed to albums according to
their events. Understanding the photos within each album is
the basic to understand the events. Photo-level features from
multi-views can help us understand the photo comprehensively.
Here we mainly consider two types of features: the taken times
extracted from the meta data and the visual contents extracted
from the images. The time feature has proven to be very effective
for event recognition [3]. Certain events often occur at certain
times such as hiking on weekends and concerts at night. For
visual content feature, we extract features from different pre-
trained deep convolutional neural networks (CNNs). In recent
years, CNNs have achieved outstanding performances in object
and scene recognition for a single photo [4]—[6]; it has also been
shown that high-level CNN features can be transferred to generic
recognition tasks without fine-tuning [7]. We utilize the learned
representations extracted by three CNNs: a CNN trained on Im-
ageNet [8] that can adequately represent the features of objects,
a CNN trained on the Places database [9] that can describe the
scenes, and a CNN trained with user-contributed attributes that
can describe the frequently used attributes on Flickr [10].

However, the event-level semantics of albums can not be con-
cluded based on a single photo and must be determined based
on the whole album. Using the album-level features is a good
way to recognize the events since they contain complete in-
formation of the events. In our previous work [11], we proved
that the use of global average features is much better than com-
posing the predictions of a single photo. However, this naive
average strategy assumes that each photo in an album makes the
same contributions to the recognition. In reality, albums usually
consist of “relevant” and “non-relevant” photos, as shown in
Fig. 1. The “non-relevant” photos may be useless and should
make minimal contributions. Thus, if we can better focus on the
“relevant” photos and assign them higher weights while pay-
ing less attention to “non-relevant” photos and assigning them
lower weights, the weighted average features can better describe
the albums compared to the previous method. Inspired by the
attention model on image question answering (QA) [12], we
introduce a new attention network to learn the attentions for
albums considering both the semantic meanings of event labels
and the global integrity of the albums. This attention network
learns to pay more attention to the “relevant” photos and pay
less attention to the “non-relevant” ones to generate album-level
features for event recognition. Based on the intuition that not all
events are equally difficult to recognize, we first build a coarse
classifier to classify the easily separable events. In this paper,
we use our attention network with the scene-CNN features as
the coarse classifier. Then, we use the Affinity Propagation al-
gorithm [13] to generate the coarse event clusters. Within each
coarse cluster, we train four fine classifiers. Three of them are
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our attention network trained using the three CNN features re-
spectively. For the last one, we train a SVM classifier with the
time features [ 14]. Late fusion strategy is adopted to combine the
results of these four fine classifiers. To combine predictions of
the coarse and fine classifiers, a probabilistic averaging method
is proposed to get the final results.

To the best of our knowledge, there is only one large dataset
available, known as the PEC dataset [2], for studying the chal-
lenge of event recognition in personal photo albums. The limited
dataset may be insufficient to evaluate the models. Therefore,
we collect another large dataset containing 79,370 photos in
1,210 albums with 22 event classes from Flickr. The photos are
all taken from users’ daily lives.

In summary, this paper introduces the following contribu-
tions:

1) We introduce an attention network to learn album-level

feature representation for event recognition.

2) We build a hierarchical model with multi-model features
for event recognition, including three CNN features and
the time feature.

3) Our model achieves promising performance on two real-
world personal photo album datasets.

Compared with our previous work [11], we mainly make
extensions from four aspects. First, we replace the ImageNet-
trained AlexNet feature with the ImageNet-trained VggNet fea-
ture to get better descriptive ability. Second, we add a new
attribute-based feature to help us understand the photos in al-
bums. The CNN is trained with user-contributed attributes which
describe the frequently used attributes on Flickr. Thus we use
features from multi-view and multi-granular. Third, although all
photos in the album may contribute to event recognition, they
are not equally meaningful or important. Therefore, we intro-
duce a new attention network which can automatically learn to
pay more attention to the “relevant” photos and pay less atten-
tion to the “non-relevant” photos. Fourth, we collect another
large dataset for event recognition in personal photo albums and
conduct extensive experiments on it. The experiments show that
our model achieves promising results on both datasets.

The remainder of the paper is organized as follows. Section II
presents related works. Section III introduces the features, our
attention network for album recognition and our coarse-to-fine
model. A new dataset and the experimental results are given in
Section IV, followed by the conclusion in Section V.

