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Concentrated Local Part Discovery With
Fine-Grained Part Representation
for Person Re-Identification

Chaoqun Wan, Yue Wu, Xinmei Tian

Abstract—The attention mechanism for person re-identification
has been widely studied with deep convolutional neural networks.
This mechanism works as a good complement to the global features
extracted from an image of the entire human body. However,
existing works mainly focus on discovering local parts with simple
feature representations, such as global average pooling. Moreover,
these works either require extra supervision, such as labeling of
body joints, or pay little attention to the guidance of part learning,
resulting in scattered activation of learned parts. Furthermore,
existing works usually extract local features from different body
parts via global average pooling and then concatenate them
together as good global features. We find that local features
acquired in this way contribute little to the overall performance. In
this paper, we argue the significance of local part description and
explore the attention mechanism from both local part discovery
and local part representation aspects. For local part discovery, we
propose a new constrained attention module to make the activated
regions concentrated and meaningful without extra supervision.
For local part representation, we propose a statistical-positional-
relational descriptor to represent local parts from a fine-grained
viewpoint. Extensive experiments are conducted to validate the
overall performance, the effectiveness of each component, and the
generalization ability. We achieve a rank-1 accuracy of 95.1% on
Market1501, 64.7% on CUHKO03, 87.1% on DukeMTMC-RelD,
and 79.9% on MSMT17, outperforming state-of-the-art methods.

Index Terms—Person re-identification, local part learning,
constraint attention mechanism, fine-grained representation.

1. INTRODUCTION

ERSON re-identification (ReID) systems aim to identify
P people across different cameras and temporal periods.
Given a query image of a person, a complete person RelD system
should find all images of the same person that appeared in differ-
ent scenarios and time periods. With the increasing construction
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of urban surveillance cameras and the demand for public secu-
rity, person RelD provides the fundamental ability for real-time
video monitoring and historical video analysis to detect pedes-
trian trajectories and discover criminal suspects. Person RelD
has attracted considerable research attention in computer vision.

Recent years have witnessed the trend of discovering hu-
man body parts and incorporating the corresponding features
as a complement to the global features for better distinctiveness.
Global features are often extracted from the entire image in a
handcrafted manner [4]-[7] or by feeding the image into a deep
convolutional neural network (CNN) [8], [9]. Moreover, some
methods based on metric learning have been proposed to en-
hance the feature representation [10]-[13]. Though dissimilar
appearances can be easily distinguished, the global features are
poorly distinctive for different pedestrians with similar appear-
ances. Some works make a pixelwise or rigidwise comparison
of original images or feature maps to exploit some details to
compensate for the global features [14]-[16]. However, such
local features are sensitive to large variations in illumination,
occlusion, pose, scale and camera view. For example, in the first
column of Fig. 1, the same body parts, such as the head, torso,
arms or legs, are located in different positions in different im-
ages. Therefore, the pixelwise or rigidwise comparison is not
effective in aligning the local parts or avoiding background in-
terference.

To overcome these difficulties, recent works have focused
on local part discovery to enhance the overall effectiveness.
These approaches can be summarized into three main cate-
gories: image-level region proposal-based methods [18]—-[21],
feature-level rigid-based methods [22], [23] and feature-level
attention-based methods [1]-[3], [24], [25]. The image-level re-
gion proposal-based methods discover local parts from the origi-
nal images based on the human body structure, the feature-level
rigid-based methods divide the feature maps into a group of
horizontal rigid structures, and the feature-level attention-based
methods employ attention mechanisms to generate attention
maps that directly emphasize the local parts on feature maps.
Nevertheless, the region proposal-based methods either depend
on extra supervision, such as labeling of body joints [18], [20],
[21], or employ complicated operations, such as affine trans-
formation [19]. They require a high computational cost, espe-
cially for online systems. Regarding the rigid-based methods, the
manual division cannot address the deformable local parts and
the background noise. Regarding the attention-based methods,
explicit guidance is hardly provided for learning attention maps,
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Fig. 1.
of visualization results for each row, and in the last two rows, there are 3 sets. In
each set, the first column is the original image, and the others are visualizations
of learned attention maps. The first three rows are visualization results from
DLPAN [1], HP-Net [2], and HA-CNN [3]. The last row is the visualization
result obtained by the proposed concentrated attention module.

Visualization of local part discovery. In the first two rows, there is 1 set

resulting in unconcentrated or meaningless activation. Some ex-
amples are shown in the first three rows of Fig. 1, where the
activation regions on the attention maps are almost scattered
with much noise on the background. These issues will limit the
representation ability of local features and even produce an un-
desirable impact on the final results.

In addition to accurate local part discovery, distinctive local
feature representation is another significant tool to enhance the
feature ability. Most previous methods simply adopt global av-
erage pooling (GAP) to map convolutional feature maps into
feature vectors. Although this operation has been proven to be
effective after years of practice, some works [26], [27] still re-
veal drawbacks of such deep representations for fine-grained
learning, especially for the features of highly related local parts.
Moreover, according to our experiment, features of local parts
obtained by global average pooling contribute little to the overall
performance, particularly when global features are well learned.
The reasons are twofold: 1) The result of global average pool-
ing is highly concise, which neglects significant local cues, such
as location, distribution and correlation. People who resemble
each other only have slight differences in body parts, and global
average pooling is too weak to capture such differences. 2) Lo-
cal part description is meant to highlight a completely different
viewpoint to avoid becoming an ensemble of global features.
This description should have the ability to describe the detailed
cues of body parts and a cooperative representation ability for
their relations.

