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In recent years, Visual Question Answering (VQA) has attracted increasing attention due to its requirement

on cross-modal understanding and reasoning of vision and language. VQA is proposed to automatically an-

swer natural language questions with reference to a given image. VQA is challenging, because the reasoning

process on a visual domain needs a full understanding of the spatial relationship, semantic concepts, as well

as the common sense for a real image. However, most existing approaches jointly embed the abstract low-

level visual features and high-level question features to infer answers. These works have limited reasoning

ability due to the lack of modeling of the rich spatial context of regions, high-level semantics of images, and

knowledge across multiple sources. To solve the challenges, we propose multi-source multi-level attention

networks for visual question answering that can benefit both spatial inferences by visual attention on context-

aware region representation and reasoning by semantic attention on concepts as well as external knowledge.

Indeed, we learn to reason on image representation by question-guided attention at different levels across

multiple sources, including region and concept level representation from image source as well as sentence

level representation from the external knowledge base. First, we encode region-based middle-level outputs

from Convolutional Neural Networks (CNNs) into spatially embedded representation by a multi-directional

two-dimensional recurrent neural network and, further, locate the answer-related regions by Multiple Layer

Perceptron as visual attention. Second, we generate semantic concepts from high-level semantics in CNNs

and select those question-related concepts as concept attention. Third, we query semantic knowledge from

the general knowledge base by concepts and selected question-related knowledge as knowledge attention.

Finally, we jointly optimize visual attention, concept attention, knowledge attention, and question embedding

by a softmax classifier to infer the final answer. Extensive experiments show the proposed approach achieved

significant improvement on two very challenging VQA datasets.
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1 INTRODUCTION

Visual question answering (VQA) has been an emerging problem over the past few years and has
drawn extensive attention from both the computer vision and natural language processing com-
munity. Given an image and a question in natural language, VQA requires grounding textural
concepts to visual elements so as to infer the correct answer. The semantic complexity and diver-
sity in questions determined the difficulty of VQA problems, which usually requires reasoning at
different level representations of a visual image, such as attributes (e.g., color, shape, size, loca-
tion), objects, action as well as prior knowledge. The capability of automatic VQA can enhance the
connection between visual content and natural language. Toward practical applications, a VQA
system can be further deployed in devices for the visually impaired, a personal assistant device,
service robots, and so on, in the future.

The challenges of visual question answering are threefold: region-level visual understanding,
concept-level semantic embedding, and cross-media knowledge reasoning. Most early works [12,
32, 38] follow similar work in image captioning tasks [7, 33, 43, 44, 52], which combines convolu-
tional neural networks (CNNs) [26] and recurrent neural networks (RNNs) [16]. Specifically, these
works utilize a pre-trained CNN model to extract global image representation and an RNN model
to extract question representation. The major difference among these works lies in the combina-
tion methods of image features and question features. After the multi-modal features are jointly
learned, they are further fed into either a decoder RNN to generate free-form answers or a softmax
classifier to infer the best answer from a predefined answer set (e.g., 1K answer categories in VQA
v1.0 dataset [3]). These early works achieved promising results on large VQA datasets. However,
there are still some challenges that limit the further improvement of performance. First, visual
question answering requires spatial inference at region level, because some answers can be only
inferred from highly localized image regions for “what” and “where” questions. Second, semantic
gaps between image and question domain prevent textual concepts to visual elements ground-
ing. Natural language question conveys strong high-level semantics with explicit query intention,
while real-world images with tens of thousands of pixels are relatively low level and abstract.
Third, beyond pure vision problem, some questions such as “why” require prior knowledge from
human experience to infer the answers. Effective knowledge discovering and reasoning remains
an open problem in VQA task.