II. RELATED WORK

In recent years, people are taking more photos than ever be-
fore. This leads to a growing need for tools to manage them.
Recognition [8], [15] and retrieval [16], [17] are two common
methods to organize these amount of photos. For personal pho-
tos, photos are always grouped to albums according to their
events. In this paper, we mainly focus to recognize events in
personal albums.

Deep learning has shown satisfactory performance in com-
puter vision and has become the most popular approach to
pattern recognition. With the help of the large-scale visual
recognition ImageNet dataset, many CNN architectures can
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recognize objects in our daily lives [8]. For scene recognition,
CNN models trained with the Places database [15] have shown a
promising performance. To improve the performance of classifi-
cation, many methods, such as hierarchical structures [18], [19],
[35], instance learning [16] and decision trees [20], have been
considered. Similar to object/scene recognition, to recognize
events within a single photo, “typical” photos of different events
are collected for experiments. In [21], photos from 50 different
cultural events were crawled, and visual features extracted from
CNNs with time information were used for classification. In
[22], eight sporting event categories were collected from the In-
ternet, and the researchers attempted to recognize the events by
integrating scene and object categorization. Mattivi et al. used
time clustering information to improve the sub-event recogni-
tion in an efficient bag-of-features classification approach [23].
However, the photos of personal albums are not all “typical”
photos, and an event usually cannot be recognized from only a
single photo in the album.

Another significant area of research for recognition tasks at-
tempts to recognize the actions in videos. As we know, the key
frames extracted from videos can be approximatively viewed
as albums of photos. One type of solution requires the con-
tents of the videos to be time continuous [24]-[26], and such
solution is not suitable for event recognition for photo albums.
Other solutions have attempted to solve the problem based on
key frames. In [27], [28], the researchers attempted to find the
most suitable number of frames for recognizing the events in
videos. Izadinia and Shah [29] modeled the joint relationship
between the low-level events in a graph and used this graph to
train their classifier with a latent SVM formulation. Recognition
from albums is different from recognition from videos. Videos
are usually very short, often a few seconds, and the contents are
not as diverse as in photo albums.

Album event recognition is more complex than videos and
a single photo. Since photographers have numerous styles for
taking photos, the photos in albums are much more diverse. It is
difficult to find the “typical” photos in albums. In most cases, a
single photo in albums can only describe part of the events, and
we may need to browse many photos to determine what event
occurred in the album.

To tackle the challenging problem of event recognition in al-
bums, researchers have applied various methods. In [30], the
tags that users used for annotation were adopted to build a tag
similarity graph for detecting events. In [31], typical objects
that were highly related to the events are pre-defined to help
recognize the events. In [3], GPS location information was uti-
lized. In [32], an album-level classifier was trained by manually
selected photos. A Stopwatch Hidden Markov Model, which
considered the time gap between photos and sub-events, were
introduced for album event recognition [2]. This model treated
the sub-events as latent, and each photo was associated with
a sub-event. However, it is difficult to assign photos to their
correct sub-events because of the varying contents of personal
photos. In [33], the authors proposed to learn features from
sets of labeled raw images in personal photo albums. They ran-
domly picked several photos from albums, extracted features
and summed these features for classification. This method is
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similar to the average feature method, which assumes that all
photos should make equal contribution for the event recognition.

Different from existing methods, in this paper we propose a
hierarchical model to recognize events of albums from coarse to
fine. To better understand the photos in albums, we extract multi-
modal features. To obtain album-level feature representation,
we propose a new attention model to pay more attentions to
“relevant” photos. Coarse and fine classifiers are combined to
get the final predictions.

III. MULTI-GRANULAR EVENT RECOGNITION

The overall architecture of our model is shown in Fig. 2.
We will introduce the three major components of our model in
this section: the multiple features, the attention network and the
coarse-to-fine hierarchical structure, which attempt to under-
stand the albums from image, album and event levels, respec-
tively. To recognize personal albums, we first need to understand
the photos. We can do this from the multi-view perspective:
objects, scene, user-contributed attributes and the taken times
of the photos. Then, for the albums, predictions from album-
level features are much more better than the aggregated ones
from a single photo. However, simple averaged features contain
many information from the “non-relevant” photos which may
be useless for recognition. To filter out these irrelevant pho-
tos, we introduce an attention network. Finally, a hierarchical
structure is adopt to help us understand the events from coarse
to fine.

