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Abstract—Localizing temporal action proposals from long
videos is a fundamental challenge in video analysis (e.g., action
detection and recognition or dense video captioning). Most existing
approaches often overlook the hierarchical granularities of actions
and thus fail to discriminate fine-grained action proposals (e.g.,
hand washing laundry or changing a tire in vehicle repair). In this
paper, we propose a novel coarse-to-fine temporal proposal (CFTP)
approach to localize temporal action proposals by exploring
different action granularities. Our proposed CFTP consists of three
stages: a coarse proposal network (CPN) to generate long action
proposals, a temporal convolutional anchor network (CAN) to
localize finer proposals, and a proposal reranking network (PRN)
to further identify proposals from previous stages. Specifically,
CPN explores three complementary actionness curves (namely
pointwise, pairwise, and recurrent curves) that represent actions
at different levels for generating coarse proposals, while CAN
refines these proposals by a multiscale cascaded 1D-convolutional
anchor network. In contrast to existing works, our coarse-to-fine
approach can progressively localize fine-grained action proposals.
We conduct extensive experiments on two action benchmarks
(THUMOS14 and ActivityNet v1.3) and demonstrate the superior
performance of our approach when compared to the state-of-the-
art techniques on various video understanding tasks.

Index Terms—Action Proposals, Action Recognition, Action
Detection, Video Captioning.

I. INTRODUCTION

W ITH the tremendous increase in online and personal
media archives, people are generating, storing and con-

suming large collections of videos. The trend encourages the de-
velopment of effective and efficient algorithms to intelligently
parse video data and discover semantic information [1]–[5]. One
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fundamental challenge that underlies the success of these ad-
vances is action detection from videos, including a temporal
aspect or spatio-temporal aspect [6]. However, compared to sig-
nificant progress in action recognition [7]–[11], the performance
of temporal action detection methods remains unsatisfactory.
The main bottleneck is the difficulty of localizing high-quality
action proposals, which is a crucial step for bridging the perfor-
mance gap between recognition and detection. The first category
of approaches for localizing action proposals is “detection by
classification”, which employs a temporal sliding window for
initial localization followed by a classification stage [12]–[14].
More specifically, the state-of-the-art methods in this category
often formulate temporal proposal generation as a binary clas-
sification problem (i.e., action or background) within sliding
windows [15], [16].

The second category of proposal detection is temporal group-
ing, which is usually built on 1D actionness signals. The basic
idea is to predict the actionness score of each video frame or
clip and form an actionness curve over the whole video. The
proposals are then generated based on the actionness curve, and
the adjacent proposals may be further grouped into a larger pro-
posal. This type of approach can generate high-quality action
proposals with fewer, but potentially better instances [17], [18].
However, the actionness grouping methods can hardly detect the
fine-grained action proposals (e.g., two “brush painting” clips
in the green box in Fig. 1), which are temporally close to each
other or covered by a coarser action (e.g., one “painting” clip
in the blue box in Fig. 1). The phenomenon is reflected in the
generated actionness curve, which has no clear boundaries be-
tween the two fine-grained proposals. It is also observed that
an action proposal usually has a distinctive temporal structure.
Ignoring the structure leads to missing proposals because the
coarse proposals cannot yield fine-grained proposals.

Motivated by the above observations, we propose a novel
coarse-to-fine temporal proposal (CFTP) approach to localize
temporal action proposals by exploring different action granu-
larities. Our proposed CFTP consists of three stages: a coarse
proposal network (CPN) to generate long-time action propos-
als, a temporal convolutional anchor network (CAN) to local-
ize finer proposals, and a proposal reranking network (PRN)
to further identify proposals from previous stages. Specifically,
CPN first builds the actionness curve by leveraging three ac-
tionness measurements, i.e., pointwise, pairwise and recurrent
actionness, which are complementary to each other. Then, a
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Fig. 1. We investigate action granularities for temporal proposal localization
where a coarse action proposal of “painting” in the blue bounding box may
consist of two fine action proposals of “brush painting” in the green bounding
box (the upper part). The task is to discriminate these two fine-grained “brush
painting” proposals. Previous research predominantly focuses on generating a
coarse actionness curve that can be used to localize only the coarse action of
“painting” because the actionness curve is not that discriminative. Our idea is to
further capture hierarchical action granularities and localize fine-grained action
proposals in a coarse-to-fine manner. For example, we can first detect a coarse
“painting” proposal in the first granularity with a coarse proposal network (the
middle part) and further localize two fine-grained “brush painting” proposals in
a finer granularity by using a temporal anchor network (the lower part).

watershed actionness grouping method is employed to local-
ize coarse action temporal segments. The long coarse proposals
are fed into a fine-grained CAN, which is cascaded by several
1D-convolutional temporal anchors. Each temporal anchor con-
sists of two parts: one convolutional layer for multiscale anchor
feature map generation and one predictor with multiple scale
ratios at each feature map level. Meanwhile, two types of losses,
i.e., binary classification loss and temporal bounding box regres-
sion loss, are optimized on top of each anchor module. Finally, a
proposal reranking network leverages the proposal scores from
previous coarse- and fine-grained networks to identify the final
proposals. Unlike the existing techniques, our coarse-to-fine ap-
proach is able to progressively localize fine-grained action pro-
posals. We conduct extensive experiments on two action bench-
marks (THUMOS14 and ActivityNet v1.3) and demonstrate the
superior performances of our approach over the state-of-the-art
methods on various video analysis tasks.

The main contributions of this work include 1) analyzing
action granularities and 2) localizing temporal action propos-
als in a coarse-to-fine manner. Specifically, we propose a novel
coarse-to-fine temporal proposal architecture to implement this
idea and localize more precise action proposals. The remain-
ing sections are organized as follows. Section II describes
the related works. Section III details our coarse-to-fine tem-
poral proposal (CFTP) approach. The experimental results of
CFTP on temporal action proposal localization are provided in
Section IV. Section V and Section VI further present the empiri-
cal evaluations of CFTP on the task of action detection and dense
video captioning. Finally, Section VII concludes the paper.