To deal with the challenges, the state-of-the-art approaches follow the research on VQA along
two independent dimensions. First, some methods introduce a visual attention mechanism to lo-
calize the target regions queried by a question, while masking the irrelevant regions by a learned
attention map [11, 21, 31, 34, 41, 50, 51]. However, these attention-based methods ignore the spa-
tial dependency among regions without using the explicit spatial encoding for image regions. Sec-
ond, others develop the high-level semantic representation for images by introducing semantic
concepts, image captions, or even an external knowledge base into the typical CNN-RNN frame-
work [27, 46–48]. However, research in this dimension still ignores using an attention mechanism
to select the most discriminative concepts or knowledge for a natural language question, which
achieved limited improvement although introducing more data from multiple sources.
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Fig. 1. Overview of the multi-source multi-level attention networks (MSMLAN). The proposed attention

model highlights both question-related image regions, semantic concepts, and knowledge descriptions.

To simultaneously learn question-guided image representations across multiple sources and
multiple levels, we unify the two dimensions into a holistic learning framework. Specifically,
we propose a novel multi-source multi-level attention network (MSMLAN) for visual question
answering by highlighting question-related local image regions, semantic concepts and external
knowledge in end-to-end training. Figure 1 shows the advantages of the proposed MSMLAN by
an intuitive example. The proposed MSMLAN consists of four major components: the first three
for image representation across different sources and different levels and the last one for joint
learning. First, context-aware spatial attention is proposed to infer the image regions that are
queried by questions. Different from previous visual attention-based methods that calculate the
attention weight for each region independently, we also incorporate contextual information of
each region. Specifically, we first extracted local region representations from convolutional layers
in CNN and further fed them into a multi-directional two-dimensional (2D) RNN [14] model by
the 2D spatial relationship. Such a design enables spatial information of a region to be encoded
from four neighboring regions as the surrounding context. An attention score for each region is
further obtained by a multiple layer perceptron (MLP) with the input of both context-aware visual
representation and question representation. Second, concept attention focuses on concept-level
image representation by discovering the semantically close concepts to questions in the same vo-
cabulary set and joint embedding space. These concepts correspond to highly frequent words in
question–answer pairs and can represent high-level understanding for image content. Specifically,
a CNN-based recognizer is trained for each concept, and the distribution over the semantic output
layer in CNN constitutes the high-level representation of an image. Third, knowledge attention
focuses on question-related knowledge discovering and reasoning by connecting concepts in an
image to an external knowledge base (such as Wikipedia) and distilling those pieces of knowledge
helpful to answer the question. Knowledge from external sources provides common sense well
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known for humans, which is necessary to infer the answers for some questions, especially those
starting with “why.” We encode each sentence in the knowledge base as a fact and give each fact
different weight according to its relevance with the image and the question. Fourth, joint learn-
ing incorporates attended regions, concepts, knowledge, and question features by element-wise
multiplication, followed by a softmax layer to predict the most possible answer from the answer
set.

The preliminary version of this work was published in Reference [54]. In this article, we improve
the original model in two aspects. On one hand, we introduce an attention network to an external
knowledge domain, which enables our model to reason across multiple sources and more levels.
However, we propose to encode contextual information of image regions with 2D RNN instead
of bidirectional RNN, which effectively captures the cross-region relations in two dimensions and
four directions. Experiments show that the 2D RNN outperforms the original bidirectional RNN
and improves significantly over visual attention without context encoding. Besides, we also include
more experiments on the balanced VQA 2.0 dataset, and more ablation models are implemented
and studied.

We summarize the main contributions as follows:

• We address the challenges of automatic visual question answering by jointly learning multi-
source multi-level attention, which can simultaneously benefit region-level spatial infer-
ence, reduce the semantic gap from vision to language, and effectively incorporate the
knowledge-based reasoning into the data-driven learning framework in the VQA task.

• We introduce a novel spatial encoding approach for visual attention, which extracts the
context-aware visual features from image regions by a multi-directional 2D RNN model.

• We conduct experiments on two challenging VQA datasets [3, 13] and obtain top perfor-
mance with a simple and effective framework.