A. Feature Representation

1) Image-Based Representation: Inpersonal albums, certain
typical objects are highly relevant to certain events such as a
cake being relevant for “Birthday”, a bachelor’s gown being
relevant to “Graduation”, and Jack-o-lanterns being relevant to
“Halloween”. If we could find these typical objects, they would
be helpful for recognizing events in the albums.

In recent years, deep learning has become the most pop-
ular approach to pattern recognition. With the help of the
large-scale ImageNet dataset, deep models have been able to
achieve promising recognition performance for object classifi-
cation and can be extended to generic recognition tasks without
fine-tuning [7]. Therefore, we adopt the 4096-dimensional fc7
features from the VggNet, which is pre-trained on the ImageNet
dataset [5].

2) Scene-Based Representation: To recognize events in an
album, the backgrounds in photos are also very important.
Sometimes, we can recognize the events simply by browsing
the background information from the photos. For example, a
“church” may appear in “Wedding” events, and a “gallery” may
appear in “Exhibition” events. A CNN model trained on the
Places database [9] has shown positive performance in scene
recognition [15]. We utilize this CNN and extract the 4096-
dimensional features from the fc7 layer for each photo.

3) Attribute-Based Representation: High-level describable
attributes of images are useful for people to recognize what
is occurring in a photo stream. Users always assign a list of
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Fig. 2.
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Coarse Event Classifier C

Fine Event Classifier C;

Final Prediction

Our model for album event recognition. For an album, we extract four kinds of features for the photos, including three CNN features from image contents

and time features from the meta data. Then, a coarse-to-fine structure is adopted. AN units are the attention networks which try to predict the events with more
attention to the “relevant” photos and less attention to the “non-relevant” photos. AN and SVM units work as classifiers. We have one coarse event classifier and
many fine event classifiers. The colors of the lines indicate the flow of the data. We use our attention network for the CNN features and use SVM for the time
features. We obtain the final results by combining the predictions from the coarse and fine classifiers with a probabilistic averaging method.

attributes (tags) to their photos on Flickr. A CNN model is
trained with these user-contributed attributes [10]. We extract
these attributes to help us understand the events of albums.

4) Time Feature: The time feature has proven to be very
effective for event recognition [3] since events are frequently
associated with a certain time of day. For example, “Christmas”
is associated with December, and a “Graduation” is often held in
summer. We extract the time information from the meta data of
the photos. We build the time into a 6-dimensional feature vector
for each photo. For the photo-level time feature, we transfer the
timestamps to year, month, day, hour, day of the week, and week
of the month. For the album-level time feature, we compute the
duration for each album.

B. Attention Network

In contrast to event recognition for a single “typical” photo,
events in albums are complicated. Personal albums often consist
of “relevant” and “non-relevant” photos. The “relevant” photos
can only describe part of the events, and we usually need several
“relevant” photos to recognize one event. The “non-relevant”
photos are the ones that their visual contents are far away from
the subjects of the events. In this part, we introduce our attention
network to learn the representations of albums, which attempt to
better focus on the “relevant” photos while paying less attention
to “non-relevant” photos.

With recent advancements in computer vision, attention net-
works have achieved promising results in image question an-
swering (QA) tasks [12]. Paying close attention to the relative
regions instead of the whole image can effectively filter out
unimportant information. Inspired by this work, in our album
event recognition task, the attention target becomes an album
instead of an image. We attempt to focus on the relative pho-
tos instead of regions. However, the attention networks need an
explicit question as a reference to guide the network find the

regions. In our recognition task, we do not have such additional
information.

To solve this problem, we introduce a new attention network,
as shown in Fig. 3. From our previous work [11], we know that
the average features of albums can well represent the albums.
Such a global feature contains the visual contents of not only
“relevant” photos but also “non-relevant” photos. In addition,
we have an event label for each album. The event labels contain
high generalizations of semantic meanings to describe albums.
Thus, if we could embed the global visual features and the event
textual labels to the same latent space and let them have a similar
distribution, then the latent visual features can act as references
to guide the network in finding the “relevant” photos.