II. RELATED WORK

We briefly group the related works into two categories: tem-
poral action detection and temporal action proposal. The former
focuses on detecting action clips of known classes, while the
latter investigates how to precisely localize video segments that
contain interesting activities.

A. Temporal Action Detection

The research in this direction has proceeded along two differ-
ent dimensions: weakly supervised action detection and super-
vised action detection. For weakly supervised temporal action
detection, the training data contain only video-level category
labels but no temporal annotations. Researchers often formu-
late the problem as a weakly supervised setting and alleviate
the problem by using transfer learning [19] or multi-instance
learning to learn key evidence for temporal localization [20].
In the direction of supervised temporal action detection, most
of the works utilize sliding windows as candidates and focus
on designing hand-crafted feature representations for classifica-
tion [14], [21], [22]. Inspired by the success of deep networks
in object detection [23], [24], action detection capitalizes on
some deep models to improve performance [18], [25]–[33]. For
example, Shou et al. developed a two-stage segment-based 3D
CNN model (S-CNN) [30] including one proposal network to
detect action segments and one classification network to predict
segment-level action scores. Similar in spirit, temporal structure
segment network detection (TSSND) [18] generates proposals
with an actionness grouping algorithm in the first stage and then
assigns detection scores via a structure segment network in the
second stage. Considering that the separation of two-stage de-
tection may result in suboptimal solutions, one-stage approaches
that combine temporal proposal and classification have been fur-
ther studied. Xu et al. proposed an end-to-end region-C3D action
detection model (R-C3D) [28] with extended 3D region of inter-
est (RoI) pooling. The single stream temporal action detection
(SS-TAD) [27] utilizes a recurrent neural network (RNN)-based
architecture to jointly learn action proposals and classification.
In addition, with the development of reinforcement learning, Ye-
ung et al. [31] explored RNN to learn a glimpse policy for pre-
dicting the starting and ending points of actions in an end-to-end
manner.

B. Temporal Action Proposal

We summarize the approaches on temporal action proposal
mainly into two directions: content-independent proposal and
content-dependent proposal. The content-independent algo-
rithms usually generate proposals by uniform sampling or a
sliding window [14], [21]. For example, Oneata et al. [14] ex-
ploited candidate windows of 60 frames and slid the windows
in steps of 30 frames. However, both of these methods lead to
huge computations for further classification because of the large
number of proposals. In contrast, content-dependent proposal
methods, e.g., [15], [18], [34]–[36], utilize action proposal la-
bels during training. For instance, Escorcia et al. [15] leveraged
Long Short-Term Memory cells to learn an appropriate video
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Fig. 2. An overview of our coarse-to-fine temporal proposal (CFTP) architecture (better viewed in color). In the coarse proposal generation stage, proposal
candidates are generated by a watershed temporal actionness grouping algorithm (TAG) based on actionness curves. Considering the diversity of action proposals,
three actionness measures (namely pointwise, pairwise and recurrent) that are complementary to each other are leveraged to produce the final actionness curve.
Next, we feed long proposals Plong into the temporal convolutional anchor network for finer proposal Psplit generation. The temporal convolutional anchor
network consists of multiple 1D convolutional layers to generate temporal instances for proposal/background binary classification and bounding box regression.
Given the short proposals Pshort from the coarse stage and fine-grained proposals Psplit from the temporal convolutional anchor network, a reranking network
is utilized for proposal refinement. When further considering video temporal structures, we extend the current part of the proposal with its start and end parts. The
duration of the start and end part is half of the current part. The proposal is then represented by concatenating features of each part to exploit the context information.

sequence encoding as a set of discriminative states to indicate
proposal scores. Although the method avoids running sliding
windows of multiple scales, there is still the need to run an over-
lapping sliding window, especially when the video duration is
long. To address this problem, single stream temporal proposal
(SST) [35] generates proposals with only one single pass by
utilizing a recurrent GRU-based model, and the recent tempo-
ral unit regression network (TURN) [36] builds video units in a
pyramid manner to avoid window overlapping. Inspired by the
idea of SSD [37], Lin et al. [34] utilized a 1D convolution to
generate multiple temporal action anchor instances for action
proposal and detection. In contrast to the above methods which
generate proposals in a fixed multiscale manner, Zhao et al. [18]
proposed a more flexible actionness grouping method to local-
ize action time intersections in an actionness confidence curve.
Nevertheless, the temporal actionness grouping may fail when
two action segments are very close or covered by a coarse action
instance because the video temporal structure is ignored in the
method.

In summary, our approach belongs to content-dependent pro-
posal methods. The aforementioned approaches often ignore the
fact that action videos have coarse-to-fine temporal structures
that play an important role in proposal generation. Our work
in this paper contributes by not only generating more accurate
coarse proposals through leveraging different levels of action-
ness but also elegantly deciding how to split and refine a coarse
proposal into more fine-grained proposals through accurate lo-
calization of action intersections in videos.

III. COARSE-TO-FINE TEMPORAL PROPOSAL (CFTP)

In this section, we present the proposed coarse-to-fine tem-
poral proposal (CFTP) architecture in detail. Fig. 2 shows an
overview of our architecture, which consists of three compo-
nents: a coarse proposal network (CPN) with the fusion of mul-
tiple actionness curves to generate coarse action proposals, a
temporal convolutional anchor network (CAN) for localizing
finer proposals, and a proposal reranking network (PRN) to fur-
ther refine proposals from previous stages. Specifically, the CPN
is designed with multiple actionness grouping at three different
levels (pointwise, pairwise and recurrent), while the CAN uti-
lizes 1D-convolutional temporal anchors for fine-grained pro-
posal generation. We discuss CPN and CAN in Section III-A
and Section III-B, respectively, followed by presenting PRN in
Section III-C.

