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Figure 1: Given any two unpaired video collections X and Y, our Mocycle-GAN learns to translate videos from source domain X to target

domain Y. Left: Translation between Game scene videos and segmentation label maps. Center: Translation between time-lapse videos of
variant flowers. Right: Translation between Game scene videos under different ambient conditions, e.g., rendering day-light video to the
sunset/night environments. The animated videos are best viewed via Adobe Acrobat.

ABSTRACT

Unsupervised image-to-image translation is the task of translat-
ing an image from one domain to another in the absence of any
paired training examples and tends to be more applicable to practi-
cal applications. Nevertheless, the extension of such synthesis from
image-to-image to video-to-video is not trivial especially when cap-
turing spatio-temporal structures in videos. The difficulty originates
from the aspect that not only the visual appearance in each frame
but also motion between consecutive frames should be realistic and
consistent across transformation. This motivates us to explore both
appearance structure and temporal continuity in video synthesis.
In this paper, we present a new Motion-guided Cycle GAN, dubbed
as Mocycle-GAN, that novelly integrates motion estimation into
unpaired video translator. Technically, Mocycle-GAN capitalizes
on three types of constrains: adversarial constraint discriminat-
ing between synthetic and real frame, cycle consistency encourag-
ing an inverse translation on both frame and motion, and motion
translation validating the transfer of motion between consecutive
frames. Extensive experiments are conducted on video-to-labels and
labels-to-video translation, and superior results are reported when
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comparing to state-of-the-art methods. More remarkably, we quali-
tatively demonstrate our Mocycle-GAN for both flower-to-flower
and ambient condition transfer.
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1 INTRODUCTION

The development of deep learning has led to a significant surge of
research activities for multimedia content generation in multimedia
and computer vision community. In between, image-to-image trans-
lation is one of the widely studied tasks and the recent advances
in Generative Adversarial Networks (GANs) have successfully ob-
tained remarkable improvements on image translation across do-
mains. The achievements of image-to-image translation are on the
assumption that a large amount of annotated and matching image
pairs are accessible for model training. In practice, nevertheless, the
manual labeling of such paired data is cost-expensive and even un-
realistic. To address this issue, [15, 18, 35, 37] tackle image-to-image
translation in an unsupervised manner, which only capitalizes on
unpaired data (i.e., two sets of unlabeled images from two domains).
In this paper, we go one step further and extend such synthesis
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Figure 2: Comparison between two unpaired translation ap-

proaches and our Mocycle-GAN. (a) Cycle-GAN exploits cycle-
consistency constraint to model appearance structure for unpaired
image-to-image translation. (b) Recycle-GAN utilizes temporal pre-
dictor (Px and Py) to explore cycle consistency across both domains
and time for unpaired video-to-video translation. (c) Mocycle-GAN
explicitly models motion across frames with optical flow (fx, and
fys), and pursuits cycle consistency on motion that enforces the re-
construction of motion. Motion translation is further exploited to
transfer the motion across domains via motion translator (Mx and
My), strengthening the temporal continuity in video synthesis. Dot-
ted line denotes consistency constraint between its two endpoints.

from image-to-image to video-to-video, which is referred as an
emerging problem of “unpaired video-to-video translation." It en-
ables a general-purpose video translation across domains in the
absence of paired training data, making it flexible to be applied in a
variety of video-to-video translation tasks (see Figure 1).

One straightforward way to tackle unpaired video-to-video trans-
lation is to capitalize on unpaired image-to-image translation ap-
proach, e.g., Cycle-GAN [37] (Figure 2(a)) that enforces an inverse
translation for each frame. However, this way only explores visual
appearance on frames for video synthesis and will inevitably result
in temporal discontinuity when the synthetic frames are deteri-
orated by flickering artifacts as in video style transfer [3]. This
limitation originates from the fact that video is an information-
intensive media with complexities along both spatial and temporal
dimensions. Such facts motivate and highlight the exploration of
both appearance structure and temporal continuity in video synthe-
sis. In this sense, not only the visual appearance in each frame but
also motion between consecutive frames are ensured to be realistic
and consistent for video translation.

A recent pioneering practice in unpaired video-to-video transla-
tion is Recycle-GAN [2] (Figure 2(b)). The basic idea is to directly
synthesize future frames via temporal predictor to explore cycle
consistency across both domains and time. Regardless of the spatio-
temporal constraint in Recycle-GAN for enhancing video transla-
tion, a common issue not fully studied is the exploitation of motion
between consecutive frames, which is well believed to be helpful
for video-to-video translation. Instead, we novelly consider the use
of motion information for unpaired video-to-video translation from
the viewpoint both motion cycle consistency and motion trans-
lation, as depicted in Figure 2(c). The objective of motion cycle
consistency constraint is to pursuit cycle consistency on motion

between input adjacent frames, which in turn implicitly enforces
the temporal continuity between synthetic adjacent frames. In ad-
dition, we exploit the constraint of motion translation to further
strengthen temporal continuity in synthetic videos via transferring
motion across domains. One naive method for enforcing temporal
coherence is to warp the synthetic frame with the estimated motion
(i.e., optical flow) between input frames to produce the subsequent
frame as in [11, 28]. Nevertheless, this paradigm ignores the occlu-
sions, blur, and appearance variations, e.g., raised by the change of
lighting in different domains. As such, the temporal coherence is
enforced in a brute-force manner regardless of the scene dynamics
in target domain. In comparison, we leverage motion translator to
transfer the estimated motion in source domain to target domain,
which characterizes the temporal coherence across synthetic frames
more tailored to target domain.