In this paper, we address the two key problems of the at-
tention mechanism for person RelD: discovering precise local
parts and exploring substantial local cues. We solve the problems
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by observing that 1) semantic local parts are always small con-
centrated regions, such as the head, arm, leg and torso, and
2) humans determine precise identifications from detailed com-
parisons and even the relation of body parts. For local part
discovery, the traditional attention module produces unconcen-
trated or meaningless activations as previously mentioned, re-
sulting in a limited local representation. Since the local parts
are always small concentrated regions, we propose an iterative
concentration process for the attention module. This process it-
eratively filters out the farthest point on learned local parts and
forces the activation to be concentrated on these local parts. In
addition, we redesign the attention module with a multiscale
architecture to overextract more possible regions of body parts.
The multiscale attention module with the iterative concentration
process is termed the concentrated attention module. For local
part description, we propose a statistical-positional-relational
(SPR) descriptor to delve into the meticulousness and distinc-
tiveness of local cues, as well as their cooperative representation
ability. Specifically, we first extract 5 statistics as statistical fea-
tures to describe the local activation, containing the values of
the mean, variation, median, min and max for each feature map.
Since different parts have relatively different ranges of posi-
tion, we use the barycenter of attention maps as the positional
feature to roughly avoid misalignment of body parts. In addi-
tion, we utilize the invariance to pose of human body parts [26],
[28] and propose a relational feature to explore such invariance
for cooperative representation. The statistical feature, positional
feature and relational feature are fused as the SPR descriptor for
fine-grained local part description. Fig. 2 illustrates the whole
framework.

The main contributions are summarized as follows:

® We propose to explore the attention mechanism from two
aspects, and our method outperforms state-of-the-art ap-
proaches.

e We propose a new constrained attention module that can
guide the attention maps to obtain concentrated local parts
over body parts.

e We employ a novel SPR descriptor for fine-grained lo-
cal part representation, which achieves better performance
than the global features and significantly improves the over-
all performance.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related works. Section III presents the pro-
posed constrained attention module and the fine-grained local
part representation in detail. Section I'V presents extensive com-
parisons with state-of-the-art methods and analysis of the pro-
posed method . Section V concludes the paper.

II. RELATED WORK
A. Deep Learning-Based Methods

The success of deep learning in image classification has in-
spired a large number of studies on person RelD. Many ap-
proaches have been designed based on the convolutional neural
network structure. For instance, Li ef al. propose a filter-pairing
neural network (FPNN) with a rigidwise patch-matching layer
to solve the problem of the pose and viewpoint variance [15].
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substantial local information. The global and local branches are learned separately for better discriminability.

Wu et al. design a double-column architecture with pixelwise
neighborhood patch matching to extract features from image
pairs [14]. However, these shallow networks can hardly exploit
the full potential of a CNN. Current works are more inclined
to take advantage of the classic deep neural networks, such as
VGG [29], GoogLeNet [30] and ResNet [17]. With the model
pretrained on ImageNet and fine-tuned for person RelD, the
extracted features are more discriminative. Nevertheless, these
methods represent the person from a global perspective or ad-
ditionally embed pixelwise or rigidwise matching for a detailed
comparison. As discussed in the previous section, these features
are sensitive to variations in illumination, pose, scale and camera
view.

B. Local Part Discovery

Studies on local part discovery can be summarized into three
categories: image-level region proposal-based methods [18]-
[21], feature-level rigid-based methods [22], [23] and feature-
level attention-based methods [1]-[3], [24], [25]. Regarding
region proposal-based methods, Zhao er al. use aregion proposal
network to localize 14 body joints and obtain 7 body parts [18].
Wei et al. use the pose estimation method to locate four key
points and induce three local parts [21]. To avoid the dependence
on auxiliary labels, such as body joints, Li et al. employ a trans-
former network, similar to the spatial transformer network [31],
to automatically locate three predefined body parts (head, torso
and legs) [19]. By not locating body parts with region propos-
als on the image level, another solution is to directly discover
local parts from the feature level for simplicity. One practical
approach is to divide the feature maps into a series of horizon-
tal rigid structures. Zhang et al. horizontally divide the feature
maps into several stripes and design an alignment algorithm to
avoid mismatch [22]. Sun et al. conduct an identical division and
further investigate the texture of each stripe [23]. They propose
a refinement algorithm to generate soft boundaries. However,
the horizontal division still suffers from noise regions on the
background. To address this problem, the attention module is an

alternative approach to learn activation masks that emphasize
distinctive regions. Zhao et al. design a simple attention mod-
ule on the last convolutional layer to adaptively discover local
parts from the feature maps [1]. Liu et al. consider more spatial
information and propose an HP-Net to multidirectionally feed
the multilevel attention maps into the corresponding layers [2].
Li et al. consider hard local regions and propose a harmonious
attention model for joint learning of the hard regional attention
and soft pixel attention [3]. These methods extract local parts
without guidance, which easily results in a scattered distribu-
tion of attention maps.

C. Local Part Representation

Traditional handcrafted methods design the local features
from various aspects for better representation. Gray and Tao
extract color and texture features on horizontal stripes [32].
Liao et al. propose the local maximal occurrence (LOMO) to
analyze the horizontal occurrence of local features for a stable
description against viewpoint change [33]. Chen et al. adopt
polynomial kernels in the linear similarity function to obtain a
robust local feature description [34]. Most recent methods with
convolutional neural networks adopt global average pooling or
global max pooling for the local description. However, this con-
cise description will discard most of the original information,
which is significant for the discrimination of local parts of hu-
mans. Carreira et al. design a second-order pooling represen-
tation that is better for local description [27]. Lin et al. further
confirm the previous viewpoint and propose a bilinear convo-
lutional neural network for fine-grained object detection [26].
As discussed in the previous section, local part representation is
expected to delve into the meticulousness and distinctiveness of
local cues, as well as their cooperative representation ability.

III. APPROACH

In this section, we introduce the proposed constrained at-
tention module for local part discovery and the statistical-
positional-relational descriptor for fine-grained local part
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middle-level feature maps to form the part-based attention feature maps. Finally, the SPR descriptor extracts local cues to form the local feature.

representation in detail. Fig. 2 shows the framework, which con-
sists of a backbone network for global feature extraction and the
local attention mechanism for body part discovery and represen-
tation.

A. Constrained Attention Module

For local part discovery, we propose a constrained attention
module for better part localization. The entire architecture is
shown in Fig. 3, including the multiscale attention module and
the iterative concentration process. Compared with the tradi-
tional methods of local part discovery, there are two differences
in the proposed approach:

— We adopt a multiscale architecture for comprehensive per-
ception. The output will overextract regions of interest of
various scales.