A. Coarse Proposal Network (CPN)

The basic temporal action proposal methods exploit the slid-
ing window to split a video into multiple clips [13], [14]. How-
ever, these types of algorithms tend to produce many redundant
and incomplete proposals, impairing the performance of the next
step of detection. An alternative direction is to localize the spe-
cific clips with high actionness scores, and we follow this recipe
in our work. Moreover, considering that the training samples
in actionness learning are from different action categories and
thus very diverse, we leverage three types of actionness (namely
pointwise, pairwise and recurrent) learning for final actionness
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Fig. 3. The overview of three types of actionness learning: (a) Pointwise actionness learning, (b) Pairwise actionness learning, and (c) Recurrent actionness
learning.

prediction. The three actionness learning characterize actions at
different levels and are complementary to each other.

1) Pointwise Actionness: Pointwise actionness (Fig. 3(a)) is
a binary classifier that treats each frame independently. Given
the feature set X = {xi|xi ∈ RD}ni=1 extracted from n video
frames, we split it into positive subset X+ from the ground truth
proposal and negative subset X− from the video background.
The binary classifier Mb is optimized via the following loss
function:

Lb = −
∑

x∈X+

log(Mb(x))−
∑

x∈X−
log(1−Mb(x)). (1)

2) Pairwise Actionness: In the action proposal scenario, we
also take the actionness degree within a video into account,
which represents a relative measure. This can be formulated as
a supervised ranking problem. Given a pair of frames, one from
the proposal and the other from the background of the same
video, we aim to optimize the pairwise classifier (Fig. 3(b)),
which outputs a higher score of the frame from the proposal
than that from the background. Formally, assume that we have
the frame feature pairs P = {(x+, x−)|x+ ∈ X+, x− ∈ X−},
where each pair (x+, x−) consists of a positive feature x+ and
a negative feature x− from an identical video. The loss function
of the pairwise actionness classifier Mp is given by

Lp =
∑

(x+,x−)∈P
max(0, 1−Mp(x

+) +Mp(x
−)). (2)

3) Recurrent Actionness: In addition to pointwise and pair-
wise learning, recurrent information is additionally explored for
actionness prediction. We observe that the action label of one sin-
gle frame is highly related to the previous frames, which can be
formulated as a recurrent prediction problem. Hence, we exploit
the recurrent model (Fig. 3(c)) as our third actionness classifier.
Specifically, in each iteration, we sample several consecutive
frames as the input sequence and the recurrent classifier Mr

with a single-layer LSTM is optimized to predict the actionness
label.

4) Actionness Fusion: After training three actionness clas-
sifiers Mb, Mp and Mr, the actionness score Sb, Sp and Sr

is produced by each model, and then normalized to [0,1] by a
sigmoid operation. We compute the final actionness score by
linearly fusing the three scores as

S = w1Sb + w2Sp + w3Sr, (3)

where w1, w2 and w3 are fusion weights determined by cross
validation. The final score takes advantage of three different

Algorithm 1: Watershed Temporal Actionness Grouping.
Input:

Input video actionness score vector S = {si}ni=1;
Watershed level step size l;
Watershed grouping length step size g;
Non-maximal suppression IoU threshold th;

Output:
Video coarse proposal set P;

1: Initialize watershed level L = l, watershed grouping
length G = g, proposal set P = ∅;

2: while L < 1.0 do
3: while G < 1.0 do
4: Find the non-overlap consecutive integer interval

set: I = {Im}Km=1 = {[am, bm]|xi > L, i ∈
[am, bm]}Km=1, the intervals are in ascending order
of time;

5: Initialize interval index m = 1;
6: while m ≤ K do
7: Initialize grouping index z = m;
8: while (bz − am)/N < Gandz ≤ K do
9: z = z + 1;

10: end while
11: Add interval [am, bz] to proposal set P, assign

average score Ps =
1

bz−am+1

∑bz
i=am

si to the
proposal;

12: m = z + 1;
13: end while
14: G = G+ g;
15: end while
16: L = L+ l;
17: end while
18: Apply non-maximal suppression with IoU threshold th

to P;
19: return P

aspects and reflects an obvious “peak” in the actionness curve
for actions at different levels.

5) Temporal Actionness Grouping: Based on the final ac-
tionness scores, we utilize the watershed temporal actionness
grouping method to generate action proposals, and the details
are given in Algorithm 1. We set the watershed level step size
l to 0.085 and watershed grouping length step size g to 0.025.
The non-maximal suppression (NMS) is utilized to filter out
highly overlapped proposals, and the intersection over union
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Fig. 4. The detailed network architecture of our temporal convolutional anchor network (CAN). The ReLU active functions after each convolutional layer are
not included. (t = 3: 1D temporal convolution and temporal dimension is 3; s: stride size.)

(IoU) threshold th of NMS is fixed to 0.95. Because the shot
boundaries are not always accurate in the actionness curve,
the proposals that are temporally close to each other are eas-
ily merged to a longer one by the watershed and temporal group
operations. Therefore, we call the proposals in this stage “coarse
proposals,” which should be further refined.

