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Abstract—Convolutional neural networks (CNNs) are pow-
erful and have achieved state-of-the-art performance in many
visual recognition tasks. Despite their impressive performance,
CNNs are still unable to remain invariant while some spatial
transformations are applied on images. Herein, we propose
representation-consistent neural networks to solve this problem.
By introducing consistent losses between the representations in
different layers of transformed images, the recognition perfor-
mance of transformed images is significantly improved. This
model not only learns to map from the transformed images to the
pre-defined labels but each layer also learns to generate invariant
representations when the input images are transformed. All the
characteristics of transformation invariance are embedded in the
model, which means that no extra parameters or computations
are introduced in the well-trained model. Comparative experi-
ments demonstrate the superiority of our model when learning
invariance to rotation, translation, and scaling on large-scale
image recognition and retrieval tasks.

I. INTRODUCTION

Over the years, computer vision has rapidly advanced as
a result of adopting convolutional neural networks (CNNs).
A considerable number of CNN-based models have achieved
state-of-the-art results in image recognition [1], [2], image
retrieval [3], [4], [5], action recognition [6], [7] and local-
ization [8], [9], [10] tasks. These advances are primarily
due to the excellent discriminative description ability of deep
neural networks, which can easily fit any nonlinear function
according to the data space.

An ideal image recognition system should be robust to
image transformations. Although distortions or translations of
the input can cause the positions of salient features to vary,
local receptive fields with shared weights in CNNs have the
ability to detect invariant elementary features despite changes
in the positions of salient features [11]. Furthermore, with the
local max-pooling or average-pooling [12] layers, feature maps
are downsampled layer by layer. Consequently, the model be-
comes increasingly more insensitive to small local translations
and distortions. Nevertheless, when faced with large and global
transformations, the traditional CNNs cannot be sufficiently
insensitive due to the relatively small size of local receptive
fields and pooling kernels. An easy approach for addressing the
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Fig. 1. Ilustration of our RC-CNN. To push the recognition results
to be the same as the ground truth for transformed images, we push
the inner representations of the transformed images to be consistent
by adding consistent losses in the network.

problem of large global transformations and the most popular
one in deep learning is data augmentation [13]. Using this
approach, any transformation can be applied to the original
images. These transformed images are used as new training
samples during learning. Rotation, translation and scale are
the most common transformations in general computer vision
tasks. By using the data augmentation technique, the models
in CNNs are able to access numerous unseen images with
different transformations. Therefore, the models can easily
learn the mapping from the transformed images and the raw
images to the predefined labels.

Although data augmentation is an easy choice when training
CNNs, the transformation invariance is not good enough. This
is because this approach only forces the model to learn a
mapping from the transformed images to pre-defined labels
one by one. As shown in Fig. 2, when training a model
using data augmentation, the inner relationship between the
transformed images is not sufficiently taken into account.
However, the key to transformation invariance is to learn a
model that outputs an invariant representation before or after
transformation. Training a model using data augmentation is
a simple approach to push the model to represent invariantly
on high-level features. However, it is difficult to expect an
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(b) data augmentation

(c) RC-CNN

Fig. 2. Difference between original CNNs, CNNs with data augmentation, and our RC-CNN. The small patches on the lower right are
demonstrations of the spatial distributions of the feature representation of transformed images. (a) Feature maps generated by the traditional
CNNs. Points having the same shape but different brightness mean different images from the same category. (b) After transformation,
although the model is trained with transformed images, some feature maps of the transformed images are still easily mixed together. Thus,
the performance of the model will decrease. (c) By adding consistent losses, feature maps of images generated from the same image with
different transformations will be closer. Therefore, all images can easily be recognized.

invariant representation by adding loss on top-layer features
because low-level features are easily mixed together if there
is no constraint on low-level features. However, as mentioned
previously, with sufficient parameters and depth of multi-layer
networks, CNNs have the ability to learn any mapping from
any images to transformation-invariant representations. Thus,
we should provide a global approach to push the CNN-based
model to learn how to represent images invariantly to the
transformation of images.