— We design an unsupervised iterative concentration process
to collect the activation of attention maps for learning con-
centrated and meaningful local parts.

Both of these components are necessary to obtain concen-
trated and even meaningful local parts. The multiscale archi-
tecture ensures that most of the possible regions are perceived;
thereby, the iterative concentration process can gradually elim-
inate the invalid regions and produce concentrated activation.
More details are discussed as follows.

1) Multiscale Attention Module: We design a multiscale per-
ception architecture as shown in Fig. 3. This architecture is com-
posed of five types of operations, including max pooling, average
pooling and three convolutional operations with kernel sizes of
1 x 1,3 x 3 and 5 x 5. Unlike the traditional inception archi-
tecture [30], we additionally use max pooling to reserve more
possible regions with large responses. Intuitively, max pooling
is able to describe the maximum outline and implies as many
candidate regions of body parts as possible. The proposed ar-
chitecture is more complex than others, such as [1]-[3], because
we use feature maps after a single convolutional layer from the
middle of the backbone network. Such middle-level features
contain more spatial cues but less semantic information. A rel-
atively complex attention module should be able to compensate
for the semantic loss to some extent.

2) lIterative Concentration Process: Without explicit guid-
ance, the above multiscale architecture learns freely. There is

no guarantee that the resulting activation maps are meaningful
and concentrated around body parts, leading to a mixture of both
true positive regions and false positives, as shown in Fig. 4(b). To
solve the concentration problem, we propose constraints from
two aspects.

Specifically, given an image Z, the feature maps of a middle
layer are denoted X € RE*H*W We denote the five types of
kernels as Kax, Kavg, K1x1, Kaxs, and Ksxs. K. (X)) represents
the corresponding convolutional operation * € {mazx, avg,
1x 1,3 x 3,5 x 5}oninput X . The learned attention map from
X is:

M = Fa(X)
= o(Fpn(R1x1(K(X)))), (D
K(X) = Feoncat (Kmax (X ), Kavg (X)), K1x1(X),
K3x3(X), Ksx5(X)), 2

where F4 : REOH*W = REXW represents the function of the

attention module, Ry : RP>*W = RI>W i5 a dimension
reduction mapping, Fpy is a batch normalization transform,
Feoncat 18 @ concatenation operation along the first dimension,
and o is the sigmoid function.

Suppose there are N multiscale attention modules, denoted
{FL, F3,...,FY}. The N learned single channel attention
maps are:

M={M'= Fi(X)|i € N}. (3)

Each attention map M is then broadcast to C' channels M
and multiplied with the original feature maps X to generate the
attention feature maps:

Z={Z'=M ®X|ic N}, Z' e ROHW_ (4

Activation ratio constraint. For simplicity, we denote M €
RHE*W as an arbitrary attention map. Since a body part occupies
small local regions, only a portion of the attention map should
be activated with large values. Suppose there are at most K
activated points for a body part. The value of K may be different
for different parts. We select K activated points with the largest
activation values as the candidate points of the body part. The
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(a) Iterative Concentration Process (b)

Fig. 4.
process. (b) Results without the constrained attention module.

candidate points are denoted:
C ={ck = T(M)[k € K}, (5)

where ¢, represents the kth candidate point as well as the cor-
responding value for simplicity. 75 (M) denotes the function of
finding the k-th maximum value in M. We expect that the ma-
jority of activation is focused on these candidates to constrain
the ratio of local parts on attention maps. The activation ratio
constraint is defined by the following loss function:

Zfﬂ Ck
2yt aom1 My
The gradient for backpropagation is:
HW
chec Ck — Ey:l,m:l jwyw’ ]\4-117z c C,
HW
o, (s M)
oM, ., ™
y.x D enec Ck
e 5, My, ¢&C.
(Zy:’m@:l Mym)

When M, , € C, the gradient is negative and M, ; is supposed
to be larger; when M, ;. ¢ C, the gradient is positive, and M, j
is supposed to be smaller. As a result, the majority of the activa-
tion will appear on the candidates, achieving activation (energy)
concentration with less noise activated.

Activation distribution constraint. Despite the activation
ratio constraint, these candidates can still be scattered over the
attention map, with true positive ones on body parts and false
positive ones on the background. Therefore, we define a poten-
tial loss function to reflect the concentration degree of activated
points:

K

1
Ep - E ZP<Ck)7 (8)
k=1
1
Pler) = 3¢ > crcidi, )
ceC

Visualization of the iterative concentration process. (a) Examples of how activation maps are concentrated on local parts through the iterative concentration

where dj,; represents the Euclidean distance between c;, and
c;. Once ¢y, and ¢; are clarified, the distance dy, ; is determined.
Therefore, dj,; is nondifferentiable with respect to ¢, and it
makes no sense to calculate the gradient of ;f:l . In addition, op-
timizing over C' will minimize the values of all activated points.
To address this problem, we reasonably assume that the candi-
date with the largest P(cy,) is the most likely outlier on the back-
ground. We optimize only one candidate with the largest P(cy,)
in each iteration. Such an iterative training process can achieve a
similar effect to gradually filtering out the most likely false pos-
itive candidates and alleviate the influence on true positive ones.
Fig. 4(a) is a visualization of the iterative concentration process,
where the outliers are gradually filtered out and candidates be-
come concentrated. Accordingly, the activation distribution loss
function is defined as:

La="P(cp)
1
=% Z crcrdye 1, (10)
ceC
k* = argmax P(c;). (11)

To illustrate the validity of converting Eq. (8) to Eq. (10), we
exhibit the potential energy of attention maps under the condi-
tion of different distributions in Fig. 5. Images on the left side
are quantified attention maps, where the red blocks represent
the candidates with an activation value of 1, and the other re-
gions correspond to a value of 0. Images on the right side are
the potential energy of all candidates. Comparing the scattered
distribution with the concentrated distribution, the potential en-
ergy in the scattered distribution is much higher. Furthermore,
in the scattered distribution, the farther away the candidate is,
the larger the potential energy will be (comparing the (X, Y, Z)
of (13, 27, 13.03) and (9, 22, 11.62)). Thus, it is reasonable to
gradually filter out the candidate with the largest potential en-
ergy so that the farthest one is eliminated and those remaining
are concentrated with small potential energies as well as their
sum. As a result, the two loss functions £,. and £, are combined
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Fig. 5. Anillustration of how the distribution affects the distance-related po-
tential energy. The left sides are examples of feature maps with red blocks as
candidates. The right sides are the potential energy distributions. (a) The ran-
dom distribution has the highest potential energy for every candidate. (b) The
scattered distribution has a relatively high potential energy, in which the farther
the candidate is from the center, the larger the potential energy will be. (c) The
concentrated distribution has the lowest potential energy as well as the lowest
sum.

to guide the attention modules to learn concentrated attention
maps over local body parts. Algorithm 1 illustrates the iterative
concentration process.