B. Temporal Convolutional Anchor Network (CAN)

The coarse proposals output from the CPN can be divided into
two parts, i.e., Plong and Pshort, according to the duration. Con-
sidering that the proposals inPlong often contain multiple action
instances, the temporal convolutional anchor network (CAN) is
then devised and exploited to split and refine the coarse pro-
posals, as shown in Fig. 2. Each time, we feed one coarse pro-
posal fromPlong into the network, and the fine-grained proposals
Psplit are produced as a more accurate proposal set. Specifically,
two main characteristics from region proposal works [23], [37]
are integrated into the design of proposal refinement in our CAN:
1) a set of small convolutional filters for generating feature se-
quences at various time scales; 2) at each time scale, separate
predictors on different temporal intervals, namely anchors, are
conducted for proposal classification and temporal bounding box
regression.

Fig. 4 details the architecture of the CAN. Given one fea-
ture set Xlong = {xi|xi ∈ RD}k+T

i=k extracted from a T -frame
proposal (starting from k-th frame) in Plong , we first aggregate
all the features as one feature map with the size of T ×D and
then feed the feature map into two 1D-convolutional layers plus
one max-pooling layer to shorten its temporal dimension T or
increase the size of the temporal receptive field. Next, nine cas-
caded 1D temporal convolutional layers are employed to gen-
erate a series of output feature maps with different time scales.
Each output feature map of the 1D-convolutional layer is fur-
ther injected into the prediction layer to produce a fixed set of
proposals. Specifically, given an output feature map from the
j-th layer with temporal length Tj and feature dimension Dj ,
the basic element (anchor) for predicting the parameters of a
proposal is a 3×Dj feature map cell that outputs a prediction

score vector spred = (scls,Δc,Δw) via convolutional layers.
scls = [sps, sbk] denotes the 2-dimensional classification score
for the proposal/background. Δc and Δw are two temporal off-
sets relative to the default center location ac and width aw of
this anchor, which are used to adjust its temporal coordinates as

ϕc = ac + α1awΔc and ϕw = aw exp (α2Δw), (4)

where ϕc and ϕw are the refined center location and width of
the anchor, respectively. α1 and α2 are utilized to control the
impact of the temporal offsets. Furthermore, derived from the
idea of anchor boxes in [23], [37], we associate a set of default
temporal boundaries with each feature map cell. The multiple
temporal scale ratios for these default temporal boundaries are
denoted as R = {rd}3d=1 = [1, 1.25, 1.5], resulting in a total of
3Tj anchors in the j-th layer. For each temporal scale ratio rd, we
achieve one default center location ac = (t+ 0.5)/Tj and width
aw = rd/Tj of the t-th feature map cell. Finally, 2-dimensional
classification scores (sps, sbk) or offsets (Δc,Δw) are measured
in the classification loss or regression loss layer for each ratio,
respectively. As such, we set the output dimension of the con-
volutional layer (curved arrow) after the j-th feature map for
classification or regression to 6, as shown in Fig. 4.

In the training stage, we accumulate all the anchors from
the cascaded 1D-convolutional layers and produce the proposal
for each anchor through a prediction layer. The overall training
objective in our CAN is formulated as a multitask loss by in-
tegrating the proposal/background classification loss (Lcls) to
distinguish proposals from backgrounds and temporal regres-
sion loss (Lreg) to adjust temporal coordinates of proposals,
which is written as

L = Lcls + βLreg, (5)

where β is the trade-off parameter. Specifically, we measure the
classification loss Lcls via the softmax loss:

Lcls = −(1− y) log(1− sbk)− y log (sps), (6)
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where y ∈ [0, 1] represents the binary label of this anchor. We
denote giou as the intersection over union (IoU) between the tem-
poral receptive field of this anchor and its corresponding closest
ground truth. If the highest giou of this anchor is larger than 0.7,
we set y = 1, otherwise y = 0. The temporal regression loss is
devised as a smooth L1 loss [38] (SL1) between the predicted
proposal with y = 1 and the closest ground truth instance of the
anchor, which is computed by

Lreg = SL1(ϕc − gc) + SL1(ϕw − gw), (7)

where gc and gw represent the center location and width, respec-
tively, of this anchor’s closest ground truth instance.

In the prediction stage, the fine-grained proposals in Psplit

consist of the predicted refined center location ϕc, width ϕw

and proposal score sps of each anchor.

C. Proposal Reranking Network (PRN)

Given the short proposals Pshort with an actionness score for
each from the CPN and fine-grained proposals Psplit with clas-
sification probabilities from the CAN, a valid question is how to
rank these proposals. Obviously, directly ranking the proposals
by sorting different kinds of scores will result in discrepancies in
between. As a result, the proposal reranking network (PRN) is
exploited to recalculate the score for each proposal, making the
proposals comparable. Furthermore, the temporal context infor-
mation close to the proposal is explored in the PRN to enhance
the score prediction.

In general, a proposal can be represented by average pooling
the features of all the frames in the proposal. Considering that
further taking context information has shown superior effective-
ness in representation learning, we build a context-augmented
proposal representation by leveraging the information before
and after each proposal, as shown in Fig. 2. Assume the in-
put proposal p = [ts, te] ∈ Pshort ∪ Psplit has the starting time
ts, ending time te and duration d = te − ts, we additionally
take the start interval ps = [ts − d/2, ts] and end interval pe =
[te, te + d/2] as the context information. Then, a proposal-level
representation fp∗ is conducted as fp∗ = [fps

, fp, fpe
] by con-

catenating fps
, fp and fpe

, which are the average-pooled features
in ps, p and pe, respectively. Based on this proposal-level fea-
ture fp∗ , a proposal-level binary classifier is optimized via the
following loss function:

Lrank=
∑

p

max(0, 1− yp ∗ tanh(wT
c fp∗+bc)) s.t. yp∈ [−1, 1],

(8)
where {wc, bc} are linear parameters of the classifier. yp rep-
resents the label of proposal p, which is equal to 1 only if the
IoU between the proposal and ground truth is higher than 0.7.
After training, the output score tanh(wT

c fp∗ + bc) ∈ [−1, 1]
is assigned to each proposal p ∈ Pshort ∪ Psplit as the final
reranked proposal score. To select the top proposals for eval-
uation, we apply the standard post-processing techniques [15],
[35] with a non-maximum suppression threshold of 0.6 to elim-
inate near-duplicate detections.