By consolidating the idea of exploiting motion information for
facilitating unpaired video-to-video translation, we present a novel
Motion-guided Cycle GAN (Mocycle-GAN), as shown in Figure
3. The whole architecture consists of generators and discrimina-
tors under the backbone of standard Conditional GANs, coupled
with motion translator for transferring motion across domains.
Specifically, the motion information in each domain is estimated
in the form of optical flow between consecutive frames. During
training, three types of spatial/temporal constrains, i.e., adversarial
constraint, cycle consistency on both frame and motion, and motion
translation, are devised to explore both the appearance structure
and temporal continuity for unpaired video translation. The adver-
sarial constraint discriminates between synthetic and real frames
in an adversarial manner, making each synthetic frame realistic at
appearance. For the cycle consistency on both frame and motion,
it encourages the reconstruction of both appearance structure of
frames and temporal continuity in motion. The motion translation
constraint transfers the estimated motion from source to target
domain via motion translator and then warps the synthetic frame
with the transferred motion to the subsequent frame. In this sense,
the temporal continuity among synthetic frames in target domain
is further strengthened with the guidance from transferred motion.
However, unlike in supervised video-video translation, we cannot
train the motion translator with paired video data in unpaired sce-
nario. Thus, we optimize the whole architecture in a Expectation
Maximization (EM) procedure which iteratively updates genera-
tors and discriminators with the three spatial/temporal constrains
(E-step), and refines motion translator with an auxiliary motion
consistency loss (M-step). Such procedure gradually improves the
motion translation as well as the video-to-video translation.

2 RELATED WORK

Image-to-Image Translation. Image-to-image translation aims
to learn a mapping function from an input image in one domain
to the output image in another domain. The recent advances in
GAN:s [8] have inspired the remarkable improvement of this task
[4, 13, 32, 38]. An early pioneering work [13] presents a general-
purpose solution which leverages Conditional GANs for image-to-
image translation. This paradigm enables a variety of graphics tasks,
e.g., semantic labels to photo, edges to photo, and photo inpainting.
[38] further extends [13] by encouraging the bijective consistency
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Figure 3: The overview of Mocycle-GAN for unpaired video-to-video translation (X: source domain; Y: target domain). Note that here we
only depict the forward cycle X — Y — X for simplicity. Mocycle-GAN consists of generators (Gx and Gy) to synthesize frames across
domains, discriminators (Dx and Dy) to distinguish real frames from synthetic ones, and motion translator (Mx) for motion translation
across domains. Given two real consecutive frames x; and x;.1, we firstly translate them into the synthetic frames x; and x;.; via Gx, which
are further transformed into the reconstructed frames x;°¢ and x; /" through the inverse mapping Gy. In addition, two optical flow f, and
fX;eC are obtained by capitalizing on FlowNet to represent the motion before and after the forward cycle. During training, we leverage three
kinds of spatial/temporal constrains to explore appearance structure and temporal continuity for video translation: 1) Adversarial Constraint
(L Aq0) ensures each synthetic frame realistic at appearance through adversarial learning; 2) Frame and Motion Cycle Consistency Constraint
(LFc and £)¢) encourage an inverse translation on both frames and motions; 3) Motion Translation Constraint (L sr) validates the transfer
of motion across domains in video synthesis. Specifically, the motion translator Mx converts the optical flow f, in source to f;, in target,
which will be utilized to further warp the synthetic frame X; to the subsequent frame W(Fxt, x¢). This constraint encourages the synthetic

subsequent frame X;.; to be consistent with the warped version W(f;t, X:) in the traceable points, leading to pixel-wise temporal continuity.

between the latent and output spaces, leading to more realistic
and diverse results. Furthermore, [15, 18, 20, 34, 35, 37] begin to
tackle unsupervised image-to-image translation, i.e., learning to
translate images across domains without paired data. In particular,
Cycle-GAN [37] is devised to learn the mapping function in the
absence of paired training data. A cycle consistency loss is utilized
to train this mapping coupled with an inverse mapping between
the two domains, enforcing the translation to be cycle consistent.
Dual GAN [35] is a concurrent work which also exploits the cycle
consistency for unpaired image-to-image translation.

Beyond the still image translation across different domains, our
work pursuits its video counterpart by tackling unpaired video-to-
video translation in a complex spatio-temporal context. In addition
to make each frame realistic, a video translator should be capable
of enhancing the temporal coherence among adjacent frames.