The rest of the article is arranged as follows. In Section 2, we review the related work on visual
question answering, visual attention, knowledge representation, and structured representation.
In Section 3, we introduce our proposed multi-source multi-level attention networks and detail its
major components. In Section 4, we describe the experiments we have made including the datasets
we used, model training details, ablation study, results comparison and analysis in two datasets,
and some visualization cases for qualitative study. In Section 5, we conclude our proposed methods
and present future direction.

2 RELATED WORK

In this section, we first introduce the general CNN-RNN framework on both image captioning
and visual question answering. Then, we summarize the most recent advances from two different
dimensions. Besides, we will introduce a structured representation for contextual modeling in
images.

CNN-RNN. In past decades, CNN as an automatic feature extraction method has achieved great
success for various vision tasks, from image tagging [9, 10, 19] and retrieval [17, 18] to image
captioning [36, 37, 52] and visual story telling [30] in the computer vision community. RNN have
been widely explored for natural language understanding due to its simple and effective structure
and end-to-end training methods. As a kind of vision-to-language task, CNN-RNN framework has
been well studied in image captioning task and made breakthrough advances.

Inspired by the success of CNN-RNN framework in image captioning task, most early works
tend to exploit variation of those models to visual question answering task [3, 12, 32, 38]. They
extract visual features from images via pre-trained CNNs and encode questions by RNNs. Ren et al.
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[38] took their inspiration from [43], where the image was treated as the first token and fed into
RNNs together with descriptions to learn visual-semantic embedding. Instead of seeing an image
once, Malinowski et al. [32] passed the image into RNNs at each time when encoded the question,
which is similar to the framework in Reference [7] in the automatic image captioning task. Gao
et al. [12] adapted m-RNN models [33] to deal with a VQA task in a multi-lingual setting. Agrawal
et al. [3] released a large and human-annotated VQA dataset and evaluated several baseline models
and human-level performance on this dataset, which accelerated advances in this task. Although
these early approaches showed promising performance in the VQA task, it tended to fail on novel
instances and highly relied on questions (did not change the answer across images) [1]. Refer-
ence [23] proposed a new dataset called the Task Driven Image Understanding Challenge (TDIUC),
which has over 1.6 million questions organized into 12 different categories. They proposed new
evaluation schemes that compensate for over-represented question -types and make it easier to
study the strengths and weaknesses of algorithms.

Visual Attention. A visual attention mechanism is brought into VQA to address “where to look”
problems. Question-guided visual attention uses the semantic representation of a question as the
query to search for the regions in an image that are related to the answer [11, 21, 31, 41, 51]. Two
types of soft attention mechanism are well explored in visual question answering tasks. The first
type concatenates the question representation with each candidate region and then puts them into
a multiple layer perceptron (MLP) to compute the soft attention weights, while the second type
gets the attention score by the dot product of the two types of inputs [50]. Yang et al. [51] proposed
a stacked attention model that queries the image multiple times to infer the answer progressively.
Lu et al. [31] exploited a question–image co-attention strategy to handle not only related regions
in images but also important words in questions. Recently, Nam et al. [34] proposed Dual Atten-
tion Networks, which refined the visual and textual attention via multiple reasoning steps. Our
work is different from co-attention and dual attention in that we attend to high-level concepts ex-
tracted from the image rather than words from questions. The major advantage of using concepts
over questions is that the concepts are the semantic representation of content in the image, not
limited to words in the question. Another related work is the Focal Visual-Text Attention network
proposed by Liang et al. [28], which aims to answer questions based on whole collections with
sequences of photos or videos. They make use of a hierarchical process to dynamically determine
what media and what time to focus on in the sequential data to answer the question. The main
difference between their work and ours lies in attention strategies, where they apply temporal
attention in the sequential data including image sequences and metadata around them, while our
multi-source multi-level attention networks apply visual attention on 2D structured images and
textual attention on the unordered concept or sentence collection.