IV. EXPERIMENTS

We empirically verify the merit of our CFTP by conduct-
ing the experiments of video temporal proposal on two popular
video recognition benchmarks, i.e., ActivityNet v1.3 [41] and
THUMOS14 [42].

A. Datasets

The ActivityNet v1.3 dataset contains 19,994 videos in 200
classes collected from YouTube. The dataset is divided into
three disjoint subsets: training, validation and testing, by 2:1:1.
All videos in the dataset have temporal annotations. The labels
of the test set are not publicly available, and the performances
of the temporal proposal on the ActivityNet dataset are reported
on the validation set. The THUMOS14 dataset has 1,010 videos
for validation and 1,574 videos for testing from 20 classes.
Among all the videos, there are 220 and 212 videos with tem-
poral annotations in the validation and testing set, respectively.
Following [18], we train the model on the validation set and
perform the evaluation on the testing set.

B. Experimental Settings

1) Frame Representations: We extract three widely adopted
frame representations, i.e., 1,024-way activations from the
global_pool layer in the BN-inception model (BN) [39] pre-
trained on ImageNet ILSVRC12 [43], 4,096-way outputs from
the fc7 layer in the 3D convolutional model (C3D) [8] follow-
ing PCA to 500 dimensions and 2,048-way outputs from the
pool5 layer in the Pseudo-3D model (P3D) [40]. The C3D and
P3D models are both pretrained on Sport1M [44]. The sample
rates of frames used in the three representations are 10, 8 and 8,
respectively.

2) Implementations of CPN: In all three actionness learning
stages, we utilize one fully-connected layer followed by ReLU
to embed input features, and the output dimension is set as the
same as the input features. In recurrent actionness learning, we
further exploit a one-layer LSTM to model the states of action
temporal proposal in each frame and produce the hidden/output
representations with the dimension of 2,048. The length of the
input sequence to LSTM is fixed to 100, and the sliding window
stride is set as 50. In the combination of three actionnesses,
the fusion weights w1, w2 and w3 are set as 0.4, 0.4 and 0.2,
respectively by cross validation. We extract the coarse proposals
Plong whose duration is more than 75% of the whole video as
the inputs to the temporal convolutional anchor network. The
remains are taken as Pshort.

3) Implementations of CAN: We exploit 9 temporal anchor
layers to obtain different proposal anchor instances during
training, and the dimension Dj of each layer’s output is set
as 512. The kernel size of the temporal dimension is 3, and
the temporal stride size is 2. We use three temporal scale
ratios R = {rd}3d=1 = [1, 1.25, 1.5] in each scale of the fea-
ture map. For each ratio, 2-dimensional classification scores
(proposal/background) or 2-dimensional offsets (center loca-
tion/width of the anchor) are measured in classification loss
or regression loss layer, respectively. As such, we set the
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output dimension of the convolutional layer before classifica-
tion/regression loss layer to 6. α1, α2, and β are determined on
a validation set and finally set to 1.0, 1.0, and 0.5.

4) Training Configuration: We implement the CFTP archi-
tecture on the Caffe [45] platform. In all experiments, our net-
works are trained by utilizing stochastic gradient descent with
0.9 momentum. The initial learning rate is set as 0.001 and de-
creased by 10% after every 500 iterations on THUMOS14 and
4,000 iterations on ActivityNet. The mini-batch size is 128, and
the weight decay parameter is 0.0005.

5) Evaluation Protocols: For quantitative evaluation of our
proposed models, we adopt three standard evaluation metrics for
action temporal proposals: average recall in different IoU (AR),
recall-IoU curve (R-IoU) and the area under the average recall
vs. average number of proposals curve (AR-AN Area). The last
evaluation metric AR-AN Area was first proposed in the Activ-
ityNet 2017 Challenge in Action Proposal Task for evaluation.
On both the ActivityNet v1.3 and THUMOS14 datasets, the av-
erage recall value of n proposals per video in the AR-AN curve
is computed by averaging the recall percentage under each IoU
threshold in [0.5:0.05:0.95]. The average recall is calculated by
averaging the recall value under each IoU threshold with all
proposals. We evaluate performances on the top 100 and top
200 returned proposals in ActivityNet v1.3 and THUMOS14,
respectively.

C. Compared Approaches

We compare the following state-of-the-art approaches for ac-
tion proposal task:

1) Sliding window (SW) is the basic temporal action pro-
posal method that exploits different fixed-scale temporal
windows and strides to generate proposals. The number of
window scales is set to 20. The window length increases
exponentially starting from 2.4 seconds long, and the step
size of the window is 0.8 times the window length.

2) Uniformly sample (US) generates proposals with the time
center and duration sampled from a uniform distribution
of [0, T ]. The T represents the whole video duration.

3) The fast temporal proposal (FTP) [16] retrieves high-
quality action temporal proposals based on clip-level rep-
resentations learned by sparse dictionary.

4) The temporal single shot action proposal (TSSAP) [34]
is a variant version of the single-shot action detection
(SSAD) [34], which generates action proposals with a tem-
poral anchor layer with multiple aspect-ratio predictors.

5) The temporal structure segment network proposal
(TSSNP) [18] generates temporal action proposals by
grouping only the pointwise actionness curve. The score
of each frame is predicted by temporal segment net-
works [10].

6) The single stream temporal action proposal (SST) [35]
builds an RNN-based action proposal network, which
could be implemented continuously in a single stream over
long video sequences to produce action proposals.