Video-to-Video Translation. Video-to-video translation is a
natural extension of image-to-image translation in video domain.
Specifically, [31] is one of the early attempts to tackle video-to-
video translation, which integrates a spatio-temporal adversarial
objective into conditional GANs. The global and local temporal
consistency is exploited in [33] to ensure the local and global con-
sistency across frames for video-to-video translation. However,
the above methods require manual supervision for aligning paired
videos across domains, which is extremely expensive and costly to
obtain. Inspired from Cycle-GAN [37], [2] devises Recycle-GAN
to facilitate unpaired video-to-video translation. Instead of solely
employing spatial constraint for each frame as Cycle-GAN, Recycle-
GAN additionally exploits a recurrent temporal predictor to model
the dependency between nearby frames, enabling a spatio-temporal
constraint (i.e., the recycle consistency) for unpaired video-to-video
translation. Video style transfer is another related problem which

transfers the style of a reference image to an input video. When di-
rectly applying the image style transfer techniques [6, 7, 14, 29, 36]
to videos, the generated stylized video will inevitably be affected
with severe flickering artifacts. As such, to alleviate the flickering ar-
tifacts, a number of video style transfer approaches [1, 3, 5, 9, 11, 28]
are proposed by additionally utilizing temporal constraints to en-
sure the temporal consistency across frames.

In our work, we also target for an unsupervised solution for
video translation. Unlike Recycle-GAN [2] that directly predicts
future frames to enforce the translation to be recycle consistent,
our Mocycle-GAN explicitly models the motion across frames with
optical flow and pursuits a cycle consistency on motion. Moreover, a
motion translator is leveraged to transfer motion in source domain
to target domain, aiming to strengthen temporal continuity across
synthetic frames with the guidance from transferred motion.

3 APPROACH: MOCYCLE-GAN

In this paper, we devise Motion-guided Cycle GAN (Mocycle-GAN)
architecture to integrate motion estimation into unpaired video
translator, exploring both appearance structure and temporal con-
tinuity for video translation. The whole architecture of Mocycle-
GAN is illustrated in Figure 3. We begin this section by elaborating
the notation and problem formulation of unpaired video-to-video
translation, followed with a brief review of Cycle-GAN with spatial
constrain. Then, two kinds of motion-guided temporal constrains,
i.e., motion cycle consistency and motion translation, are intro-
duced to further strengthen the temporal continuity. In this sense,
both visual appearance in each frame and motion between con-
secutive frames are ensured to be realistic and consistent across
transformation. Finally, the optimization strategy at training along
with inference stage are provided.



3.1 Overview

Notation. In unpaired video-to-video translation task, we are given
two video collections: X = {x} in source domain and Y = {y} in tar-
get domain, where x = {xt}tT=1 andy = {ys};g:1 denotes the video
in source and target domain respectively. x; and ys represent the
t-th frame in source video x and s-th frame in target video y. The
goal of this task is to learn two mapping functions between source
domain X and target domain Y,ie.,Gx : X —» Yand Gy : Y — X.
Here the two mapping functions Gx and Gy are implemented
as generators in Conditional GANSs for synthesizing frames. As
such, by performing video translation via Gx and Gy, x and y are
converted as the synthetic videos X = {J?t}tT:l andy = {y; }le,
where X; = Gx(x;) and ys = Gy(ys) are synthetic frames. More-
over, one discriminator Dy is leveraged to distinguish real frames
{ys} from synthetic ones {x; }. Similarly, another discriminator Dx
distinguishes between {x;} and {ys}. Since we ultimately aim to
integrate motion estimation into video translation, we capitalize on
off-the-shelf FlowNet [12] () to directly represent the estimated
motion between two consecutive frames (e.g., x; and x;+1) as opti-
cal flow: fy, = F(x¢,xt+1). Furthermore, two motion translators,
i.e.,, Mx and My, are devised to transfer optical flows across do-
mains. More details about how we conduct motion translation will
be elaborated in Section 3.3.

Problem Formulation. Inspired by the recent success of Cycle-
GAN in unpaired image-to-image translation and temporal coher-
ence/dynamics exploration in video understanding [17, 21, 22, 24],
we formulate our unpaired video translation model in a cyclic
paradigm which enforces the learnt mappings (Gx and Gy) to
be cycle consistent on both frame and motion. Specifically, let
x;%¢ = Gy(Gx(x;)) and y{®® = Gx(Gy(ys)) denotes the recon-
structed frame of x; and ys in forward cycle and backward cycle,
respectively. Hence the frame cycle consistency constraint aims to
reconstruct each frame in source and target domain via translation
cycle: x; — X — x7°¢ = xy and ys — Y5 — y5°° ~ ys. Besides
the preservation of appearance structure in translation cycle via
cycle consistency on frame, we additionally pursuit the reconstruc-
tion of motion in translation cycle, which enforces the temporal
continuity between consecutive frames. As such, the motion cy-
cle consistency constraint is introduced to reconstruct the motion
between every two consecutive frames through translation cycle:
Jxi = faree ® fx, and fy, — fyree & fy,. In addition, the mo-
tion translation constraint is especially devised to exploit motion
translation across domains. The transferred motion will be directly
utilized to warp the synthetic frame to the subsequent frame, which
further strengthens temporal continuity among synthetic frames.

3.2 Cycle-GAN

We briefly review Cycle-GAN [37] for unpaired translation at frame
level. Cycle-GAN is composed of two generators (Gx and Gy) to
synthesize frames across domains, and two discriminators (Dx and
Dy) for discriminating real frames from synthetic ones, coupled
with the adversarial constraint and cycle consistency constraint on
frame. The main idea behind Cycle-GAN is to make each frame
realistic via adversarial constraint, and encourage the translation
cycle-consistent via cycle consistency constraint on frame.