We can extract the CNN features from the CNN networks.

v; = CNN(I) (1)
vy = CNN(A) )
1
Vavg = — 3 CNN(I) 3)
)= 12;

where I denotes a photo, A denotes an album, and n4 is the
number of photos in album A. v; € R? and d is the dimen-
sionality of the CNN feature. v,,, € R? is the average feature
vector of album A. v4 € RY™ and m is the number of pho-
tos selected from A. In this paper, we set m to 64. For albums
which contain more than 64 photos, we randomly select 64 pho-
tos to extract vy4. For albums which have less than 64 photos,
we extract feature vectors for all photos and set O to the rest.

For an album event label, we embed the labels in a vector
space through a word embedding tool, word2vec [34].

v, = word2vec(y),

where v, € R300,
Given the features vy, the average album feature v,,, and
the label semantic feature v,,, our attention network first learns
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S: The softmax layer

The attention network in our album event recognition model. d is the dimensionality of the feature vectors extracted from the CNN network. In our

experiments, we have three kinds of CNN features. For the image-based and scene-based features, d = 4096. For the attribute-based features, d = 272.

a single-layer neural network to embed the feature in a latent
space. Within this space, we want the latent visual features to
have similar distributions as the latent semantic label features.
Then, a softmax function is adopted to generate the attention
distribution for each photo. We use the Euclidean loss as the
first loss term in our attention network.

Lo = || Wavawg — Wy, ||§ “)
h[ = tanh(WA’UA ® WAqug) (5)
pa = softmax(Wph; + bp) (6)

where Wy € R¥*4 W, € R¥>3% and Wp € RVF. p, € R™
is an m-dimensional vector which represent the attention prob-
ability of each photos. Here, the symbol & denotes the addition
of a matrix and a vector by adding each column of the matrix
by the vector.

According to the attention distributions, we can calculate the
weighted average features of the album. Then, we feed them
through two inner-product layers and a softmax function to
obtain the final event predictions. We use the softmax with loss
function for classification to be our second loss term.

m

Ga =Y pali)or @)
i=1
P(A) = softmax(Wg (W11~1A + b1) + bg) (8)
N
Ls == log(Pg,(A)) ©)
i=1

where p, (i) is the weight for photo I; in album A and vy, is
the feature vector of image I;. 74 € R? is the weighted average
feature vector of album A. P(A) € RY is the prediction for
the N-class events. Pg, (A) is the probability that album A is
predicted to be event E;.

We adopt the joint supervision of the two losses to train our
attention network for album event recognition,

L=Lg+ puLc. (10)

Photo album  A;
\ N-class
Coarse Event Classifier
\ \Wrm Single feature
E; - Ey., EN
% T

Identifying Coarse Clusters _~“mapping P

Training the Fine Event Cinssry \\

Fusion

Cn. N Coarse Clusters

Fine Event Classifiers
With Multiple features

P(Ap)

Fig. 4. Coarse-to-fine hierarchical model. The blue lines indicate the predic-
tion of the coarse event classifier. The orange lines represent the mapping P.
The green lines are the fusion predictions of the fine classifiers with multiple
features.

C. Coarse-to-Fine Hierarchical Structure

Since not all albums are equally difficult to be recognized,
recognizing the albums from coarse to fine with multiple fea-
tures can be an effective way. Our coarse-to-fine hierarchical
model has three steps. First, a coarse classifier is trained using
our attention network with scene-CNN features, to identify the
easily distinguishable event clusters. Second, for each cluster,
we train four fine classifiers. Three of them are our attention
network trained using the three CNN features respectively. For
the last one, we train a SVM classifier with the time features
[14]. Third, a probabilistic averaging component is applied to
combine the predictions of the coarse and fine classifier and
forms the final predictions. We present our hierarchical model
in Fig. 4.

1) Coarse Event Classifier Training: Our hierarchical model
starts from separating easily discernible events. In fact, hu-
mans usually use the visual information of the photos to rec-
ognize the coarse event clusters by a simple glimpse, and then
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carefully browse the photos to further identify the events. We
mimic this natural process to find a visual descriptor for our
coarse event classifier. In our model, we utilize the scene-based
features extracted from CNN trained on Places dataset and use
our attention network for classification. We split our training
data into two parts: train_train part and train_val part. We
use the train_val part as a validation set to determine the pa-
rameters of the coarse event classifier.