7) The temporal unit regression network (TURN) [36] first
decomposes untrimmed video into basic successive short

clips (video units). Then, the method jointly predicts the
proposal score of the sliding window on video units and
refines the temporal boundaries by temporal coordinate
regression.

8) The coarse-to-fine temporal proposal (CFTP) is our pro-
posed approach. Specifically, we design three runs: CTP,
CFTP−, and CFTP. The CTP consists only of a coarse
proposal network (CPN) with a watershed temporal ac-
tionness grouping algorithm for proposal generation. The
CFTP− further incorporates temporal convolutional an-
chor networks (CAN) into the CTP and generates finer
action proposals. The run of the CFTP identifies propos-
als from coarse and fine-grained stages with a reranking
proposal network (RPN).

D. Performance Comparison

1) Quantitative Analysis: Table I summarizes the area under
average recall vs. average number of proposals curve (AR-AN
Area) and average recall (AR) performances by using features
extracted from the BN, C3D and P3D models on two action
datasets. Overall, the results across different features consis-
tently indicate that our proposed CFTP leads to a performance
boost against other baselines. In particular, on the ActivityNet
dataset, the area under the AR-AN curve of CFTP achieves
64.52% on the features by the P3D model, making the abso-
lute improvement over FTP, TSSAP, TSSNP, SST and TURN
by 15.8%, 5.8%, 7.2%, 4.9% and 4.7%, respectively. As ex-
pected, SW and US perform poorly on both datasets because the
two simply perform the proposal selection irrespective of video
content. CTP, by exploring three actionness curves, improves
TSSNP, which capitalizes on only a pointwise actionness curve
on all settings. The results basically indicate the advantage of
leveraging different measures to characterize actionness, which
is very diverse across different actions. There is also a perfor-
mance gap between TSSAP and our CFTP−. Although both runs
involve utilization of temporal convolutional anchor networks,
they are fundamentally different in the way that the performance
of TSSAP is as a result of taking the original video as the input
to the anchor networks, and CFTP− is by feeding the output
long proposals of CPN into the networks. Similarly, compared
to SST and TURN, which generates or initializes proposals on
original videos, CFTP− offers coarse but stable proposal can-
didates from actionness learning in CPN. As indicated by our
results, localizing proposals in a coarse-to-fine fashion can con-
stantly lead to better performance. Please also note that TURN
controls the size of receptive fields through temporal pyramid
with prefixed unit numbers (4, 8, 32, etc.). Instead, CFTP− em-
ploys cascaded 1D temporal convolutions on the input proposals
during optimization, and with only once forward operation we
can handle multisize receptive fields to refine proposals. As a re-
sult, CFTP− is more efficient at predicting action instances with
various scales. In addition, CFTP performs better than CFTP−,
which verifies the design of our PRN.

Compared to CTP, CFTP−, which is augmented by further re-
fining the coarse proposals through CAN, exhibits better perfor-
mance. This basically indicates that relying solely on actionness
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TABLE I
AR-AN AREA AND AVERAGE RECALL (AR) COMPARISONS ON ACTIVITYNET V1.3 AND THUMOS14. (BN: BN-INCEPTION [39], C3D: 3D-CONVOLUTION [8],

P3D: PSEUDO-3D [40])

Fig. 5. (a) Recall-IoU curve and (b) AR-AN curve on ActivityNet v1.3, (c) Recall-IoU curve and (d) AR-AN curve on THUMOS14. The frame representations
utilized in this comparison are all extracted by the P3D model [40].

prediction is not discriminative enough to locate fine-grained ac-
tion proposals. CFTP−, in comparison, benefits from the mech-
anism of coarse-to-fine localization. The chance that a coarse
proposal can be distilled into a finer granularity is better. Another
observation is that the performance gain of CFTP− against CTP
tends to be larger on THUMOS14 than ActivityNet dataset. This
is also not surprising because the average duration of action pro-
posals in THUMOS14 is only ∼4.0 seconds and much smaller
than that (∼50 seconds) of ActivityNet. In other words, the ac-
tion proposals in THUMOS14 are very fine-grained. The results
again empirically verify the power of our approach. Because our
PRN reorders only the ranking position of each proposal in the
candidate pool and does not change the proposals, the AR value
of CFTP is exactly the same as CFTP−, which is as expected.

2) Qualitative Analysis: Fig. 5 further shows the recall-IoU
curve and AR-AN curve of different approaches with the frame
representations extracted by the P3D model on two datasets. For
a fair comparison, the recall values reported in the recall-IoU
curve are computed on the same number of returned proposals,
i.e., 100 for ActivityNet and 200 for THUMOS14, across dif-
ferent IoU thresholds. In the case of action proposal, the recall
on high IoUs is basically more important, as some of the pre-
dicted proposals may hit the ground truth by chance with a low
IoU. As depicted in the figure, the improvements of our CFTP
become obvious when IoU exceeds 0.7 on both datasets. The
results indicate that a larger degree of improvement is attained
when an action proposal can be correctly localized. In terms of
the AR-AN curve, CFTP across different average numbers of

Fig. 6. An illustration of results of each processing step in CFTP.

proposals per video consistently leads to a performance boost
against other baselines on both datasets. Even in the case when
fewer than 10 proposals are returned, CFTP still shows apparent
improvements, indicating that CFTP benefits from the reranking
mechanism and the correct proposals are ranked at the top.

Fig. 7 shows temporal action proposals on two videos from
ActivityNet. The ground truth action proposals and proposals
generated by all the compared methods are all given in the fig-
ure. As illustrated in the figure, CTP always outputs the correct
coarse proposals that contain multiple fine-grained proposals.
CFTP further localizes these fine-grained proposals and refines
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Fig. 7. Examples of temporal action proposals on two videos from ActivityNet v1.3. The boxes in dark blue denote ground truth (GT) action proposals, and the
boxes in brown represent the predicted proposals. The proposals generated by CTP and CFTP are given when IoU = 0.7.