Adversarial Constraint. As in image/video generation [8, 23,
26, 30], the generators and discriminators are adversarially trained
in a two-player minimax game mechanism. Specifically, given the
real frames (x; and ys) and the corresponding synthetic frames
(xt = Gx(xt) and ys = Gy(ys)), the discriminators are trained
to correctly distinguish between real and synthetic frames, i.e.,
maximizing the adversarial constraint:

Lado = Xlog Dy(ys) + glog(l - Dy(x1))

S

+ 2 log Dx(x0) + 3 log(1 - Dx (7)) W
Meanwhile, the generators are learnt to minimize this adversarial
constraint, aiming to fool the discriminators with synthetic frames.

Frame Cycle Consistency Constraint. Moreover, to tackle
the unpaired translation, a cycle consistency constraint on each
frame is additionally exploited to penalize the difference between
the primary input frame x;/ys and its reconstructed frame x;°¢ =

Gy(Gx (x£))/ys®® = Gx(Gy(ys)):

Lrc(Gx: Gy) = Sl = xl, + Zluiee —wsll - @

By minimizing the frame cycle consistency constraint above, the
frame translation is enforced to be cycle-consistent, targeting to
capture high-level appearance structure across domains.

3.3 Motion Guided Temporal Constraints

Unlike Cycle-GAN that only explores appearance structure at frame
level, an unpaired video translator should further exploit temporal
continuity across frames to ensure both the visual appearance and
motion between frames to be realistic and consistent. Existing pio-
neer in unpaired video translation is Recycle-GAN [2] that predicts
future frames via temporal predictor to enable the cycle consistency
across both domains and time, while leaving the inherent motion in-
formation unexploited. Here we explicitly model the motion across
frames in the form of optical flow throughout the translation. Two
temporal constraints, i.e., motion cycle consistency and motion
translation, are especially devised to strengthen temporal continu-
ity in synthetic videos with the guidance of motion reconstruction
in translation cycle and motion translation across domains.

Motion Cycle Consistency Constraint. To resolve unpaired
scenario of video translation, we go one step further and extend
the cycle consistency constraint from single frame in Cycle-GAN
to motion between consecutive frames. Formally, given two consec-
utive frames (x; and x¢+1) from domain X, the forward translation
cycle is encouraged to reconstruct the two frames (x}°“ and x;{{)
with the consistent optical flow. In other words, the estimated op-
tical flow fyrec between x;°“ and x;{{ should be similar to the
primary optical flow fy, between x; and x;41. Similarly, for two
consecutive frames (ys and ys4+1) from domain Y, the backward
translation cycle is enforced to be cycle-consistent on optical flow:
fys — fyree = fy,. Accordingly, the motion cycle consistency
constraint is defined as the L; distance between the optical flows
before and after the translation cycle:

Lymc(Gx, Gy)=2 % C;I,) H,f;.ir)ec - 95?'
AN R (©))
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where f,&;) denotes a 2-dimensional displacement vector for i-th
pixel in optical flow f,. Asin [11], we leverage two visibility masks

Cy, and Cy, as weight matrixes, where each pixel cﬁf}, C;is) e [0,1]

represents the per-pixel confidence of the pixel f,g;) in optical flow
fx,: 1 for traceable pixels by optical flow, and 0 at occluded regions
or near motion boundaries. Accordingly, by minimizing the motion
cycle consistency constraint, the video translation is ensured to pre-
serve the motion between real consecutive frames after translation
cycle, which in turn implicitly enhances the temporal continuity
between synthetic consecutive frames.

Motion Translation Constraint. The cycle consistency on mo-
tion only constraints temporal coherence between synthetic frames
in an unsupervised manner, but ignores the straightforward trans-
fer of motion across domains. Nevertheless, the transfer of motion
across domains has been seldom exploited for unpaired video trans-
lation, possibly because such motion translation needs pairs of
optical flows for training, while in the unpaired settings, no paired
video data is provided. One naive way to exploit motion across
domains for video synthesis is to directly warp the synthetic frame
with the source motion into the subsequent frame as in [11, 28].
This scheme pursuits the motion consistency across domains in
a brute-force manner regardless of the scene dynamics in target.
Instead, we design a novel motion translator to transfer optical flow
from source domain to target domain, which captures temporal co-
herence tailored to target domain. Such transferred optical flow via
motion translator can be further leveraged to guide video synthesis
in target domain, pursuing the pixel-wise temporal continuity.

Technically, given the optical flow fy, between x; and x4+ from
domain X, the motion translator My is utilized to transform the
primary optical flow fy, into the transferred one ﬁt = Mx(fx,)in
domain Y. Note that motion translators are implemented as paired
translator Pix2Pix in [13]. Each motion translator is constrained
with an auxiliary motion consistency loss, aiming to correctly pre-
dict the optical flow in the target domain. Here we directly utilize
the optical flow f%, between the corresponding synthetic frames
in target domain as the “pseudo” target optical flow for training
motion translator. Similarly, with the input of optical flow f; from
domain Y, another motion translator My produces the transferred
optical flow ﬁs = My(fy,) in domain X, which is enforced to re-
semble the “pseudo” target optical flow f7 in domain X. Thus, the
auxiliary motion consistency loss is defined as L; distance between
the transferred optical flow and “pseudo” target optical flow:

Lam(Mx, My) = ; W;cz - fz .t ? HFS - 15

After that, the transferred optical flow J?xt /]75,S is utilized to further
warp the synthetic frame x;/ys to the subsequent frame via bi-linear

(©

1 .

interpolation, leading to the warped frame W(J?x,,, xt)/ W(]?ys ,Us)
in target domain at time ¢ + 1. Therefore, we define the motion
translation constraint as the L; distance between the warped frame
and the synthetic frame at time ¢ + 1:

Lry1(Gx, Gy) = ;Z Cgcl,)
1

+zyCy
S 1
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This motion translation constraint ensures the synthetic frame to
be consistent with the warped version of previous synthetic frame

Algorithm 1 The training process of Mocycle-GAN

1: Input: The number of maximum training iteration N; Initialize generators (Gx, Gy), discrim-
inators (D, Dy), and motion translators (M, My).