In this work, we train a representation-consistent convo-
Iutional neural network (RC-CNN) for image recognition
tasks. As shown in Fig. 1, rather than simply training this
model using data augmentation, we train our networks with
consistent losses to push the model to learn how to represent
invariant feature maps at both low-level features and high-
level features. The characteristic of transformation invariance
is embedded in the networks. Therefore, there are neither extra
parameters in the model nor extra computation during testing.
Intuitively, while inputting transformed images, if we push
the representations in the low layers to be more consistent,
the representations of the higher layers will consequently be
consistent. Finally, a consistent representation at the label level
will be promoted, which means that the model is able to
achieve better performance. However, the effect of the lowest
layers such as convl and conv2 is detecting some primary
features of images, such as edges and corners. Thus, we want
to impose invariance at the middle and higher layers of the
network (see Section IV for details).

In contrast to data augmentation, in which the models
only tend to learn the mapping from transformed images
to the pre-defined labels, our representation-consistent model
constrains the feature map of the convolution layers and fully
connected layers to be stable and invariant after any type
of transformation, including rotation, scale, and translation.
Consistent losses push the model to be consistent on three
levels. The highest one is the consistency of class labels,

which means that the labels of any views of the same image
should be consistent. The second one is consistency of high-
level semantic features, which means that we want the high-
level representation of the model to be consistent. The third
one is consistency of low-level features, which means that
the feature extractors such as convolution layers are pushed
to generate consistent feature maps for transformed images
generated from the same original image. In contrast to other
models for transformation invariance, our model is better while
transferring to other tasks of transformation invariance because
representations are pushed to be consistent while images are
transformed. Meanwhile, with standard back-propagation, this
model can be trained end-to-end as with training normal
CNNs. No extra optimization process is required to train the
model. The model of our RC-CNN is the same as that of
traditional CNNs. Thus, our model can be easily applied to
any applications by simply replacing only the parameters.

II. RELATED WORKS

A. Low-Level Transform-Invariant Features

Previously, due to limited computational resources and
technology, the invariant representation of transformed data
was relatively low-level. Scale-invariant feature transformation
(SIFT) [14] is the most famous and most effective approach.
The first step of SIFT is to detect key points. The majority
of the key points are corner points or blobs in images. Thus,
SIFT is able to be invariant while the location of an object is
changed. Then, the features of the key points are extracted. By
detecting the orientation of the image patch near key points
and using the difference of Gaussian (DoG) algorithm, the
SIFT algorithm is able to obtain the ability of rotation and
scale invariance. Raw pixels are directly operated by the SIFT
algorithm; thus, the speed is fast when extracting features.
However, although it has the great ability of transformation
invariance and some additional benefits, the performances of
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Fig. 3. The framework of our RC-CNN. The raw image X is transformed by two groups of random parameters. The consistent losses can be
added in each layer to constrain the network representation consistently while any random transformation is added to the input raw images.
Softmax losses are added at the ends of the networks to ensure that the classification performance is good.

these algorithms are not good enough due to the limited
description ability of low-level features.

B. Invariance on CNNs

Recently, with the rapid development of parallel computing,
deep convolutional neural networks (DCNNs) have become a
hot topic in the field of computer vision. As previously men-
tioned, data augmentation is a popular approach to solve the
global transformation-invariant problem. However, to obtain
better performance, other approaches with a more complex
model are proposed.

A novel way to address the scale-invariant problem is
SI-CNN [15]. Different scale parameters in multiple levels
are applied to the feature maps. Then, the feature map of
all scales is convolved by the same kernels. Finally, after
normalization and polling, an invariant representation for the
local scale is obtained. However, extra learnable parameters
are needed in this model. Furthermore, in this paper, only
the scale-invariant problem was considered. In our model, we
embed all characteristics of transformation invariance in the
parameters of networks, which means that no extra parameters
or computations are introduced in the well-trained models.
Meanwhile, by constraining the feature maps of any type of
transformation, the proposed model is able to handle all types
of transformations.