High-level Concepts and Knowledge. There is another branch that shows a promising direction
to address VQA problems. Instead of low-level visual features, they leverage high-level concepts
[9, 10, 45], candidate answers [22], image captions or even a visual story [30], and an external
knowledge base [46–48]. Each concept corresponds to a word mined from the training image de-
scriptions and represents some kinds of attribute regaring the content of the image. These concepts
act as semantic units between natural language and visual recognition and allow us to exchange
information between the two modalities [39]. The external knowledge is mined from a general
knowledge base, which is queried by the most relevant concepts found in the image. The discov-
ered knowledge is encoded using Doc2Vec, which produces a fixed-length vector. However, the
concepts generated from images and the documents queried from the knowledge base are usually
noisy, and most information is irrelevant with the query intention of questions. Therefore, they
only gain limited improvement, though concepts and external knowledge are incorporated into the
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VQA framework. Besides, the spatial information is completely lost in the procedure of high-level
concepts detection, which leads to inferior performance on a VQA task.

Structured Representation. In most previous attention-based models, the activation of the last
convolutional layer of CNN was taken as the visual representation of an image. However, the spa-
tial dependency among regions is neglected, which weakens the spatial reasoning of their models.
Our previous work [54] and DMN [49] fed the convolutional feature map in a snakelike fashion to
a bidirectional Gated Recurrent Units (GRU) layer to model the contextual information of individ-
ual regions, which may not be an optimal choice for 2D spatial structure in an image. More recent
work [40] tried to build a fully connected network with the pairwise connection between regions
for spatial reasoning in a VQA task. However, it is hard to scale due to the quadric complexity with
respect to the number of candidate regions. Also, the pairwise relationship may be insufficient for
reasoning over multiple objects. Recently, Hu et al. [20] proposed relation networks for object
detection, which processes a set of objects simultaneously through interaction between their ap-
pearance feature and geometry, thus allowing the modeling of their relationships. It verifies the
efficacy of modeling object relationships in CNN-based detection. The most similar work with ours
is proposed in Reference [55], which tries to learn a multivariate distribution over a grid-structured
Conditional Random Field on image regions as the structured representation. They implement the
interactive approximate inference algorithms, as recurrent layers of neural networks, which itera-
tively refines the attention. Instead, we propose to feed the grid-structured feature map extracted
from CNNs into 2D GRUs, which capture the long-term dependency and are easy to train.

3 MULTI-SOURCE MULTI-LEVEL ATTENTION NETWORKS

To simultaneously exploit spatial information, concept-level semantic information, and external
knowledge, we propose a novel multi-source multi-level attention network. The overall framework
is presented in Figure 2. Our framework consists of four major components. Component (A), which
is defined as context-aware visual attention, aims at finding question-related regions and learning
a visual representation of these regions. Component (B), which is defined as concept attention,
aims at finding question-related concepts from the image. Component (C), which is defined as
knowledge attention, aims at selecting question-related knowledge from the external knowledge
base. Component (D) is designed to incorporate information from different-level representation
of the image by joint attention learning. These four components are jointly optimized end to end,
which learns spatial reasoning on image regions and knowledge-based reasoning across multiple
sources and multiple levels.

3.1 Context-aware Visual Attention

Some questions in a VQA task focus on some specific regions rather than the whole image. For
instance, the question “What color is the apple on the desk” is only about the color of the local
region containing apples on the desk, while other regions should be masked as background. Visual
attention has been widely used in recent VQA frameworks, due to its success on fine-grained visual
representation and visualization for explainability. Compared with human attention, recent work
[6] found that current VQA attention models do not seem to be “looking at” the consistent regions
as humans do. One of the possible problems in current attention models is that they usually search
for image regions independently by dividing the whole image into several isolated units. Although
promising results have been achieved, further improvements are limited, because many concepts
may interact with each other through the spatial and semantic relationship. For example, we should
be aware of the spatial relationship of the cat and the toilet if we want to really understand and
answer the question “What is the cat standing on.” In this case, not only regions about “cat” but

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 51. Publication date: July 2019.