B. Statistic-Positional-Relational Descriptor

The widely used global average pooling is not suited for lo-
cal part description for two reasons. First, local parts are often
learned based on middle-level features to obtain more spatial
cues at the expense of semantic information. Global average
pooling is more suited for translation-invariant high-level fea-
ture extraction instead of location-sensitive local representation.
Second, the local part should highlight a completely different
representation viewpoint to avoid becoming a multiscale en-
semble of global features and should focus on detailed cues of

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 6, JUNE 2020

Algorithm 1: Iterative Concentration Process
Input: A training image and a corresponding label.
Output: Concentrated attention maps.
Initialize: Fine-tuned from the ImageNet pretrained model.
1: repeat
2:  Extract middle-level feature map X from a backbone
network.
3: for each attention module do
4 Extract attention map: M = F4(X);
5:  Select candidate points: C = {c¢, = Tr,(M)};
6: Calculate activation ratio loss £, as in Eq. (6)
7 .
8
9

Calculate potentials: P(cy) = 7 > cc CrCid,i;
Search the largest potential P (cy+);
Calculate activation distribution loss £ as in
Eq. (10)

10:  end for

11: Calculate the loss of global and local branches;

12:  Calculate the total loss and gradient;

13:  Backward propagate the gradient and update the

network;
14: until final iteration

body parts as well as their cooperative representation ability.
Therefore, we devise the statistical-positional-relational (SPR)
descriptor to fully describe the local parts.

Statistical Feature. Various statistics will provide more pre-
cise descriptions of the attention feature maps, reducing the
chance of confusion between similar body parts. A prior work
has implemented a statistical layer to extract various statistics
from the input feature vector and demonstrated the effective-
ness of statistical features [35]. Specifically, we use five types of
statistics along the channel dimension, including the maximum
(]:max)7 minimum (]:min)s mean (]:mean), median (]:median) and
variance (F,.) of the attention feature maps. Each of them pro-
duces a C-dimensional feature vector: F, : R >*W*C¢ = RC,
The statistical features Fi§ € R © are as follows:

Fé = []:max(Zi)a]:min(Zi)’‘7:7""351”(22-)7

]:median(Zz)»]:var(Zz)]a i€ N. (12)

Positional Feature. As described in the introduction, the loca-
tion of the same body parts in different images is unstable. Mis-
alignment widely exists when performing local part comparison.
Despite the instability, the same local part has a relatively con-
stant position range, while different parts have different ranges
of location. The positional features are used to reflect the rough
locations of body parts, or, in other words, to ensure that each
branch will locate the same local parts, avoiding misalignment
of different parts, such as arms vs. legs or shirts vs. trousers. We
use the barycenter of attention feature maps on each channel as
the positional features Fii, € R?C:

Fh=|Y 2, xy;> Zy,xx|, i€N. (13)
Y,z Y,z
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Relational Feature. In addition to the effectiveness of local
cues of the attention mechanism, their invariance to pose for
humans can enhance the distinctiveness [26]. We calculate the
distance of different attention feature maps to reveal the correla-
tion among local body parts. The relational feature of attention
feature map Z' is defined as:

Fi=[D(Z,ZY),...,D(Z',Z" — 1),

D(Z', 7 +1)...,D(Z%, ZN))], (14)

where D(Z%,Z7) € R is the channelwise distance between
Z' and Z7. On each channel, the distance is measured by flat-
tening the feature map to a vector and calculating the cosine
distance. The dimension of the relational feature of Z° is thus
Fj, e RWN-1C,

SPR Descriptor. For each local branch, the statistical feature,
the positional feature and the relational feature describe a body
part from three different views. For fine-grained part represen-
tation, they are concatenated and mapped to a low-dimensional
SPR descriptor via a fully connected layer. The local represen-
tation is formed by concatenating the SPR descriptors of all
branches, as shown in Fig. 3.

C. Network Training

The concentrated attention module and the SPR descriptor are
combined with a backbone network, termed the concentrated
SPR network (CSPR-Net). We use ResNet-50 [17] as the back-
bone network for human representation. Both global and local
features are embedded into a low-dimensional representation
through two fully connected layers. Since global and local are
two different views, we separately use two objective losses. In
this work, classification loss is adopted for both the global and
local views, which is denoted:

Ny T
exp(W, z; + by,)
['(:ls = - § 1Og No > T .
i=1 Ej:l eXp(Wj T + bj)

15)

where 7 is the index of person images, z; is the feature of the ith
sample, y; is the identity of the ith sample, W is the classifier
for the jth identity, Ny is the number of images, and N is the
number of identities. Together with the concentration loss, the
total objective takes the following form:

L= Ecls,global + Ecls,local + AL, + 77/3(1, (16)

where A and 7 are coefficients to control the strength of the
iterative concentration process.

IV. EXPERIMENT

In this section, we conduct comprehensive experiments to
evaluate the effectiveness of the proposed method. We have tried
several ways to combine the global and local features, e.g., learn-
ing a gate to select more distinctive local parts or comprehen-
sively using the global and local neighbor relationships to get
the final retrieval. However, the direct concatenation achieves
the best performance. We think this is because the datasets have
less occluded samples. The concatenation of all local features
has made full use of all local information. Therefore, we directly
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concatenate the global and local features to evaluate the perfor-
mance. We compare the performance of the combined features
with state-of-the-art person ReID methods and investigate the
contribution of each component of the proposed method, includ-
ing the constrained attention module and the SPR descriptor. In
addition, we evaluate the model generalization ability on other
datasets.