One of the latest works to obtain the invariant model is the
spatial transformer network [16]. A new layer is introduced
in this model to transform the distorted images back to non-
transformed images. However, the invariance of this model
needs more learnable parameters. Meanwhile, the invariance
of this model arises from additional spatial transformation
modules. Thus, the invariance of the CNN model is not pro-
moted. Another recent work to incorporate the transformation-
invariant problem is TI-CNN [17]. By introducing transforma-
tions to the feature maps of CNNs during the training phase,
the network is able to observe more combinations of transfor-
mations at different levels. This approach can be viewed as
an enhanced data augmentation. However, the essence of this
model is still to learn a mapping from transformed images to
pre-defined labels.

In this paper, in contrast, extremely simple constraints are
added between feature maps of raw images and transformed
images during the training stage. With these constraints, our

proposed model starts obtaining intrinsic invariance ability to
variety of transformations by pushing the model representing
consistent when transforming. No more parameters or layers
of the CNNs are required which means that no extra time
and space is consumed when using our proposed model. In
addition, after training finished, the model is easy to applied
to any occasions by simply replacing weights from the original
model to the new model.

III. REPRESENTATION-CONSISTENT CNN

In this section, the formulation of our representation-
consistent CNN model is introduced. The goal of our method
is to learn a transformation-invariant model by learning in-
variant representations of transformed images layer by layer.
The representation-consistent ability is achieved by introduc-
ing consistent losses between the feature representation of
transformed images and original images. As shown in Fig. 3,
consistent losses are added in each layer of the original
CNNs. By adding consistent losses, the features of any two
transformed images are consistent and invariant.

A. Convolutional Layers and Fully Connected Layers

Convolutional neural networks (CNNs) are multi-layer ar-
chitectures. Different representations are learned in each layer
by applying convolutional kernels as feature detectors to
previous feature maps. A classifier or regressor with a target
loss function is generally applied to the outputs of the final
layer. Shared-weight convolutional kernels and spatial pooling
layers are great ways to obtain some small local translations
or scale-invariant ability. Meanwhile, the number of trainable
parameters is reduced.

The feed-forward of CNNs is the bias plus the feature map
of the input image convolved with the kernels. Then, a non-
linear activation function is applied. These steps can be written
as follows:

X =1 (W Xia) +4]) (1)

where Wf is the j' kernel of the convolutional layer and bg
is the bias of the j'" feature map X7 in the i'" layer (X is
the input image data). Both T/ and b are trainable weights.
The symbol x* is the convolution operator, X;_; are the feature
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maps of the previous layer, and f (-) is a non-linear function,
e.g., ReLU, sigmoid, or tanh function.

The equation for the fully connected layer is quite similar
to equation (1) except that the symbol * is replaced by the
matrix multiplication symbol x:

X = (W7 Xia) +0]) 2)

B. Image Transformation

In this work, constraints are applied between the trans-
formed images generated from the same original image. The
first step in our method is to transform an image. The most
frequently used three types of 2D transformation are rotation,
translation, and scale [18]. We denote the location of a pixel
in the original image and in the transformed images as (z,y)
and (2',y’), respectively. The transformation of an image can
be calculated as follows:

@y, 1) = (x5, 1) x T ©)

where 7T is a transformation matrix.
The transformation matrix of rotation can be written as
follows:

cosd  sinf 0
Tr = | —sinf cosf 0 (@]
0 0 1

where 6 is the rotation angle.
The transformation matrix of translation can be written as
follows:

1 0 0
Tr=10 1 0 (5)
d, d, 1

where d,, and d,, are the translation distances in the = and y
axes, respectively.

The transformation matrix of scale can be written as fol-
lows:

s, 0 0
Ts=10 s, 0 6)
0 0 1

where s, and s, are the scale rates in the x and y axes,
respectively.