Multi-source Multi-level Attention Networks for Visual Question Answering 51:7

Fig. 2. Overall framework of Multi-source Multi-level Attention Networks. Our framework consists of four

components: (A) context-aware visual attention, (B) concept attention, (C) knowledge attention, and (D) joint

attention learning. Here, we denote by vq the representation of the question Q and by vimд , vc , and vk

the representation of image content on the region, concept, and knowledge level queried by the question,

respectively. vr and p
imд
c is the activation of the last convolutional layer and the probability layer from the

CNN.

those regions at bottom of the “cat” should be looked at and understood. To address this issue, we
propose a context-aware visual attention mechanism in our VQA framework.

First, we incorporate the contextual information into the representation from each region
by a multi-directional 2D GRU encoder, which is illustrated in Figure 3. Multi-Dimension RNN
(MDRNN) was first proposed in Reference [14], which is implemented on the raw image pixels for
image segmentation. Different from their application on small simple tasks, our proposed 2D GRU
layer goes after the pre-trained CNN and takes the feature map as input. The 2D GRU module is
a natural extension of GRU, where the main difference lies in the dimension of inputs and hidden
states. In 2D GRU, the inputs and hidden states are a fixed-length vector arranged in a 2D array.
For traditional GRU, there is one update gate and one reset gate. However, for 2D GRU, there are
two update gates and two reset gates, which control information transmission in two orthogonal
dimensions, respectively. Specifically, we use the pre-trained CNN model to extract visual features
of local regions. We take the feature map of the last convolutional layer in the CNN model as
our visual representation, which can preserve complete spatial information of each region. These
visual representation on each region is denoted as {vi, j , i = 1, 2, . . . ,M, j = 1, 2, . . . ,M }, where
vi, j represents the feature vector of the region at (i, j ). Then, we feed these feature vectors into
the 2D GRU and concatenate the outputs from four different directions (left-top to right-bottom,
left-bottom to right-top, right-top to left-bottom, and right-bottom to left-top) at each step to
form a new feature vector for each region, which is given by:

↔
vi, j = [2DGRU l t (vi, j ), 2DGRU

lb (vi, j ), 2DGRU
r t (vi, j ), 2DGRU

rb (vi, j )], (1)

where
↔
vi, j is the context-aware visual representation of image region r . The new feature vec-

tors contain not only the visual information of corresponding regions but also the contextual
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Fig. 3. An illustration of the context-aware visual representation for image regions by multi-directional 2D

GRU. Regions in convolutional feature maps are encoded into GRU and outputs from four different directions

are concatenated as the final outputs. Thus, each region is able to interact with its four-nearest-neighbor

regions and incorporates contextual information into the visual representation. vi, j is the feature vector of

location (i, j ) in the original feature map.

information from surrounding regions. 2D GRU is the two-dimensional GRU, and the superscript
symbols indicate the starting direction of propagation during the forward pass, i.e., lt , lb, rt , and
rb represent left-top, left-bottom, right-top, and right-bottom, respectively. We formulate the 2D
GRU in left-top direction as follows:

zi, j = σ (Wzvi, j +Uz1hi−1, j +Uz2hi, j−1 + bz ), (2)

z ′i, j = σ (W ′
zvi, j +U

′
z1hi−1, j +U

′
z2hi, j−1 + b

′
z ), (3)

ri, j = σ (Wrvi, j +Ur 1hi−1, j +Ur 2hi, j−1 + br ), (4)

r ′i, j = σ (W ′
rvi, j +U

′
r 1hi−1, j +U

′
r 2hi, j−1 + b

′
r ), (5)

h̃i, j = tanh(Whvi, j +Uh (ri, j ◦ hi−1, j + r
′
i, j ◦ h′i, j−1) + bh ), (6)

hi, j = zi, j ◦ hi−1, j + z
′
i, j ◦ hi, j−1 + (2 − zi, j − z ′i, j ) ◦ h̃i, j , (7)

where hi, j is the output of current 2D GRUs with vi, j as input. The variables zi, j , z
′
i, j are update