2) Coarse Events Clustering: We can obtain the confusion
matrix F' € RV*Y from our coarse classifier. N is the
number of events. We first make F' symmetric by computing
F=2%(F+FT), and then adopt the Affinity Propagation
algorithm [13] to cluster the N events into /N coarse clusters.
Meanwhile, the mapping P :y+—— v/, which records the
mapping relationship between fine events and coarse event
clusters can be achieved. The probability that album A; is
predicted into a coarse cluster C; can be calculated by

Bij= Y P (4),

E; EC‘/

1)

where P, (A;) is the probability that album A; is predicted to be
event I/;, by the coarse classifier and it can be obtained from (8).

We adopt Affinity Propagation since it does not need to define
the number of clusters. And, the clusters are more balanced in
size than under other clustering algorithms. The only param-
eter, damping factor A, is set to 0.5 by default throughout the
experiments.

3) Fine Event Classifiers Training: Within each coarse clus-
ter, fine event classifiers are trained with various features inde-
pendently. For the multiple CNN features, we follow the same
training process of the coarse event classifier. For the time fea-
tures, we utilize LibSVM [14] with the RBF kernel. Then, we
utilize a weighted average function to combine the predictions
from the coarse and fine classifiers.

C
P(A;) = BiiP;(4). (12)
J

where B; ; is the probability that album A, is predicted into the
coarse cluster C'; and P;j(A;) is the prediction made by the fine
classifier trained in the coarse cluster C).

We obtain different predictions for the multiple features by
(12). Next, we adopt late fusion to combine the different pre-
dictions by

Pﬁnal(Ai) =a X Pscene (Az) + ﬁ X -Pimage (Az)

+ Y X Pattribute + (1 - — ﬁ - 7) X R;ime(Ai)-
(13)

The late integration fusion weights are empirically selected by
an exhaustive search and determined when the integrated pre-
dictions achieve the best performance on the train_val part.

IV. EXPERIMENT

In this section, we first introduce the personal album datasets
for event recognition. Then, we present the experimental settings
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TABLE I
STATISTICS OF THE PEC DATASET [2]

Event #Albums  #Photo
Birthday 60 3,227
Children Birthday 64 3,714
Christmas 75 4,118
Concert 43 2,565
Boat Cruise 45 4,983
Easter 84 3,962
Exhibition 70 3,032
Graduation 51 2,532
Halloween 40 2,403
Hiking 49 2,812
Road Trip 55 10,469
St. Patricks Day 55 5,082
Skiing 44 2,512
Wedding 69 9,953
Total 807 61,364

as well as comparison methods, followed by the performance of
different approaches and analyses.

A. Dataset

To the best of our knowledge, the biggest existing dataset for
personal album event recognition is the PEC dataset [2]. The
dataset contains 807 albums within 14 event classes. All the
photos are crawled from Flickr. The events are defined by the
most popular tags on Flickr, Picasa and Wikipedia. The statistics
of the dataset are shown in Table I. Albums for training and
testing have already been defined in [2].

Moreover, we collected some albums from Flickr to build
another dataset for event recognition. We first created a Flickr
account and followed a number of users. Then, a breadth-first
search method was used based on the users’ contact lists, ul-
timately gathering 300,000 users. We crawled their photosets’
titles, split the titles into words, manually chose the 22 most
popular events that corresponded to social events according to
the frequencies of keywords and downloaded the photo sets
containing these keywords. However, some photo sets were ir-
relevant to their events or consisted of more than one event; we
removed these photo sets manually. To make the dataset bal-
anced, we randomly selected photo sets within each event and
made every event have the same number of photo sets. Finally,
we collected 1,210 albums with 79,370 photos. We randomly
chose 45 albums of each event to be the training part, and the
remaining albums were the testing part. We named this dataset
Flickr-22. The event classes and the statistics of the dataset are
shown in Table II.

For both datasets, we randomly choose 20% training set as
train_val set and the rest as train_train set to determine model
parameters in the following experiments. We use average preci-
sion, average recall and average F} -score to evaluate the perfor-
mance of different recognition methods. The average recall is
the same to the average accuracy in [2]. The average F-score
is obtained by average the F7-scores of all event classes.
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TABLE II
STATISTICS OF THE FLICKR-22 DATASET

Event #Albums  #Photo
baseball 55 3,882
basketball 55 4,117
birthday 55 3,754
Christmas 55 3,253
concert 55 2,795
cruise 55 5,101
Easter 55 2,986
exhibition 55 3,194
football 55 4,748
graduation 55 3,664
Halloween 55 2,494
hiking 55 3,314
parade 55 3,641
party 55 2,677
skate 55 3,618
skiing 55 3,137
soccer 55 4,091
surfing 55 2,507
Thanksgiving 55 2,254
travel 55 6,614
wedding 55 4,449
Z00 55 3,580
Total 1,210 79,370