By using the transformation matrix, it is easy to add all
transformations as follows:

Trrs = Tr x Tr X Ts (7N

C. Representation-Consistent CNN

As previously mentioned, although local receptive fields
with shared weights and spatial pooling operations make the
CNNSs invariant to small local transformations in the traditional
CNNs, it is difficult to be invariant, and the performance
becomes worse significantly while the transformation is global
and larger. In this section, a representation-consistent CNN is
proposed. By introducing consistent losses between the feature
maps of transformed images, the network starts to learn how
to represent invariantly while the input image is transformed.

In contrast to other related approaches, the transformation-
invariant ability is learned in the network without any addi-
tional learnable parameters or extra models. Fig. 2 shows the
difference between the original model and our model.

As shown in Fig. 3, in the training phase, the input of this
network is raw image X . The two random transformed images
X’ and X" can be written as follows:

X/:T/ (X)7X”:TH (X) (8)

where 77 (-) and T” (-) are transformation operators with the
two different transformation matrices mentioned previously.

Then, feed-forward propagation is applied to these two
transformed images X’ and X”. The equations for convolution
and the fully connected layers are shown in Eq. 1 and Eq. 2,
respectively. The consistent loss of the i layer £; is added
between the two transformed images’ feature representations
Fea;(X’) and Fea;(X"), i.e., the output representation of
convolutional layers or fully connected layers:

1
L= 3 | Fea;(X") — Fea;(X") ||> ©)
The loss function of the entire model can be written as follows:

Lan=Acis ¥ (Logg + L)+ Nix L (10)

where )\; and \¢; are the coefficients to trade off the consis-
tent losses £; in each layer and the classification losses L.
L, and L, are the classification losses corresponding to
transformed images X’ and X" respectively. Suppose that N
is the number of classes; the classification loss L is the
loss of an /N-way softmax layer.

During the testing phase, the testing images are pre-
transformed. Thus, we directly input the transformed testing
images into our RC-CNN model.

IV. EXPERIMENTS

To compare our model with other state-of-the-art methods,
our proposed RC-CNN is evaluated on two tasks. To eval-
uate its performance for large-scale image recognition tasks,
extensive experiments are conducted on the ImageNet [19]
dataset in Section IV-A. To verify the generalization ability of
the trained RC-CNN model on other transformation-invariant
vision tasks, corresponding image retrieval experiments are
conducted on the UK-Bench [20] and UK-Bench+ MIRFlickr
[21] datasets in Section IV-B.

A. Large-Scale Image Recognition

ILSVRC-12 [19] is a famous large-scale image dataset in
the field of computer vision. This dataset consists of three
subsets: the training set (1.3M images), the validation set
(50K images), and the testing set (100K images). This dataset
is a subset of ImageNet and contains 1,000 categories of
images. In this work, the performance of our RC-CNN on
large-scale image recognition tasks is evaluated on this dataset.
The recognition performance is evaluated in terms of the top-
1 accuracy and the top-5 accuracy. The top-1 accuracy is a
multi-class classification accuracy. The top-5 accuracy is the
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TABLE I
THE ACCURACIES (TOP-1/TOP-5) OF OUR PROPOSED RC-CNN AND OTHER CNNS ON TRANSFORMED VALIDATION SET. R, T, S, AND
RTS REPRESENT THE TRANSFORMATIONS APPLIED TO THE IMAGE, WHICH ARE ROTATION, TRANSLATION, SCALE, AND
ROTATION-TRANSLATION-SCALE, RESPECTIVELY.