gates for vertical dimension (from i − 1 to i) and horizontal dimension (from j − 1 to j), while ri, j ,
r ′i, j are reset gates correspondingly. We set the dimension of the hidden state in each GRU to the

same with the question vector. For 2D GRU from left-top to right-bottom direction, the hidden
state hi, j depends on current input vi, j and two hidden states hi, j−1, hi−1, j from left and top
region, respectively. 2D GRU in other directions (i.e., from left-bottom to right-top, from right-top
to left-bottom, and from right-bottom to left-top) can be formulated in a similar way but with a
different subscript index.

Second, we assign each region an attention score for modeling the relationship between the
region and the question. We align the question and each region by element-wise multiplication of
two vectors and then feed them into a multiple layer perceptron (MLP). Such a design enables the
automatic learning of an attention function by parameter optimization in MLP. More specifically,
we search for regions via multi-step reasoning as in Reference [51]. The main differences are
twofold. First, we use a context-aware visual feature obtained in the last step to represent local
regions rather than the independent representation from each region in convolutional neural
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networks, which often lacks interactions between different regions. Second, we use element-wise
multiplication instead of element-wise addition to align the question feature and visual feature for
each region, which overcomes the scale inconsistency problem in multi-modal feature pooling.
The comparison experiment in Section 4.4 demonstrates our assumption.

At first, we represent the question by a recurrent neural network. Specifically, given the question
Q = [q1,q2, . . . ,qT ], where qt is the one hot vector representation of word at position t , we embed
these words into a vector space through an embedding matrix W

q
e . At time step t , we feed the

embedding vector xt of word qt to a GRU layer and pick the last hidden state hT as the question
representation, which is denoted as vq . We use the following equation to formulate the question
encoding model:

xt =W
q
e qt , (8)

ht = GRU (xt ,ht−1), (9)

vq = hT . (10)

Next, we formulate our visual attention process as:

hi, j = tanh
(
(WQvq + bQ ) ⊗ (WI

↔
vi, j + bI )

)
, (11)

Mi, j = softmax(Wphi, j + b), (12)

where we denote ⊗ as the multiplication between a matrix and a vector, which is performed by
element-wise multiplying each column of the matrix by the vector.WQ andWI are the correspond-
ing embedding matrix.Wp is the parameter in multiple perceptron layers, and Mi, j is the attention
weights of image regions.

Finally, we pool these regions with a weighted sum to get the visual representation of image I
queried by question Q , which is given by:

vimд =

m∑
i=1, j=1

Mi, j
↔
vi, j . (13)

In practice, we repeat the above process once, as in Reference [51], using the addition of a question
feature and an attended region feature as a guide. We ignore the details here for concision.

3.2 Concept Attention

Concept attention aims at finding important concept mining from the image to answer a ques-
tion. For example, in Figure 1, although the concept detector has detected a set of objects and
actions from the image (e.g., “group,” “stand”), only those concepts that are semantically close to
the question (i.e., “baseball,” “game”) should be highlighted by semantic attention. One of the core
challenges in combining visual and linguistic modalities is that they have different levels of abstrac-
tion, where language usually refers to general categories, while hundreds of pixels in the image
can point to one instance [39]. Previous works on image/video captioning [8, 36, 37, 52, 53] and
visual question answering [46, 48] have shown that extracting explicit high-level concepts from
images/videos can bring benefits to the interaction of visual content and language at the semantic
level. Although an image can convey multiple semantics, not all of them are helpful to answer a
particular question. Therefore, we propose to attend to concepts that should be not only relevant
to images but also semantically close to questions. We achieve these goals through two steps.