2: forn =1to N do

3 Fetch input batch with sampled consecutive frame pairs {(x¢, Xz+1), (Us, Ys+1)}-

4: for Each consecutive frame pair (x¢, Xz41), (Ys, Ys+1) do

5 Generate synthetic frames (X¢, Xz+1), (Us, Ys+1) and reconstructed frames

(%€, x720), (y§ e, yg {7 via generators (Gx, Gy).

t X
6: Calculate the corresponding optical flow fx,. fys. fx,. [y fxtrec s fy:jec via
FlowNet. _ _
7: Produce the transferred flow fx; and fy ¢ via motion translators (Mx, My ).
8: end for
9: -E-step:
10: Fix motion translators (Mx, My).
11: Update generators (Gx, Gy) w.r.t loss in Eq.(6).
12: Update discriminators (D, Dy) w.r.t loss in Eq.(1).
13: -M-step:
14: Fix generators (Gx, Gy) and discriminators (Dx, Dy).
15: Update motion translators (M, My ) w.r.t loss in Eq.(4).
16: end for

in the traceable points. As such, the pixel-wise temporal continuity
among synthetic frames are strengthened.

3.4 Training and Inference

Optimization. The overall training objective of our Mocycle-GAN
integrates the adversarial constraint, the cycle consistency con-
straints on frame and motion, and the motion translation constraint
for generators and discriminators, and the auxiliary motion consis-
tency loss for motion translators. During training, we adopt the EM
procedure to iteratively optimize motion translators, and genera-
tors & discriminators. Specifically, in E-step, we fix the parameters
in motion translators (Mx and My) and update the parameters of
generators (Gx and Gy) by minimizing the combined loss of the
three spatial/temporal constrains:

L(Gx, Gy) = Ladgo + Arc - Lrc(Gx, Gy)
+Amc - Lmc(Gx, Gy) + Amt - Lm1(GX, Gy),

where Apc, Apc, and Appr are tradeoff parameters. Meanwhile, the
discriminators (Dx and Dy) are optimized by maximizing the adver-
sarial constraint £ 44, in Eq.(1). In M-step, we fix the parameters
in generators and discriminators, and update motion translators by
minimizing the auxiliary motion consistency loss £ g p(Mx, My) in
Eq.(4). We alternate the E-step and M-step in each training iteration
until a convergence criterion is met. The detailed training process
of our Mocycle-GAN is given in Algorithm 1. Note that in practice,
the generators & discriminators are pre-trained with the combined
loss of adversarial constraint and cycle consistency constraints on
frame & motion. Next, we pre-train the motion translators with the
auxiliary motion consistency loss.

Inference. After the optimization of our Mocycle-GAN, we can
obtain the learnt generator Gx and motion translator Mx. During
inference, given an input video x = {xt}thl, the simplest way for
video translation is to directly employ generator Gy to convert x
into the synthetic videox = {ft}tT:I frame-by-frame. An alternative
solution is to leverage the warped version of previous synthetic
frame based on the transferred optical flow to smooth the output:

©)

Xpaq = Gx(xt+1)+2W(fx,.xt) ) (7)

However, for fair comparison to other image/video translation
approaches, we adopt the simplest single-frame translation without
any post processing for evaluation in the experiments.



Table 1: Segmentation score (%) of our Mocycle-GAN and other
methods for video-to-labels translation on Viper.

Criterion ‘ Approach ‘ day sunset rain snow night all
Cycle-GAN [37] 460 687 411 392 322 402
Recycle-GAN [2] 530 756 51.6 555 39.7 588

MP Recycle-GAN,,,p [2] | 547 763 510 57.0 447 60.1
Cycle-GANgF [11] 552 77.1  49.9 596 422 623
Mocycle-GAN 64.2 82.1 67.0 66.1 64.5 64.9
Cycle-GAN [37] 120 131 51 95 49 96
Recycle-GAN [2] 135 168 99 110 84 144

AC | Recycle-GANg,,p [2] | 153 157 109 113 102 149
Cycle-GANgF [11] 162 170 107 130 97 161
Mocycle-GAN 20.5 230 184 17.8 164 17.7
Cycle-GAN [37] 74 99 31 58 29 53
Recycle-GAN [2] 9.4 13.1 6.6 7.8 52 105

IoU | Recycle-GANg,,p [2] | 108 124 68 81 64 110
Cycle-GANgF [11] 1.6 134 63 90 64 110
Mocycle-GAN 152 181 119 123 116 13.2

4 EXPERIMENTS

We empirically verify the merit of our Mocycle-GAN by conducting
experiments on four different unpaired video translation scenarios,
including video-to-labels, labels-to-video, four ambient condition
transfers (day-to-night, night-to-day, day-to-sunset, sunset-to-day)
on Viper [27] and flower-to-flower on Flower Video Dataset [2].