B. Experimental Settings

For the scene-CNN features, image-CNN features and
attribute-CNN features, the features extracted from the CNN
networks are directly used as inputs of our attention network.
For the time features, min-max normalization is adopted for
each photo-level time feature, whereas we scale the album-level
time features, to the size of the day. Then, we average the time
features and utilize LibSVM [14] to perform the experiments
on the time features with the RBF kernel.

When training the attention networks, we first use the av-
erage features to train the last two fully-connected layers for
classification with a dropout of 0.5. We start the learning pro-
cess with the default parameters as base_lr = 0.01, gamma =
0.1, momentum = 0.9 and weight_decay = 0.0005. Then, we
train the whole attention network. We update the weights with a
mini-batch size of 64. j1 is determined to be 0.1 via the train_val
set. The number of input photos for each album is set to 64 for
all the three CNN features. As shown in Fig. 5, we show the
accuracies of our attention model for all the 14 categories on the
train_val set with the three CNN features by different m. We
can see that as the m increases, all the accuracy curves rises.
However when m is greater than 64, the curves will slow down.
Considering the size of training batches as well as the perfor-
mance, we choose m = 64 for all three CNN features. We learn
the parameters of the our attention network with scene-CNN
features and extend them to the other two CNN features. We
utilize LibSVM [14] to perform the experiments on the time
features with RBF kernel. The parameters of SVM are deter-
mined via the {rain_val set. After obtaining the predictions
of fine classifiers, the late integration fusion weights are em-
pirically selected by an exhaustive search in each coarse event
cluster on the train_val set.

1843

B8.00%

B6.00%

84.00%

B2.00% —s—Attribute-CNN

——Image-CNN
B80.00%

Accuracy

s Srane-CNN

78.00%
76.00%

74.00%

Fig. 5. Accuracies with different m for different features on the train_val set
in PEC dataset.

TABLE III
PERFORMANCE OF DIFFERENT METHODS ON THE PEC DATESET

Method Avg. Avg. Avg.
Precision. (%)  Recall (%)  F}-Score (%)
AgS [2] - 41.43 38.87
ShMM [2] - 55.71 56.16
Wu [33] - 73.43 71.56
H-AvS [11] 86.32 85.00 84.85
AgS-CNN (Attribute) 64.36 54.29 50.25
AgS-CNN (Scene) 73.31 70.71 67.05
AgS-CNN (Image) 69.74 70.00 66.48
AvS-CNN (Attribute) 79.23 77.14 76.94
AvS-CNN (Scene) 82.17 79.29 78.81
AvVS-CNN (Image) 82.17 80.00 80.06
LF-AvS 85.95 83.57 83.06
FC (Attribute) 79.41 77.86 77.63
FC (Scene) 82.23 80.00 78.70
FC (Image) 83.59 80.00 79.94
LF-FC 85.08 82.86 82.15
AN (Attribute) 81.59 80.00 79.67
AN (Scene) 86.38 83.57 82.36
AN (Image) 86.64 81.43 81.03
LF-AN 87.49 85.00 84.15
H-AN 90.07 87.86 87.70

When testing, given an album with n4 photos, we first order
the photos by time. Then, we split the album to [%4-] parts by
equidistance sampling to guarantee that each parts can approxi-
mately cover the whole album. The label information will not be
used. We test them respectively and make an average to generate
the final predictions.

C. Approaches for Event Recognition

In this section, we present the representation methods and the
classification methods for comparison.

1) Aggregated SVM (AgS): We use the baseline mentioned
in [2] as one of our baseline methods. We train a linear multi-
class SVM for the photo-level recognition. Each photo inherits
the label of the album to which it belongs. We sum the confidence
scores of the photos in the albums and choose the events with
the highest scores as the final predictions.
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birthday

hiking

0.011

0.040

Examples of photos and their weights in personal albums in the PEC dataset [2]. Each row corresponds to an event and the numbers under the photos are

their weights assigned by the attention network. Weights in (a) and (b) are obtained with Scene-based CNN features and Image-based CNN features respectively.
The first two columns in (a) and (b) display the photos with the two largest weights in each album while the last two columns show the photos with the two smallest

weights.