Model R T S RTS
CNNs 36.7/57.7 | 46.5/70.8 | 53.3/76.9 | 33.3/55.2
CNNs+Data Augmentation 36.5/58.3 | 50.0/73.9 | 54.0/77.6 | 36.0/58.2

SI-CNN [15] 36.8/58.9 - 53.8/77.3 -

ST-CNN [16] 37.2/59.3 | 51.4/75.3 | 53.8/77.3 | 37.0/60.1
TI-CNN [17] 37.3/60.2 | 51.3/75.4 | 55.0/78.5 | 37.5/60.5
RC-CNN(ClIs) (ours) 38.1/60.8 | 53.0/76.2 | 55.8/78.8 | 38.6/61.4
RC-CNN(Conv+Cls) (ours) 38.7/61.7 | 52.9/76.3 | 56.8/79.7 | 37.9/61.2
RC-CNN(FC+Cls) (ours) 38.7/61.4 | 53.4/77.2 | 56.5/79.3 | 39.2/61.8
RC-CNN(Conv+FC+Cls) (ours) | 39.1/61.9 | 53.3/76.7 | 56.7/79.7 | 38.9/62.1

Fig. 4. Examples of transformed images. ORI: original images without
transformation, R: rotation, T: translation, S: scale, and RTS: rotation-
translation-scale.

fraction of test images for which the correct label is among
the five labels predicted as being most probable.

Because the sizes of the raw images are not the same, all
images in the training set are pre-processed to ensure that the
sizes of the images are the same. The pre-processing is the
same as that in AlexNet [1], in which images are rescaled to
ensure that the shortest sides of the images are 256 pixels.
Then, the center 256 x 256 region of the image is cropped.

When training the model, random transformations are ap-
plied to the original images. To evaluate the generalization
ability to transformation-invariant tasks, rather than training
the model with the same transformation settings as the testing
phase such that the model learns to map from the original
images to the ground-truth label, training images are generated
with less distortion than the validation images. Training images
of rotation (R) are generated by randomly rotating images
in NV (O, (m/ 12)2>. Training images of translation (T) are
generated by randomly shifting images by a proportion of
N (0,0.075%). The scaled training images (S) are generated by
randomly scaling images in N (1, 0.12). The settings for the
rotation-translation-scale (RTS) dataset are a combination of
all the transformations mentioned above. Finally, a randomly
located 227 x 227 region is cropped in the image.

To evaluate the transformation-invariant ability of our
model, rather than evaluating our model on the original
images, some random transformations are applied on the val-
idation images to make the task more difficult. As previously

mentioned, when testing the model, transformations applied
to the validation images are more distorted than the training
images. Thus, the method to generate validation images is
similar to the method to generate training images except that
the parameters for the transformed images follow a uniform
distribution: R : 6 ~ , T :dg,dy ~U[-0.2,0.2],

and S : sz, 8, ~U0.7,1. 2? The RTS dataset is a combination
of all the transformatlons mentioned above. Some transformed
images are presented in Fig. 4 as examples.

The architecture of each column in our model is based on
AlexNet [1]. Consistent losses are placed after ReLU layers
except for the convl, conv2 and conv5 layers, where consistent
losses are placed after polling layers. The weights and biases
of the convolutional kernel are initialized by A/ (07 0.012) and
constant value 0.1, respectively. The weights and biases of the
fully connected layers are initialized from N (07 0.0052) and
constant value 0.1. We use a base learning rate of 0.01 and
decay it by 0.1 every 100, 000 iterations. We use a momentum
of 0.9, gradient clip of 35 and weight decay of 0.0005. The
learning rate of the bias is set to be 2x the learning rate
for the weights. The RC-CNN model is trained for 450,000
iterations. Our model is implemented by using the open source
Caffe framework [22]. To solve this problem, the weights and
biases of the model should be optimized for this network. In
our work, stochastic gradient descent (SGD) [11] is used.