A. Datasets

1) Market1501: This dataset is one of the largest benchmark
datasets for person RelD. There are 32,668 detected pedestrian
images in total, with 1,501 identities. These images have been
captured by six cameras, including five high-resolution ones
and 1 low-resolution one. For training and testing, the 1,501
identities are divided into two parts such that 751 of them are
used for training and the remaining 750 are used for testing.
There are 3,368 query images and 19,732 gallery images. For
evaluation, we follow the same method as in [44] and report
the mean average precision (mAP) and cumulative matching
characteristics (CMC) in our experiment.

2) CUHKO3: This dataset contains 14,097 images of 1,467
identities [45]. We follow the training/testing split proposed in
[46], with 767 identities for training and 700 identities for test-
ing. In this work, we only report the results on labeled sets.

3) DukeMTMC-RelID: This dataset is a subset of Duke-
MTMC for image person re-identification [47]. It provides
16,522 training images of 702 identities, 2,228 query images
and 17,661 gallery images of the other 702 identities.

4) MSMTI17: This dataset is a new large-scale dataset with
4,101 identities and more than 120 thousand bounding boxes
[48], which have been collected from 15 cameras with both in-
door and outdoor scenarios. This dataset covers a long period
of time and presents complex lighting variations. A domain gap
commonly exists between the training and testing sets, which
makes the re-identification more challenging.

B. Evaluation Protocol

We follow the standard evaluation protocol, with the CMC
at rank-1 and the mAP. We report the single query evaluation
results on Market1501, DukeMTMC-RelID and MSMT17. The
evaluation on CUHKO3 is performed under the single-shot set-
ting proposed in [46].

C. Implementation Details

The whole network is trained in two steps. In the first step, the
backbone network is fine-tuned from the ImageNet pretrained
model to obtain the global features. Then, the global and local
branches are jointly learned. There are two reasons for the two-
step learning. On the one hand, the objective losses for local
parts and the global part are independent. They will interfere at
the bottom layers, leading to unsatisfactory results. On the other
hand, feature maps contain less meaningful information for the
local branch at the beginning of the training procedure. The first
step provides a good initialization for attention learning.
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TABLE I
DATASET DESCRIPTION. FOUR LARGE DATASETS ARE USED FOR SUPERVISED
LEARNING, INCLUDING MARKET1501 (MARKET), CUHKO3,
DUKEMTMC-REID (DUKE) AND MSMT17. THREE SMALL DATASETS ARE
USED FOR CROSS EVALUATION, INCLUDING VIPER, CUHKO1 AND 3DPES.
FOR THE 6-TH COLUMN, “H” REPRESENTS “HAND,” “D” REPRESENTS
“DETECTED” AND “FR” REPRESENTS “FAST RCNN”

Dataset |Release time Identities Cameras Images Label method Image size

Market 2015 1501 6 32217 H/D 256x128
CUHKO03 2014 1467 10 13164 H/D Varies
Duke 2017 1812 8 36441 H Varies
MSMT17 2018 4101 15 126441 FR Varies

VIPeR 2007 632 2 1264 H 128x48

CUHKO1 2012 971 3 3884 H 160x60
3DPeS 2011 192 8 1011 H Vary

During the training procedure, each image is resized to
384 x 128. For data augmentation, we apply random-sized crop-
ping with an area ratio from 0.64 to 1.0 and an aspect ratio from
% to % on the input image. We also use random erasing with
a probability of 0.5 [49]. We use stochastic gradient descent
(SGD) with a minibatch size of 32. The activation distribution
constraint aims to force the candidates to concentrate on local
parts of interest, while the activation ratio constraint is meant to
assign large activation values to the candidates and small acti-
vation values to the noncandidates. Only when candidates are
concentrated by the activation distribution constraint can the ac-
tivation be assigned to local parts of interest. Therefore, the loss
weights A and 7 are set as 0.1 and 1.0, respectively. The number
of candidates is set to between 20% and 40% of H x W . In our
experiment with eight branches, we use settings of two at 20%,
four at 30% and two at 40%. For the first step of global branch
learning, the initial learning rate is 2e-2 and shrinks to 2e-3 and
2e-4 after 50 and 100 epochs, respectively. For the second step,
the learning rate of the backbone network is maintained at 2e-4,
whereas that of the local branch is set at Se-2. The learning rate
shrinks to 5e-3 and 5e-4 after 50 and 100 epochs respectively.

In our experiment, we train 150 epochs for each step.

D. Comparison With State-of-the-Art Methods

In this section, we compare the proposed CSPR-Net with
state-of-the-art methods. The results of LOMO and BoW in
Tables II, IIT and I'V are from our implementation, as there are no
results on these three datasets from the original implementation.
The results in Table V are taken from [44], and the others are all
taken from the original implementation. Table II shows the eval-
uation results on Market1501. Non-local-based methods, such as
AACN [42] and DGRW [41], achieve a best CMC@ 1 of 92.7%
and mAP of 83.0%. Local-based methods, such as MCAM [24],
DuATM [25] and RPP [23], achieve a best CMC@1 of 93.8%
and mAP of 81.6%. Note that the best local-based method re-
quires an extremely high feature dimension of 12,288, while
our CSPR-Net achieves the best CMC@ 1 of 94.2% and mAP of
84.8% with only 1,024 dimensional features. The performance
further increases to 95.1% and 92.7% after reranking.

The results on CUHKO3 are shown in Table III. The CMC @1
is 64.7% and 74.2% after reranking, and the mAP is 62.8% and
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77.6% after reranking. The CUHKO03 dataset only has two cam-
eras for each identity. It is hard to train robust models against
camera views. The results of LOMO [32], BoW [36], MLFN [40]
and even some Local-based methods, such as HA-CNN [3],
show limited performance. However, our method explores more
accurate local cues to supplement the global features, and the
results are superior to those of previous algorithms.