TABLE IV
PERFORMANCE OF DIFFERENT METHODS ON THE FLICKR-22 DATASET

TABLE V
THREE COARSE EVENT CLUSTERS AND THEIR FUSION WEIGHTS
CORRESPONDING TO FOUR KINDS OF FEATURES IN PEC DATASET

Method Avg. Avg. Avg.

Precision. (%)  Recall (%)  F-Score (%) Event Id Scene-CNN  Image-CNN  Attribute-CNN  Time
H-AvS [11] 88.13 86.82 87.03 Cl1:2,3,45,6 0.20 0.20 0.15 0.45
AvS-CNN (Attribute) 81.29 78.64 79.11 C2:7,10,11 0.35 0.00 0.15 0.50
AvS-CNN (Scene) 86.39 85.00 85.16 C3:1,8,9,12,13,14 0.05 0.05 0.60 0.30
AvS-CNN (Image) 86.29 85.00 85.12
LF-AvS 87.32 86.36 86.46
FC (Attribute) 80.79 79.09 78.81
FC (Scene) 84.84 84.09 83.86
FC (Image) 86.90 85.91 85.93 1) PEC Dataset: We present the performance of different
AN (Adtribute) 80.54 7955 7953 methods for personal album event recognition in Table III
AN (Scene) 86.78 85.91 85.95 pers¢ X g T
AN (Image) 87.57 86.36 86.43 When comparing the baseline of the aggregated SVM with
LF-AN 88.36 87.27 87.26 different features, the CNN features achieve higher accuracies
H-AN 90.89 89.55 89.60

2) Average SVM (AvS): Inthis approach, we first average the
features within each album and then train a linear multi-class
SVM at the album level.

3) Fully Connected Layer (FC): In this approach, we adopt
the last two fully connected layers in our attention network with
the average album features for classification.

4) Attention Network (AN): In this approach, we adopt our
attention network for classification.

5) Late-Fusion (LF): We adopt late fusion to combine the
classification confidence scores of different types of features.

6) Hierarchical (H): We use the full hierarchical model
mentioned above. Scene-CNN features are used for the coarse
classifier, and multiple features are used for fine classifiers.

D. Experimental Results

In this section, we present the performance of our model on
two datasets.

than the low-level visual features in [2]. This proves that the
high-level features extracted by the CNNs are substantially more
powerful in event recognition than are the low-level features.
Moreover, this also produces a comparable result with Wu’s
method [33].

The AvS and FC methods achieve better performance than the
AgS method. This is because personal albums often consist of
“relevant” and “non-relevant” photos. The “relevant” photos can
only describe parts of the event. In most cases, the event-level
semantics cannot be concluded based on only a single photo and
must utilize the whole album.

However, not all the photos in an album are related to the
events. They should not provide equal contributions to the recog-
nition process. To obtain a better representation for albums, we
introduce the attention network in Section III-B. The AN method
achieves better performance than the FC method in general. It
outperforms the FC method by 2.04%, 3.66% and 1.09% in
terms of Avg. F)-score for the attribute-CNN features, scene-
CNN features and image-CNN features. This proves that our at-
tention model can find the photos that are relevant to the events
while filtering out the non-relevant photos. We show some ex-
amples by Scene-based CNN features and Image-based CNN
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Some classification examples from the Flickr-22 dataset. Each row corresponds to an event. Rows 1-7 show examples that the events are correctly

predicted. The last 5 rows give some incorrectly predicted examples. On the right-hand side, the labels with ticks are the ground truth labels, and the labels with

cross marks are incorrect labels predicted by our model.

features in Fig. 6. We can see that the attention network assigns
reasonable weights to photos. It is notable that photos get dif-
ferent weights by different features. In the “hiking” event, the
photo of branch gets small weight with the Scene-based CNN
feature and it gets large weight with the Image-based CNN fea-
ture. Different features pay attention to different parts of albums.
Therefore, by combining the three types of CNN features and
the time feature, we obtain substantially better results than with
a single feature.