We set the coefficient Acys = 0.5, since L, and L,
contribute equally for the model. To set suitable values for
the coefficients \; corresponding to consistent losses in five
convolutional layers and three fully connected layers (as shown
in Fig. 3), we calculated the consistent loss in traditional
CNNs, as shown in Fig. 5. We can see that the orders of
magnitude of these losses are very different. To ensure the
consistent loss in each layer has equal contribution, we set
A; according to the order of magnitude of these losses in
CNNs. Specifically, we select A; for convolutional layers from
{1078,1077,1075,107°} and select \; for fully connected
layers from {107°,107%,1073}. A randomly select subset
of training data (10000 images) are used for these parameter
selection. Acony1 and Aconye are empirically set as zero, since
these two layers extract very low-level features (e.g., edges and
corners) and there is no need to put consistent constrains on
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TABLE II
PERFORMANCE OF OUR PROPOSED RC-CNN AND OTHER CNNS
ON THE ORIGINAL VALIDATION DATASET.

Model Accuracy(Top-1/Top-5)
CNNs 57.1/80.2
SI-CNN [15] 57.3/80.3
ST-CNN [16] 59.1/81.7
TI-CNN [17] 57.6/80.5
RC-CNN (ours) 58.0/80.8

10°
107

Consistent losses in each layer
: : :[mmm CNNs

| mmm CNNs+Data Augmentation |3
ml B RC-CNN

10°

10°
10°
103

convl conv2 conv3 convd conv5s fc6  fc7  fc8B

Fig. 5. Consistent losses £; in each layer on the rotated validation
dataset. A smaller value means that the feature map is more invariant
to transformation. As consistent losses are introduced in the networks,
the feature maps are becoming more robust to transformation.

them.

Table I summarizes the classification accuracies (top-1/top-
5) of our proposed RC-CNN and the comparison with
the original CNNSs, original CNNs with data augmentation
(CNNs+Data Augmentation), SI-CNN [15], ST-CNN [16]
and TI-CNN [17] on distorted validation images. We eval-
uate several settings of our RC-CNN model, including RC-
CNN(Cls), RC-CNN(Conv+Cls), RC-CNN(FC+Cls), and RC-
CNN (Conv+FC+Cls). In RC-CNN(Cls), only the classifica-
tion loss is applied and the \; for all convolutional layers
and fully connected layers are zero. In RC-CNN(Conv+Cls),
the classification loss and losses of three convolutional layers
(Conv3, Conv4, and Conv5) are applied. In RC-CNN(FC+Cls),
the classification loss and losses of three fully connected layers
(FC6, FC7, and FC8) are applied. In RC-CNN(Conv+FC+Cls),
all the three types of losses (the classification loss, losses of
three convolutional layers, and losses of three fully connected
layers) are applied.

From Table I, we can find that RC-CNN(Cls) achieves
better performance than all baseline methods already. When
convolutional layer loss or fully connected layer loss is fur-
ther added, the performance is further improved, i.e., both
RC-CNN(Conv+Cls) and RC-CNN(FC+Cls) outperforms RC-
CNN(Cls) in most cases. Specifically, by introducing con-
sistent losses in the convolution layers, the performance of
the rotated images and scaled images improves significantly.
However, the performance enhancement of translation and
rotation-translation-scale is minimal. This result occurs be-
cause irrespective of the convolution filter, the feature map of
translated images is the same but placed differently. Therefore,
consistent losses always exist in translated images. Thus,
adding consistent losses in convolution layers has no effect,

FEAT

o
o«
-180 =120 -60 0 60 120 179
(b) CNNs+Data Augmentation
—

| & = .—-_ﬂ?_ —
- ™
< | L o
w
- r =

120 179

—-60 0 60
(d) RC-CNN(Conv+Cls)

120 179

Fig. 6. Feature maps of the rotated images in the pool5 layer. (a)
For a given raw image, we rotate it to obtain its transformed images.
The angles of rotation range from —180° to 179°, resulting 360
images in total. For each image, we calculate the average value
of its feature maps from the 256 channels in the pool5 layer,
resulting a 256-dimensional vector. Then, the dimension of this vector
is reduced from 256 to 20 by PCA. Thus, the H x W of the
visualization image “FEAT” is 20 x 360. (b) (c) (d) Visualization of
feature maps in the CNNs+Data Augmentation model, RC-CNN(Cls)
and RC-CNN(Conv+Cls) separately. P: The confidence of correct
prediction. A whiter color means that the model is more confident
to the ground-truth label. R: Green color means that the prediction
is correct, whereas red color means that the prediction is incorrect.
These figures show that the feature maps of our RC-CNN model are
more consistent. Moreover, our RC-CNN model is more confident
in classifying the transformed image to a pre-defined ground truth.
Finally, our RC-CNN model is able to acquire better performance.