We further evaluate our method on two recent large-scale
datasets: DukeMTMC-ReID and MSMT17. As shown in Ta-
ble IV, we achieve the best CMC@1 of 83.5% and mAP
of 71.9% on DukeMTMC-RelID. For MSMT17, shown in
Table V, CSPR-Net significantly outperforms existing works,
withaCMC@1 0f 75.3% and an mAP of 50.8%. Since MSMT17
is the largest dataset with more than 120 thousands images, this
result strongly demonstrates the superiority of our method. Fig. 6
exhibits the ranking results over the four different datasets, and
the explicit modification further illustrates the effectiveness of
the proposed method.

E. Ablation Experiments

We conduct ablation experiments to investigate the contribu-
tions of the constrained attention module and the SPR descriptor
from the aspects of the local representation (L) and global+local
representation (G+L) abilities, as shown in Table VI. The exper-
iments are conducted on Market1501.

1) Investigation on the Constrained Attention Module: We
argue that the effectiveness of the constrained attention mod-
ule comes from both the multiscale architecture and the con-
centrated constraint. Since the multiscale architecture perceives
most of the possible regions, the concentrated constraint is able
to work as a filter to eliminate the false positive regions and
retain the true positive ones. To ensure a fair comparison, we
redesign a single-scale attention module (base+AM) as the base-
line attention-based method, which has been widely used in pre-
vious works. We set the kernel size as 1 x 1, in stark contrast to
the proposed architecture. Comparing the result of “base+AM”
and “base+CAM,” we obtain increases of approximately 2.2% in
mAP and 1.3% in CMC@1 on the local representation, validat-
ing the better effectiveness of the proposed constrained attention
module. However, the advantage for the global+local represen-
tation is not as significant, only 0.3% in mAP and 0.4% in CMC.
The reason is that the global average pooling used for both the
global and local representations cannot fully convey the extra
advantage from the local parts learned by constrained attention
maps. Hence, we further design another group of experiments,
where we adopt the proposed SPR descriptor for fine-grained
local representation. Comparing the result of “base+AM+SPR”
and “base+CAM+SPR,” we obtain a 3.3% increase in mAP and a
1.4% increase in CMC@1 on the local representation, while we
obtain a 1.6% increase in mAP and a 0.7% increase in CMC@ 1
on the global+local representation. This result thoroughly veri-
fies the previous demonstration and in turn confirms the effec-
tiveness of the proposed constrained attention module.

In addition to the numerical results from the experiment,
we visualize the learned attention maps from both the single-
scale and constrained multiscale architectures. Fig. 9 visualizes
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TABLE II
EXPERIMENT RESULTS ON MARKET1501. THE FIRST TWO ROWS CORRESPOND TO METHODS BASED ON HANDCRAFTED FEATURES, WHILE THE OTHER
ROWS CORRESPOND TO METHODS BASED ON DEEP LEARNING MODEL. “RK” MEANS RERANKING

Category \ Method | mAP(%) CMC@1(%) CMC@5(%) CMC@10(%)
: LOMO(CVPR2015) [33] 7.8 26.1
Handerafted BoW(ICCV2015) [36] 14.8 35.8 524 60.3
SVDNet(ICCV2017) [37] 62.1 82.3 92.3 95.2
PSE(CVPR2018) [38] 69.0 87.7 94.5 96.8
AWTL(CVPR2018) [39] 75.7 89.4 - -
Nonlocal-based | MLEN(CVPR2018) [40] 74.3 90.0 - -
DGRW(CVPR2018) [41] 82.5 92.7 96.9 98.1
AACN(CVPR2018) [42] 83.0 88.7 - -
Spindle-Net(CVPR2017) [18] - 76.9 91.5 94.6
HP-Net(ICCV2017) [2] - 76.9 91.3 94.5
Pose-driven(ICCV2017) [20] 63.4 84.1 92.7 94.9
DLPAN(ICCV2017) [1] 634 81.0 92.0 94.7
Aligned(Arxiv2017) [22] 72.8 89.2 96.0 -
Local-based GLAD(TMM2018) [21] 73.9 89.9 - -
MCAM(CVPR2018) [24] 74.3 83.8 - -
HA-CNN(CVPR2018) [3] 75.7 91.2 - -
DuATM(CVPR2018) [25] 76.6 914 97.1 99.0
DaRe(R)+RE(CVPR2018) [43] 74.2 88.5 - -
RPP(ECCV2018) [23] 81.6 93.8 97.5 98.5
CSPR-Net (ours) 84.8 94.2 98 3 99.0
CSPR-Net+RK (ours) 92.7 95.1 99.2 99.7
TABLE III TABLE V
EXPERIMENTAL RESULTS ON CUHKO3. THE FIRST TWO ROWS CORRESPOND EXPERIMENTAL RESULTS ON MSMT17. “RK” MEANS RERANKING
TO METHODS BASED ON HANDCRAFTED FEATURES, WHILE THE OTHER
Rows CORRESPOND TO METHODS BASED ON DEEP LEARNING MODEL. “RK” Method(%) ‘ mAP CMC@1 CMC@5 CMC@I10
MEANS RERANKING
GoogLeNet(CVPR2015) [30] | 23.0 47.6 65.0 71.8
Catcgory | Method [maPee) CMCe@1h) PN ol 1) | 340 814 Tes 816
Handerafted LOMO(CVPR2015) [32] 115 23 CSPR-Net (ours) 508 753 86.1 89.6
BoW{ICCV2015) [36] 6.4 6.4 CSPR-Net+RK (ours) 67.8 79.9 86.8 89.4
Non-local-based MLEN(CVPR2018) [40] 49.2 54.7
HA-CNN(CVPR2018) [3] 41.0 44.4
MCAM(CVPR2018) [24] 50.2 50.1 TABLE VI
Local-based DaRe(R)+RE(CVPR2018) [43]| 60.2 64.5 ABLATION EXPERIMENTAL RESULTS ON MARKET1501. “L"” MEANS THE LOCAL
i RPP(ECCV2018) [23] 57.5 63.7 FEATURE REPRESENTATION, WHILE “G+L” MEANS THE OVERALL
CSPR-Net (ours) 62.8 64.7 REPRESENTATION OBTAINED THROUGH CONCATENATION OF GLOBAL AND
CSPR-Net+RK (ours) 77.6 74.2 LocAL FEATURES
TABLE IV Method | L | G+L
EXPERIMENTAL RESULTS ON DUKEMTMC-REID. THE FIRST TWO ROWS | mAP(%)  CMC@I(%) [ mAP(%) CMC@I1(%)
CORRESPOND TO METHODS BASED ON HANDCRAFTED FEATURES, WHILE base - - 79.7 92.0
THE OTHER ROWS CORRESPOND TO METHODS BASED ON DEEP LEARNING base+AM 74.1 89.3 81.4 92.3
MODEL. “RK” MEANS RERANKING base+CAM 76.3 90.6 81.7 92.7
base+AM+SPR 79.2 91.8 83.2 93.5
G e mowem  Soonn | 5 B | 8
Handerafted LOMO(CVPRZOlS) [33] 17.0 30.8 base+CAM+R 81.4 92.7 83.8 93.6
mecwnSt | g0 a5 | B
?&bﬁgggg}:f;&lg; [[4327]] ggg ;g; base+CAM+SPR 82.5 93.2 84.8 94.2
PSE(CVPR2018) [38] 62.0 79.8
Non-local-based | AWTL(CVPR2018) [39] 63.4 79.8
MLFN(CVPR201 4 2. 1.
DGRW((((:JVPRZ(())ISS)) [[4?]] 262 202 each group of four, the first three are different viewpoints of the
HA-CNN(CVPR2018) [3]| 63.8 80.5 same pedestrian, including variations in pose, scale and camera
DuATM(CVPR2018) [25]|  64.6 81.8 view, while the last instance is another pedestrian. In Fig. 9(a),
Local-based RPP(ECCV2018) [23] 69.2 83.3 . . . .
CSPR-Net (ours) 71.9 83.5 much noise exists, and some attention maps are substantially
CSPR-Net+RK (ours) 84.7 87.1 disorganized to the extent that several separate activated loca-