TABLE II
GENERALIZABILITY ANALYSIS ON ACTIVITYNET V1.3 DATASETS

their temporal boundaries in a coarse-to-fine manner. Fig. 6 fur-
ther illustrates the results of each step in CFTP on one action
video. Specifically, CTP computes the actionness curve and gen-
erates one coarse action proposal based on the curve, which ac-
tually contains two fine-grained proposals. The coarse proposal
is further refined by CAN and split into three finer proposals.
Because the coarse proposal and finer proposals come from dif-
ferent stages, directly ranking all these proposals on their con-
fidence scores results in discrepancy. As such, we recalculate
the scores of all proposals through PRN, making the proposals
comparable. Finally, two finer proposals are correctly ranked at
the top two positions.

3) Generalizability Analysis: One important property of ac-
tion proposal approaches is the capability to localize proposals
for unseen action categories [15], [35], [36], [46]. Following the
similar evaluation protocol in [15], we apply the model trained
on THUMOS14 to two sets of ActivityNet v1.3, i.e., the whole
validation set of ActivityNet (all 200 classes) and ActivityNet
≤1024 frames (videos from unseen classes with annotations no
more than 1024 frames in the validation set). All the comparisons
are based on P3D features. As shown in Table II, on the whole
validation set, the average recall@100 proposals of CFTP lead

TABLE III
AR-AN AREA AND AVERAGE RECALL (AR) VALUES ON THUMOS14 BY

USING DIFFERENT ACTIONNESS IN CPN

to 3.0% and 3.7% improvement over TURN and SST, respec-
tively. On the set of ActivityNet ≤ 1024 frames whose duration
statistics on video annotations are similar to that of THUMOS14
but videos are from totally different classes, our CFTP also ob-
tains encouraging performances. The results basically verify the
generalizability of CFTP.

4) Effect of the Actionness: Table III details the comparisons
by using one of three actionness in the CPN stage to explore
the effects of different actionness. Overall, the fusion of three
types of actionness leads to better performances against single
actionness. The performances of recurrent actionness are lower
than those of the other two types of actionness. We speculate that
this may be caused by a recurrent model that tends to smooth
the actionness curve and thus weakens the responses to severe
action changes. The fusion weights are optimally set by cross
validation.

5) Effect of the Proposal Duration: To examine how the per-
formance is affected on proposals with different durations, we
report the AR-AN Area performances on action instances with
respect to different durations in Fig. 8. As expected, CTP can
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Fig. 8. AR-AN Area performances with different temporal length action
ground truth on THUMOS14 (using P3D [40] feature).

TABLE IV
RUN TIME AND THE AREA UNDER AVERAGE RECALL VS AVERAGE NUMBER OF

PROPOSALS CURVE PERFORMANCE (AR-AN AREA) OF DIFFERENT VARIANTS

OF OUR CFTP (BN: BN-INCEPTION [39]; P3D: PSEUDO-3D [40]). THE RUN

TIME ARE REPORTED ON A THREE MINUTES’ VIDEO FROM THUMOS14 [42]
WITH A REGULAR PC (INTEL DUAL-CORE 3.33 GHZ CPU AND 32GB RAM)

lead to better AR-AN Area performance than CAN on generat-
ing long proposals, while CAN outperforms CTP on localizing
short/finer proposals whose durations are less than 6 seconds.
This confirms that CTP tends to detect long action propos-
als, but the temporal boundaries are not very accurate. In con-
trast, CAN feeds the long proposals into multiple temporal
1D-convolutional layers in a cascaded manner and can precisely
identify short proposals with clear boundaries. CFTP perform-
ing CAN after CTP further improves AR-AN Area values on the
proposals of any duration.

Our CFTP may fail in the extreme case when the action pro-
posal is too short, e.g., less than one second. On one hand, CTP
cannot detect very short proposals due to the natural continu-
ity of the actionness curve. On the other hand, the initial size
of the temporal receptive field in 1D convolutional networks
limits the minimum duration of action proposals in CAN. Nev-
ertheless, we can further model the temporal structure and dy-
namically optimize the temporal scale of each action proposal,
which is potentially more effective and will be considered in our
future works.

6) Run Time: Table IV lists the detailed run time and the
Area under AR-AN curve performances between different vari-
ants of our proposed CFTP. The major portion of the run time is
consumed by feature extraction, which takes 19.62 and 397.61
seconds by BN-inception [39] and Pseudo-3D [40] architecture,
respectively. By performing the coarse proposal network and
watershed temporal actionness grouping algorithm, CTP takes
another 0.11 seconds on each type of features. By further run-
ning the temporal convolutional anchor network and additionally
reranking proposals through the proposal reranking network,

TABLE V
THE MAP (IOU = 0.5) PERFORMANCES OF ACTION DETECTION

ON THUMOS14

CFTP− and CFTP takes 4.51 and 5.56 seconds more on P3D
feature, respectively. Meanwhile, CFTP− and CFTP leads to an
improvement over CTP on P3D features by 3.46% and 5.15%,
respectively. The run time of CFTP will decrease to approxi-
mately 60 seconds on P3D features when testing on a single
NVIDIA K40 GPU.

V. CFTP FOR ACTION DETECTION

Next, we examine the impact of CFTP on the action detec-
tion task. Without loss of generality, we follow the standard
“detection by classification” framework, i.e., first generate pro-
posals by CFTP and then classify proposals. We conduct the
experiments from three aspects: 1) exploiting different action
classifiers, 2) testing different visual representations utilized
in CFTP towards detection performance, and 3) comparing
with the state-of-the-art action detection methods. Following
the standard measures in the action detection task, we adopt the
mAP values computed with the IoU thresholds as the perfor-
mance metric.