and it will even make the situation worse. To improve the
results of translated images, it is necessary to introduce con-
sistent losses on a higher level. Therefore, we add consistent
losses in the fully connected layers (RC-CNN(FC+Cls)) to
push the model to be consistent at the semantic level. The
results show that the performance of translated images im-
proved significantly in this setting. However, the performance
of rotated and scaled images is slightly worse. This result
means that pushing representations in the middle layers of the
network to be consistent is useful for achieving the goal of
transformation invariance. We also attempt to place consistent
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losses in both convolution layers and fully connected layers -
RC-CNN(Conv+FC+Cls). This model achieves a good balance
and obtains a moderate result.

In addition, we also test our model on the original validation
set without any tranformation. As shown in Table II, compared
to the original CNN model, the performance of our model
is better on the original validation images, which means
that our model is generally better rather than over-fitting the
transformed images.

To investigate the effect of the consistent losses on the
CNN model, further visualization experiments are conducted.
As shown in Fig. 6, the representation of our RC-CNN
with consistent loss is more invariant to transformations.
Consequently, the classification performance is improved. To
quantitatively evaluate the performance of RC-CNN on the
validation images, consistent losses are calculated in each
layer, as shown in Fig. 5. The values in this figure are
the average consistent losses between the feature maps of
random transformed validation images. As shown in Fig. 5,
by introducing consistent losses, the feature maps of random
transformed validation images become more invariant to trans-
formations.

Furthermore, the consistent representation of the middle
layer will help the higher layers be consistent. As shown
in Fig. 7, during the training phase, the softmax loss of the
network without consistent losses is smaller than the loss of
the network with consistent losses. However, during the testing
phase, The softmax loss of the network without consistent
losses is larger than the loss of the network with consistent
losses. This result occurs primarily because networks without
consistent losses are more apt to learn a model mapping from
transformed images to only labels. By adding consistent losses,
although the networks cannot map the transformed images
as well as networks without consistent losses in the training
dataset, the ability of RC-CNN is better while the network
is optimized. This phenomenon indicates that by introducing
consistent losses, the model can avoid over-fitting during the
training phase.

In addition, to evaluate the ability of transformation invari-
ance when extracting features, an invariance measure [23] is
applied on our model. For more details of this invariance
measure, please refer to [23]. Here, the transformed dataset
is constructed by applying rotation ([—7/4, /4] with a step
size of m/20 ), scale ([0.7,1.5] with a step size of 0.08), and
translation ([—0.2, 0.2] with a step size of 0.04) on the 50,000
validation images of ImageNet-2012 [19]. This measurement
is applied at the end of each layer. As shown in Fig. 8§,
compared to the original CNNs, the invariance score of our
proposed RC-CNN is significantly improved.

B. Image Retrieval

Our proposed model is also evaluated on the UK-Bench
[20] dataset, which is an image retrieval task benchmark.
This dataset is composed of 2,550 groups of images. Each
group contains 4 images of the same object or scene but from
different viewpoints. The target of this dataset is using one

? T T L I I I I I
: Train_CNNs+Data Augmentation
Train_RC-CNN(Cls) H
Train_RC-CNN{Conv+Cls)
Test CNNs+Data Augmentation H
Test_RC-CNN(Cls)
Test_RC-CNN{Conv+Cls)

Iteration (x10,000)