4.1 Datasets and Experimental Settings

Viper is a popular visual perception benchmark to facilitate both
low-level and high-level vision tasks, e.g., optical flow and semantic
segmentation. It consists of videos from a realistic virtual world
(i.e. GTA gameplay), which are collected while driving, riding and
walking in diverse ambient conditions (day, sunset, snow, rain,
and night). Each frame (resolution: 1920 X 1080) is annotated with
pix-level labels, i.e., segmentation label map. Following [2], we
split 77 videos under diverse environmental conditions into 57 for
training and 20 for testing. For video-to-labels and labels-to-video,
we evaluate the translations between videos and segmentation label
maps. For ambient condition transfers, we consider the translation
across different ambient conditions: day < night and day < sunset.

Flower Video Dataset is a recent released dataset for video
translation. This dataset includes the time-lapse videos which depict
the blooming or fading of various flowers but without any sync.
The resolution of each video is 256 X 256. For flower-to-flower, we
evaluate the translation between different types of flowers, aiming
to align the high-level semantic content among them, e.g., the two
flowers simultaneously bloom or fade at the same pace.

Implementation Details. We mainly implement our Mocycle-
GAN on Pytorch [25] architecture. For generators, we follow the
settings of [2, 37], and adopt the encoder-decoder architecture [14].
In particular, each generator is composed of two convolution layers
(stride: 2) for down-sampling, six residual blocks [10], and two
deconvolution layers for up-sampling. Each discriminator is built
as the 70x70 PatchGAN in [13]. For motion translators, we adopt the
similar architecture of generator by modifying the input and output
channel as 2, which enables the translation of optical flow across
domains. In all experiments, we set the tradeoff parameters in Eq.(6)
as Apc = 10, Apc = 10, and Aps7 = 10. During training, the batch
size is set as 1. Adam [16] is utilized to optimize the parameters in
generators, discriminators and motion translators with the initial
learning rate of 0.0002, 0.0002 and 0.0001, respectively.

Table 2: FCN score (%) of our Mocycle-GAN and other methods for
labels-to-video translation on Viper.

Criterion ‘ Approach ‘ day sunset rain snow night all
Cycle-GAN [37] 363 487 237 400 228 379
Recycle-GAN [2] 37.5 539 274 427 23.6 413

MP Recycle-GAN.,,p [2] | 370 544 276 408 266 435
Cycle-GANs F [11] 387 570 252 421 244 446
Mocycle-GAN 42.1 612 34.6 48.1 30.5 476
Cycle-GAN [37] 107 153 91 114 100 102
Recycle-GAN [2] 123 149 100 115 111 120

Recycle-GAN,,p [2] | 127 156 101 120 118 122

AC Cycle-GANgF [11] 132 154 97 130 104 129
Mocycle-GAN 154 176 12.6 149 16.5 16.0
Cycle-GAN[37] 74 92 47 62 45 61
Recycle-GAN [2] 8.1 10.0 5.5 6.9 4.7 6.7

oy | Recyele-GANpp [21| 83 102 55 69 56 7.0

Cycle-GANs F [11] 80 104 50 70 53 74
Mocycle-GAN 9.7 119 75 88 77 101

Evaluation Metrics. For video-to-labels translation, as in [2,
37], we adopt three standard segmentation metrics in [19] for eval-
uation, i.e.,, Mean Pixel Accuracy (MP), Average Class Accuracy
(AC), and Intersection-Over-Union (IoU). For labels-to-video trans-
lation, we follow [2, 37] and report the FCN score on target domain.
FCN score represents the quality of synthetic frames according to
an off-the-shelf semantic segmentation network. Specifically, we
pre-train a fully-convolutional network, i.e., FCN [19], on Viper.
Next, the FCN model is utilized to predict the segmentation label
map for each synthetic frame. By comparing the predicted segmen-
tation label map against the ground-truth labels, we can obtain the
FCN scores with regard to the three standard segmentation metrics
described above (i.e., MP, AC, and IoU). The intuition is that the
higher the FCN scores, the more realistic the synthetic frames at
appearance.

Compared Approaches. We include the following state-of-the-
art unpaired translation methods for performance comparison: (1)
Cycle-GAN([37] is an unpaired image translator that pursuits an in-
verse translation only at frame level. (2) Recycle-GAN[2] leverages
a recurrent temporal predictor to generate future frames and pur-
sues a new cycle consistency (i.e. recycle loss) across domains and
time for unpaired video-to-video translation. (3) Recycle-GAN_.,,,5
[2] is an upgraded version of Recycle-GAN by combining recy-
cle loss in Recycle-GAN and cycle loss in Cycle-GAN for train-
ing video translator. (4) Cycle-GANgF remoulds a state-of-the-art
video style transfer approach [11] for unpaired video translation
by equipping its short temporal constraint with the cycle loss in
Cycle-GAN. The basic idea of the short temporal constraint is to
directly warp the synthetic frame with the source motion into the
subsequent frame, aiming to enforce the pixel-wise temporal consis-
tency. (4) Mocycle-GAN is the proposal in this paper. Please note
that for fair comparison, all the baselines and our Mocycle-GAN
utilize the same architecture for generators and discriminators.