A. Action Classifier

A common need in “detection by classification” methods is an
action classifier. We validate two action classifiers on the action
proposals produced by our CFTP. One is a one-vs-all linear SVM
classifier trained with C = 100 using representations from the
C3D model, and the other is the released S-CNN in [30]. Please
note that here we also learn CFTP based on representations from
C3D for fair comparisons. Table V summarizes the mAP perfor-
mances with IoU = 0.5 on THUMOS14. The performances of
DAPs [15], SST [35] and TURN [36] are directly referred to in
the original papers. Performing classification on the proposals
by CFTP constantly outperforms other methods across two ac-
tion classifiers. Compared to TURN, CFTP improves mAP from
17.8% to 29.4% with SVM classifier and from 25.6% to 32.8%
with S-CNN. The results indicate the advantage of CFTP on
action proposal localization, and thus the chance that an action
proposal can be correctly classified is better.

B. Visual Representations

In addition to the evaluations of different visual represen-
tations for learning CFTP on action proposals in Table I, we
further examine the impact of visual representations exploited
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TABLE VI
PERFORMANCE COMPARISONS OF ACTION DETECTION ON THE TEST SETS OF ACTIVITYNET V1.3 AND THUMOS14. (A) AVERAGE MAP WITH IOU THRESHOLDS

BETWEEN 0.5 AND 0.95 WITH A STEP SIZE OF 0.05 ON ACTIVITYNET V1.3. (B) MAP WITH IOU = 0.5 ON THUMOS14

Fig. 9. Examples of three temporal action detection results on ActivityNet v1.3. In each row, a video is shown as a sequence of frames at the top. The blue boxes
in the upper bar denote the ground truth proposals, whose sampled frames are illustrated at the bottom. The detection results are shown in the lower bar, where a
brown box denotes a predicted proposal from CFTP on the condition of IoU ≥ 0.7.

in CFTP towards detection performance. The performances be-
tween the utilization of different visual representations in CFTP
are compared on action detection in Table V. As expected, the
visual representations extracted by C3D and P3D models that
are trained on video data potentially have a higher capability to
model temporal structure in videos and lead to more accurate lo-
calization of action proposals and better performances on action
detection.

C. Comparisons With State-of-the-Art

We compare several state-of-the-art techniques of action de-
tection on both ActivityNet v1.3 and THUMOS14. Following
the official evaluation on the ActivityNet test server, we report
the average mAP with IoU thresholds between 0.5 and 0.95
(inclusive) with a step size of 0.05 on the ActivityNet v1.3
testing set, and we adopt mAP with IoU = 0.5 as a metric
on THUMOS14. Please also note that S-CNN released in [30]
and fine-tuned on ActivityNet videos is utilized as an action
classifier on THUMOS14 and ActivityNet. The performance

comparisons are summarized in Table VI. The results across
two datasets consistently indicate that our CFTP exhibits better
performances than the others. In particular, the average mAP
and mAP of CFTP achieves 29.44% and 35.2% on ActivityNet
and THUMOS14, respectively, making the improvement over
the best competitor TSSND by 1.2% and 5.4%. The perfor-
mance gain of CFTP tends to be large on THUMOS14, which
contains more fine-grained proposals in each video. The re-
sults again validate our idea of exploring different granular-
ities to localize fine-grained action proposals. Fig. 9 shows
the temporal detection results for three video examples from
ActivityNet.

VI. CFTP FOR DENSE VIDEO CAPTIONING

Another task to validate the effectiveness of our temporal ac-
tion proposal is the task of dense video captioning [53]. The
goal of dense video captioning is to localize the action tempo-
ral proposals and then describe each proposal with a complete
and natural sentence. We conduct our experiments on a recently
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TABLE VII
PERFORMANCE COMPARISONS OF DENSE VIDEO CAPTIONING ON THE

VALIDATION SET OF ACTIVITYNET CAPTIONS DATASET

annotated ActivityNet Captions dataset, which provides 3.65
temporally localized sentences on average for each video in Ac-
tivityNet v1.3. The standard metrics of METEOR and CIDEr-D
are utilized for evaluation in this task.

For a fair comparison, we exploit a popular video captioning
system [54] to generate sentences for proposals produced by all
the methods. The METEOR and CIDEr-D performances on the
validation set of the ActivityNet Captions dataset are reported in
Table VII. In general, more accurate temporal proposals lead to
better sentence generation performances. Our CFTP improves
TSSNP by 1.1% in terms of CIDEr-D, which is considered as a
significant progress on this dataset.

VII. CONCLUSIONS

We presented the coarse-to-fine temporal proposal (CFTP)
architecture, which explores the hierarchical granularities of ac-
tions for the temporal localization of fine-grained action pro-
posals. In particular, we studied the problem of progressively
localizing the action proposals in a coarse-to-fine manner. To
verify our claim, we devised a coarse proposal network (CPN)
and temporal convolutional anchor network (CAN) in our CFTP
for this purpose. CPN generates coarse proposals based on three
actionness curves, each of which characterizes actions at differ-
ent level. CAN aims to distill the fine-grained action proposals
from the output proposals of CPN through a cascaded tempo-
ral anchor network. In addition, a proposal reranking network
(PRN) is designed to reorder proposals from CPN and CAN. Ex-
periments conducted on both the ActivityNet and THUMOS14
datasets validated our model and analysis. More remarkably, we
achieved superior results over state-of-the-art methods when ap-
plying our action proposals to action detection and dense video
captioning tasks. Our possible future works include three direc-
tions. First, temporal attention will be incorporated into CFTP to
further enhance proposal refinement. Second, we will investigate
how to end-to-end formulate our action proposal model. Third,
we could further model the temporal structure and dynamically
optimize the temporal scale of each action proposal.
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