Fig. 7. Curves of classification losses during training and testing
phases. The transformation applied to the images is rotation. A
smaller classification loss at the end of the testing phase corresponds
to better performance of the model. For better visualization, the
curves in the training phase are averaged by 5,000 iterations. The
results show that the optimization of the model is better by con-
straining the label-level representation to be consistent. In addition,
by introducing the consistent losses in the lower level, although the
classification losses in the training phase are larger than the model
without consistent losses, the classification losses in the testing phase
are smaller than the model without consistent losses. This result
means that rather than simply learning the mapping from transformed
images to the ground-truth label and over-fitting to the transformed
training images by simply training the model with data augmentation,
our RC-CNN model has more ability for generalization and consistent
representations. Thus, our RC-CNN model has better performance in
the testing phase.

Transform invariance measure in each layer

T T T T
N CNNs+Data Augmentation
e RC-CNN

convl conv2 conv3 convd convs pools  fce e

Fig. 8. Transformation invariance measurement in each layer. A larger
value corresponds to better performance.

image from among all images as the retrieval query to find
the remaining 3 images from the same group. To evaluate our
RC-CNN model in a large-scale dataset, an additional 1M/
images in MIR Flickr [21] are used as negative examples. Our
model is directly applied without re-training or fine-tuning on
the retrieval datasets.

The feature extraction method is similar to the technique
in [24], where all images are fed into the RC-CNN and other
CNN. On the last pooling layer, average pooling is applied.
The size of the feature maps in the fifth pooling layer is
n x 256 x 13 x 13. To reduce the dimension of the feature
representation, the average of the 256 channels is obtained.
Then, 256-dimensional vectors are obtained for all images.
Finally, the root value of each dimension is computed, and L2
normalization is performed for the 256-dimensional vectors.
The final 256-dimensional vectors are used as features.
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TABLE IIT
PERFORMANCE COMPARISON ON THE IMAGE RETRIEVAL
DATASETS.
Model UK-Bench | UK-Bench+MIRFlickr

CNNs 3.518 3.350

SIFT 3.350 3.295

SI-CNN [15] 3.531 3.398

ST-CNN [16] 3.540 3412

TI-CNN [17] 3.572 3.483

RC-CNN (ours) { 3.727 { 3.639

The image retrieval is processed after extracting the features.
To evaluate our model on the UK-Bench dataset, the distances
from the query image to all 10,200 images in the UK-
Bench dataset are calculated. Then, the distances are sorted in
ascending order. The distance metric is the Euclidean distance.
The top four nearest images are used to calculate the NS-
Score of the model. The NS-Score is the average accuracy of
the top four images, which is generally used to evaluate the
performance of models in retrieval tasks. If all four images
in a group are correctly retrieved, then the model receives a
score of 4.0.

To compare our proposed RC-CNN with other state-of-the-
art CNNs, the NS-Score metric is applied to the results of
all models. We compared our RC-CNN (Conv+FC+Cls) to
the SIFT [14], CNNs [1], SI-CNN [15], ST-CNN [16] and
TI-CNN [17]. As shown in Table III, the performance of
our proposed RC-CNN achieves the best performance. The
explanation for the success of our model is very simple:
the original CNNs with or without data augmentation only
learn the mapping from the images to the pre-trained labels.
However, there is nothing to constrain the feature map to be
transformation invariant when inputting transformed images.
The essence of image retrieval is comparing the distance be-
tween the features of images. Consistent losses added between
transformed images are able to push the representation of the
image to be consistent and invariant to transformations.

V. CONCLUSION

In this paper, an effective and simple method is proposed
to enhance the transformation-invariant ability of CNNs by
introducing consistent losses. This proposed method is ef-
fective in reducing the dependency of the transformation. In
contrast to other typical methods, our framework improves
the performance without any extra learnable parameters or
extra layers. The model is also different from the technique
of data augmentation or other approximate methods by simply
pushing the model to learn how to map from the transformed
images to the pre-defined labels. The ability for consistent rep-
resentations is learned layer by layer. The experiments show
that our framework has achieved state-of-the-art performance
in image recognition and image retrieval tasks.
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