4.2 Performance Comparison and Analysis

Evaluation on Video-to-Labels. In this scenario, the video trans-
lator takes a game scene video as input and outputs the correspond-
ing segmentation label maps. The performance comparisons of dif-
ferent models for video-to-labels translation task are summarized
in Table 1. Overall, the results across three segmentation metrics
consistently indicate that our proposed Mocycle-GAN obtains bet-
ter performances against state-of-the-art techniques. The results
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Figure 4: Examples of (a) video-to-labels and (b) labels-to-video results in Viper dataset under various ambient conditions. The original inputs,
the output results by different models, and the ground truth outputs are given.

Table 3: Ablation study for each design (i.e., Motion Cycle Con-
sistency (MC) and Motion Translation (MT)) in Mocycle-GAN for
video-to-labels on Viper.

Criterion l Approach ‘MC MT‘ day sunset rain snow night all

Cycle-GAN + MC | +/ 602 811 613 630 507 631
MP Cycle-GAN + MT v | 625 815 654 646 630 630
Mocycle-GAN v v | 642 821 670 661 645 64.9
Cycle-GAN + MC | +/ 182 213 157 144 122 174
AC Cycle-GAN + MT V| 193 214 176 174 161 172
Mocycle-GAN v v | 205 230 184 178 164 17.7
Cycle-GAN + MC | +/ 133 169 9.6 104 7.9 129
IoU Cycle-GAN + MT V| 144 171 115 119 111 128
Mocycle-GAN Vv v | 152 181 119 123 116 132

generally highlight the key advantage of exploring motion informa-
tion for unpaired video translation, enforcing the synthetic videos
to be both realistic at appearance and temporal continuous across
frames. Specifically, by encouraging the cycle consistency across
domains and time via a spatio-temporal constraint, Recycle-GAN
exhibits better performance than Cycle-GAN that only pursuits
cycle consistency at frame level. Moreover, by simultaneously uti-
lizing the spatial constraint in Cycle-GAN and spatio-temporal
constraint in Recycle-GAN, Recycle-GAN,,,,;, further boosts up
the performances. Different from Recycle-GAN,,,; that enforces
temporal coherence via future frame prediction, Cycle-GANgF en-
courages pixel-wise temporal consistency by directly warping the
synthetic frame with source optical flow, and achieves better per-
formances. This confirms the effectiveness of modeling motion
information in video synthesis. Nevertheless, the performances of
Cycle-GANgF are still lower than our Mocycle-GAN which further
strengthens temporal continuity via motion cycle consistency and
motion translation across domains.

Figure 4(a) showcases five examples of video-to-labels results
with different methods under various ambient conditions. As illus-
trated in the figure, our Mocycle-GAN obtains much more promis-
ing video-to-labels results. For instance, the majority categories,
e.g., road (first row), cannot be well translated for baselines. In-
stead, even the minority classes such as car (third row) and building
(fourth row) are translated nicely using our Mocycle-GAN.

Evaluation on Labels-to-Video. In this scenario, given an in-
put sequence of segmentation label maps, the video translator
outputs a video that resembles a real game scene video. Table 2
shows the results on labels-to-video translation task on Viper. Our
Mocycle-GAN performs consistently better than other methods
over three metrics. Similar to the observations on the video-to-
labels translation task, Recycle-GAN exhibits better performance

Table 4: Ablation study for each design (i.e., Motion Cycle Con-
sistency (MC) and Motion Translation (MT)) in Mocycle-GAN for
labels-to-video on Viper.

Criterion l Approach ‘MC MT‘ day sunset rain snow night all

Cycle-GAN + MC
MP Cycle-GAN + MT
Mocycle-GAN
Cycle-GAN + MC
AC Cycle-GAN + MT
Mocycle-GAN
Cycle-GAN + MC
ToU Cycle-GAN + MT
Mocycle-GAN

40.3 58.6 29.5 43.8 27.9 44.7
39.0 57.7 333 46.3 27.7 47.0
42.1 61.2 346 48.1 30.5 47.6
14.5 16.3 11.0 13.2 14.7 13.6
14.6 16.1 113 13.9 14.5 14.5
154 17.6 12.6 149 16.5 16.0
9.4 11.0 6.2 7.3 7.0 7.6
9.2 11.0 6.5 8.2 6.7 8.6
9.7 11.9 7.5 8.8 7.7 10.1
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than Cycle-GAN, by synthesising future frames via temporal pre-
dictor to explore cycle consistency across both domains and time.
The further performance improvement is attained when combining
Cycle-GAN and Recycle-GAN. In addition, Cycle-GANgF explores
motion across domains to directly constrain the temporal dynamics
between synthetic frames with source motion and achieves bet-
ter performances than Recycle-GAN,,,,;,. Furthermore, by steering
unpaired video translation with the guidance from motion cycle
consistency and motion translation across domains, our Mocycle-
GAN boosts up the performances over all the three metrics.

Figure 4(b) shows five examples of labels-to-video results under
variant ambient conditions. Clearly, our Mocycle-GAN generates
more natural and vivid frames compared with the results of base-
lines. Concretely, our results contain more realistic objects (e.g.,
road, tree, and car) with plenty of details, while the other methods
always generate repeated patterns and fail to capture the details.