tions are included. In contrast, in Fig. 9(b), the attention maps
are more concentrated with little noise. It is obvious that some
the local parts on attention maps under the previous two attention maps have specific semantics such that some focus on
conditions. We exhibit four instances for each dataset (Mar- legs, while others focus on the upper body or other parts. The
ket1501, CUHKO3, DukeMTMC-RelID and MSMT17). Within  visualization results show that the learned attention maps indeed
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Fig. 6.
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(b)

Comparison of the ranking results between global features and local+global features. The green rectangles denote positive results, while the red rectangles

denote negative results. In (a), global features are used to retrieve the 10 most similar images based on the query. In (b), local and global features are combined,
and better retrievals are obtained. We exhibit 2 examples for each dataset (Market1501, CUHKO03, DukeMTMC-relD, and MSMT17 sequentially).

have consistent semantic information, with an accurate body part
localization ability.

Note that we only constrain the ratio and the distribution of
the activation in attention maps instead of providing explicit su-
pervision. However, the proposed constrained attention module
can still learn different and somewhat semantic local parts. This
is an interesting finding that is still reasonable. First, the atten-
tion modules have the ability to learn different types of local
parts, similar to how CNNs can learn distinctive kernels, due to
the random initialization and stochastic gradient descent-based
optimization. Second, the constraint is the necessary condition
for precise local part localization. To minimize the local classi-
fication loss under the condition of concentration, the attention
maps have to converge to discriminative local parts.

2) Investigation of the SPR Descriptor: In the previous sec-
tion, we have demonstrated the effectiveness of the SPR de-
scriptor from one aspect. Thus, we attempt to explore more
details below. First, comparing the result of “base+AM” and
“base+AM+SPR,” it is apparent that the SPR descriptor con-
tributes a substantial improvement compared with global aver-
age pooling, with approximately 5.1% mAP and 2.5% CMC@1
improvements on the local branch, as well as 1.8% mAP and
1.2% CMC@1 improvements on the global+local representa-
tion. Regarding the constrained attention module (comparing the
results of “base+CAM” and “base+CAM+SPR”), 6.2% mAP
and 2.6% CMC@1 improvements on the local branch can be
obtained, as well as 3.1% mAP and 1.5% CMC@1 improve-
ments on the global+local representation. The SPR descriptors

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 24,2020 at 09:27:54 UTC from IEEE Xplore. Restrictions apply.



WAN et al.: CONCENTRATED LOCAL PART DISCOVERY WITH FINE-GRAINED PART REPRESENTATION FOR PERSON RE-IDENTIFICATION

1615

=—a mAP
9 — CMC@1

o
o
]

performance
3
performance
@
2

__—
/

»—a mAP
— CMC@1

=—e mAP
— CMC@1

performance
o
3

2 4 8 10 2 4

6
branch number

(a) Market1501

Fig. 7.

6
branch number

(b) CUHKO3

8 10 2 4 8 10

6
branch number

(c) DukeMTMC

Influence of the number of local branches. Each figure shows the performance curve with the change in the number of branches.

=—a mAP
95 e CMC@1

— mAP —a mAP
~— CMC@1 — CMC@1

e —
/\,

performance
m
3
performance
=

performance
3

8 16 32 64 128 8 16 32
feature dimension

(a) Market1501

Fig. 8.

are effective on both the single-scale and constrained multiscale
attention modules, while more benefits are obtained with the
constrained multiscale attention module. This result verifies that
the SPR descriptor indeed captures significant local cues and is
an excellent complement to the global representation.