Finally, we present the performance of our hierarchical model
with the prediction scores from our attention network. Our
full hierarchical model obtains the best performance among all

the other methods and outperforms our previous work [11] by
3.75%, 2.86% and 2.85% in terms of Avg. Precision, Avg. Re-
call and Avg. Fl-score respectively. In our hierarchical model,
the scene-CNN features are used for the coarse classifier. Ac-
tually, we also have tried to use other two CNN features for
coarse classifier training. We find that coarse classifier trained
with scene-CNN feature achieves the best performance.

To further investigate how four kinds of features affect the
final results, we list the fusion parameters in (13). As shown in
Table V, the three coarse event clusters and their fusion weights
are given. The events in each cluster are listed in the first column
and the “Event Id” follows the order of events in Table I. We can
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see that the fusion weights are quite different in three clusters.
Time features are important for events in cluster 1 and cluster 2,
since many of these events are associated with a certain time,
for example “Christmas” in December, “Concert” at night and
“Hiking” at weekend. Scene-CNN features play an important
role in cluster 2. This is because events (e.g. “Hiking” and “Road
Trip”) in cluster 2 contain many background photos. Attribute-
CNN features have a large weight in cluster 3. The possible
reason is that events in this cluster contain highly diverse photos
and high-level attribute features can help us to understand their
contents.

For the time complexity, we have tested the time cost for four
kinds of features extraction. It takes about 120 ms (Tesla K80)
to extract all features for one photo. We have about 70 photos in
each album. The attention network costs about 3 ms to generate
a prediction for the Attribute-CNN features while costs about
12 ms for the Places-CNN features and ImageNet-CNN features
(Tesla K80). Our hierarchical structure has one coarse classifier
and nine fine classifiers for the CNN features. Thus, it will take
about 100 ms for the prediction process. Therefore, it takes
about 8.6 s in total to recognize the event of an album (including
feature extraction). The time complexity is acceptable.

2) Flickr-22 Dataset: We present the performance of dif-
ferent methods in Table IV. After using our attention network
mentioned in Section III-B, the CNN features with the AN
method obtain a higher performance than with the FC method.

Other experiments draw and confirm the same conclusions
mentioned in the analysis on the PEC dataset. Finally, we obtain
the best average precision of 90.89%, the best average recall of
89.55%, and the best average F-score of 89.60% among all
methods.

We show some event recognition examples from the Flickr-22
dataset in Fig. 7. We present five incorrectly predicted examples.
To draw a comparison, we also present some other examples
with the ground truth labels and predicted labels from the five
incorrectly predicted examples. Next, we list three aspects that
make event recognition in personal albums a challenge. First, as
shown in Fig. 7, we predict a “Christmas” event as a “Thanksgiv-
ing” event in the 8th row. A “Christmas” event always consists
of Christmas trees, presents, red hats and families, whereas a
“Thanksgiving” event consists of turkeys, pies, long tables and
also families, as shown in the 7th row. However, people have
their own photo-taking habits. The photos in the 8th row display
numerous pies and long tables. This makes our model make
an incorrect prediction. Second, the confusion contents among
different events represent a difficult problem to solve. We see
that the visual contents of cruise and hiking photos can be very
similar. Our hierarchical model attempts to address this prob-
lem. However, it will fail when the events appear to be highly
similar. Finally, different people will do different things even at
the same event. As shown in the 3rd and the last rows in Fig. 7,
the two rows present two examples of an “Easter” event. A fam-
ily will spend time with their children, whereas young people
will have a get together similar to a party. The various contents
of events represent another problem for event recognition in
personal albums.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 7, JULY 2018

V. CONCLUSION

In this paper, we propose an attention network to learn the
representations of albums and adopt a hierarchical structure for
event recognition in personal photo albums. To learn the album-
level representations, we borrow the attention networks from
the image question answering task and introduce a new atten-
tion network for album event recognition considering both the
sematic meanings of event labels and global representations of
albums. Meanwhile, based on the assumption that not all al-
bums are equally difficult to recognize, we build our coarse-to-
fine model by first sorting easily discernible events into coarse
clusters and then finely classifying them to obtain our final pre-
dictions. Multiple features, including the time feature, Image-
CNN feature, Scene-CNN feature and Attribute-CNN feature,
are introduced to help us better recognize the events in albums.
Through a series of experiments, we find that predictions ob-
tained using our attention network perform better than those
obtained using non-weighted average features and are much
better than aggregating the predictions obtained using single
features. After employing our coarse-to-fine hierarchical model,
we achieve the best performance among different methods on
two real-world personal album datasets.
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