Ablation Study. In this section, we further study how each de-
sign in our Mocycle-GAN affects the overall performance. Motion
Cycle consistency (MC) exploits the cycle consistency on motion to
enforce the reconstruction of motion through translation cycle. Mo-
tion Translation (MT) transfers the optical flow across domains and
further strengthens the temporal continuity in target domain by
steering video translation with the transferred optical flow. Table
3 and Table 4 details the performance improvements by consid-
ering different designs for video-to-labels and labels-to-video on
Viper, respectively. In particular, by further integrating motion cy-
cle consistency and motion translation constraint into Cycle-GAN,
Cycle-GAN + MC and Cycle-GAN + MT exhibit better performance
than Cycle-GAN. Combining the two motion-guided temporal con-
straints, our Mocycle-GAN obtains the best performances on both
video-to-labels and labels-to-video translations.
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Figure 5: Examples of night-to-day results in Viper dataset. The

original inputs and the output results by different models are given.
Each row denotes one sequence of frames.
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Figure 6: Examples of motion translation results in video-to-labels.
From left to right: Source frame overlay, optical flow in source,
transferred optical flow via motion translator, ground truth optical
flow in target, and ground truth target frame overlay.

Moreover, to fully verify the effectiveness of the devised mo-
tion translation constraint, here we compare Cycle-GAN + MT
against the best competitor Cycle-GANgg which also exploits the
motion information across domains. Unlike Cycle-GANgF enforces
the temporal coherence among synthetic frames in a brute-force
manner, Cycle-GAN + MT elegantly transfers optical flow across
domains to model the temporal coherence in target domain and
thus achieves better performances. Figure 6 further showcases two
examples of motion translation in video-to-labels. As illustrated
in the figure, the optical flows in source and target domains are
substantially different, and the transferred optical flow obtained by
our motion translator ends up matching closely to the ground truth
optical flow in target. The results again confirms the importance of
transferring motion across domains for video translation.

4.3 Other Video Translations

Ambient Condition transfer. As an universal unpaired video
translator, we test our Mocycle-GAN on ambient condition transfers
which explore the translation between different ambient conditions.
Figure 5 shows the translated videos by our Mocycle-GAN and
other baselines on night-to-day task. As depicted in the figure, the
baselines all generate frames whose overall color is somewhat bleak.
In contrast, the color of our results gets much brighter, which better
matches the style of day-time videos. Besides, our Mocycle-GAN
takes the advantages of exploring both motion cycle consistency
and motion translation, and thus achieves more realistic and tem-
poral consistent videos than other methods.

Flower-to-Flower. We further evaluate our Mocycle-GAN on
flower-to-flower that considers the translation between different
flowers. The examples of translated videos by different methods
are shown in Figure 7. Similar to the observations for ambient
condition transfer, our Mocycle-GAN generates the most realistic
and temporal continuous frames, where the target flower blooms
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Figure 7: Examples of flower-to-flower results. The original inputs
and the output results by different models are given. Each row de-
notes one sequence of frames.

Table 5: Human preference score (%) on translation quality for am-
bient condition transfer and flower-to-flower.

Human preference score l Ambient Condition Transfer ~ Flower-to-Flower

Mocycle-GAN / Cycle-GAN 82.5/17.5 77.5/22.5
Mocycle-GAN / Recycle-GAN.,;, 3, 73.8/26.2 72.5/21.5
Mocycle-GAN / Cycle-GANg 66.3 /33.7 88.8/11.2

and fades in synch with the source flower. This again validates the
effectiveness of guiding video translation with motion information.

Human Evaluation. We additionally conducted a human study
to quantitatively evaluate Mocycle-GAN against three baselines,
i.e., Cycle-GAN, Recycle-GAN,,,,5, and Cycle-GANgFr on ambient
condition transfer and flower-to-flower tasks. For each task, we
invite 10 labelers and randomly select 80 videos clips from testing
set for human evaluation. We show each input video clip with two
translated results (generated by our Mocycle-GAN and one baseline)
at a time and ask the labelers: which one looks more realistic and
natural? According to all labelers’ feedback, we measure the human
preference score of one method as the percentage of its translation
results that are preferred. Table 5 shows the results of human study.
Clearly, our Mocycle-GAN is the winner on both translation tasks.

5 CONCLUSIONS

We have presented Motion-guided Cycle GAN (Mocycle-GAN) ar-
chitecture, which explores both appearance structure and temporal
continuity for video-to-video translation in an unsupervised man-
ner. In particular, we study the problem from the viewpoint of
integrating motion estimation into unpaired video translator. To
verify our claim, we devise three types of spatial/temporal con-
strains: adversarial constraint is to discriminate between synthetic
and real frames in an adversarial manner and thus enforce each
synthetic frame realistic at appearance; frame and motion cycle
consistency constraints encourage the reconstruction of both ap-
pearance structure in frames and temporal continuity in motion;
motion translation constraint validates the transfer of motion across
domains which further strengthens the temporal continuity. Exten-
sive experiments conducted on video-to-labels and labels-to-video
translation validate our proposal and analysis. More remarkably,
the qualitative results and human study on more translations, e.g.,
flower-to-flower and ambient condition transfer, demonstrate the
efficacy of Mocycle-GAN.
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