The individual contributions of the statistical features, po-
sitional features, and relational features are also shown in
Table VI. We conduct this group of experiments under the
constrained attention module, as the SPR descriptor can be
more effective with precisely located body parts. We di-
rectly expand the global average pooling to the statistical
feature for the experiment “base+CAM+S,” while we com-
bine the positional feature and relational feature with the
global average pooling for the experiments “base+CAM+P” and
“base+CAM+R,” respectively. Moreover, the positional feature
and relational feature are subordinate descriptions, and each
individual has weak distinctiveness. Comparing the results of
“base+CAM+S,” “base+CAM+P” and “base+CAM+R” with
the result of “base+CAM,” obvious improvements are obtained
for all three kinds of features, especially for the relational fea-
tures. The entire SPR descriptor further attains an approximately
1% improvement and achieves the best result. Among the three
types of features, the statistical feature supplements the original
global average pooling for a precise comparison, the positional
feature ensures the consistency of learned local parts, and the
relational feature measures the correlations of local parts. More-
over, the relational feature reveals something special for the lo-
cal representation, which has been verified as the most valuable
complement to the global part.

feature dimension

(b) CUHKO3

1‘28 4 8 16 32 64 128
feature dimension

(¢) DukeMTMC

Influence of the feature dimension of local branches. Each figure shows the performance curve with the change in the feature dimension.

Note that even with the simplest attention module, our SPR
descriptor has already outperformed the baseline with only lo-
cal features, indicating the powerful representation ability of
local parts. The superiority of base+CAM/base+CAM+SPR
over base+AM/base+AM+SPR and of base+CAM+SPR/ base+
AM-+SPR over base+CAM/base+AM strongly demonstrates our
argument that the attention mechanism should be studied from
two aspects: local part discovery and local part description.

3) Investigation of the Feature Dimension: The dimension
of features is an important factor that affects the performance of
the local features. This dimension is determined by the number
of local branches and the dimension of each branch. Therefore,
we design two groups of experiments in which we vary the num-
ber of branches or the feature dimension of each local branch.
For the branch number, we keep the dimension of each local
branch at 64 and vary the number of branches among 2, 4, 6, 8,
and 10. The results are presented in Fig. 7. It is obvious that the
performance increases as the number of branches grows. The
growing number of branches can capture more distinctive local
parts to enrich the local cues and enhance the effectiveness of
local representation. However, when the number of branches ex-
ceeds 8, the performance will slightly decrease. We surmise that
this decrease is caused by the redundancy of the representation.

We also investigate the influence of the dimension of local
branches. We fix the number of branches at 8 and vary the fea-
ture dimension of the local part among 8, 16, 32, 64, and 128.
The results are shown in Fig. 8. For all three datasets, the perfor-
mance is almost the same over the range from 16 to 128, while
the dimension of 64 achieves a slightly better performance. The
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Fig. 9.
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(b)

Visualization results. For each dataset, we exhibit three examples and arrange them in the order of Market1501, CUHKO3, DukeMTMC-reID and

MSMT17. (a) and (b) Attention maps without and with the constrained attention module, respectively. In (a), the attention maps have a scattered distribution with
less meaningfulness. In (b), the attention maps are more concentrated and meaningful around body parts. Moreover, in each column, local parts are well aligned

among different images.

feature dimension of 8 has a relatively low performance, as an
8-dimensional feature is insufficient to load compact local cues.
In real-world applications, we recommend a 32-dimensional
feature of each local branch for retrieval efficiency and
effectiveness.

F. Model Generalization

Unlike classical classification problems, query and gallery
identities are different from those in the training stage for

person RelD. Nevertheless, the domain gap between training
and testing is still existed for existing datasets. In this section,
we further explore the model generalization ability by training
models on one dataset and evaluating them on other datasets.
This experiment can reveal the real feature representation ability
in real-world applications to some extent. We follow the evalu-
ation settings in [35] and compare the CMC@1 and CMC@5
metrics. We train four models on the datasets used in this paper
and evaluate them on three other datasets (Viper, CUHKOI1 and
3Deps).
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TABLE VII
EXPERIMENTAL RESULTS FOR CROSS-DATASET EVALUATION. G MEANS THE GLOBAL FEATURE REPRESENTATION, WHILE G+L MEANS THE OVERALL
REPRESENTATION OBTAINED THROUGH CONCATENATION OF GLOBAL AND LOCAL FEATURES. C-1 AND C-5 REPRESENT CMC@ 1 AND CMC @5, RESPECTIVELY.
SRC MEANS THE SOURCE DATASETS FOR TRAINING. TAR MEANS THE TARGET DATASETS FOR TESTING
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Sre Market1501 CUHKO03 DukeMTMC-RelD MSMT17
. G G+L G G+L G | G+ G G+L
CT[C5 | CI[C5 | CI[C5[CI[C5 | CI[C5|CI[C5]CI|[C5]|CI]CS
Viper | 17.8 | 40.0 | 21.0 | 43.5 | 184 | 384 | 20.0 | 40.3 | 17.5 | 36.8 | 20.3 | 41.0 | 17.8 | 32.7 | 20.6 | 40.6
CUHKOI | 166 | 32.5 | 19.5 | 35.6 | 19.4 | 37.0 | 25.1 | 46.1 | 158 | 32.7 | 185 | 359 | 282 | 50.2 | 38.8 | 58.5
3Deps | 40.7 | 57.5 | 509 | 65.0 | 523 | 724 | 61.7 | 752 | 55.6 | 68.7 | 593 | 73.4 | 59.8 | 78.5 | 69.6 | 83.2

As shown in Table VII, the local features contribute improve-
ments of approximately 5% in CMC@1 and 10% in CMC@5.
This result again confirms the effectiveness of the method in
generalization cases.

V. CONCLUSION

In this paper, we proposed exploring the attention mech-
anism from the two perspectives of local part discovery and
fine-grained part representation for person re-identification.
For local part discovery, we proposed the constrained attention
module, which can learn meaningful and concentrated attention
maps over body parts. For fine-grained part representation, we
carefully designed a statistical-positional-relational descriptor
to unlock the powerful representation ability of local parts.
We conducted extensive experiments to evaluate the overall
effectiveness of the proposed method, the contribution of
each component, and the ability for model generalization. The
visualization results demonstrated better body part learning
results. The comprehensive experiments strongly verify the
superiority of the proposed algorithm.
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