In the first step, we train a concept detector by deep convolutional neural networks, which
can produce the probability of semantic concepts for an image. Similarly to Reference [46], we
first build a concept vocabulary, where each concept is defined as a single word. The top high-
frequency words with the number of C from the question–answer training pairs are collected in
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the concept vocabulary after the removal of stop words. Besides, a multi-label image dataset based
on these concepts is constructed based on a COCO image captioning dataset [29], which is used
to train the concept detector. As a result, a fixed-length vector pc

imд is created for each image I by

taking the activation of fc in the prediction layer of a CNN, which represents the probability of
each concept occurring in the image. We denote the process of concept detection as:

pc
imд = fc (I ). (14)

In the second step, we train an attention network to measure the semantic relevance between
each concept in the vocabulary and the question. We share the same question features used in
visual attention. Besides, we use the same vocabulary and embedding matrix for our concepts
and questions, and, therefore, they can share the same semantic representation. Specifically, we
represent the concept c with a semantic vector sc by a two-layer stacked embedding layer. The
first layer is designed to share the same word embedding layer as the question model, and the
second layer is used to project the concept vector into the same dimension with the question
representation, which is given by:

sc =W c
e (W

q
e c ), (15)

where c is the one hot vector representation of the concepts,W
q
e is the embedding weights shared

with the question model, and W c
e is the second embedding matrix, which embeds the concepts

into the same dimension representation with the question. Next, we take the dot product of the
projected concept vector sc with the question vector vq as an operation and pass the resultant
value to a sigmoid activation layer to get the relevance score between the concept c with question
Q . Further, we formulate the concept attention weights of the concept c as a multiplication of the
concept-image relevance pc

imд and the concept–question relevance pc
q , which is given by:

pc
q = sigmoid(vq · sc ), (16)

Mc = pc
imдp

c
q , (17)

where the operator · represents the dot product of two vectors, pc
q is the relevance score measuring

the semantic similarity between the questionQ and the concept c , and Mc is the concept attention
weights over concepts. Finally, we represent the high-level semantic information of image I queried
by question Q by a weighted sum over all concepts representation, which is given by:

vc =

C∑
i=1

Mc
i s

c
i . (18)

3.3 Knowledge Attention

Inspired by previous works [47, 48], we extend our multi-level attention networks to higher-
level knowledge from an external source, which enables knowledge-based reasoning. We use
Wikipedia as our external knowledge source. Though we only access the article summaries as the
knowledge documents, they are usually general and noisy. We perform sentence-level attention
on knowledge documents to extract the most useful descriptions to answer the question while
filtering out the irrelevant information. In practice, we implement knowledge attention in three
steps: knowledge extraction, knowledge encoding, and knowledge attention.

We first query the Wikipidia database by the top five concepts generated from the image with a
popular API tool in the python library.1 For each concept, we extract the summary part of the cor-
responding Wikipedia article as the knowledge documents. A set of sentences can be obtained in

1https://pypi.org/project/wikipedia/.
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this step, which is denoted as S. Instead of Doc2Vec to model semantic meanings in the paragraph
level, we turn to a pre-trained Skip Thought model [25] (denoted as Sent2Vec) on Wikipedia to en-
code knowledge in the sentence level. The knowledge encoding process can be simply formulated
as:

sk
i = Sent2Vec (i ), (19)

where sk
i is the encoded vector of ith knowledge sentence in queried knowledge set S . Further, we

use a similar formulation with concept attention on the knowledge vectors as knowledge attention,

Mk
i = sigmoid(vq · sk

i ), (20)

vk =

S∑
i=1

Mk
i s

k
i , (21)

where Mk is the knowledge attention weight over the extracted knowledge sentence, andvk is the
attended knowledge vector, which can be considered as knowledge-level representation of image.

3.4 Joint Attention Learning

We use questions as the query to search for image information on different levels. In the low-level
visual feature, we focus on question-related regions by visual attention, while in the high-level
semantic feature, we focus on question-related concepts by concept attention and question-related
knowledge by knowledge attention. The three-level attention is combined through the fusion
of their attended representation. Particularly, we first add question vector into attended image
features extracted from different layers, then we use an element-wise multiplication to combine
the three types of attention together. Finally, we feed the joint feature into a softmax layer to
predict the probability of predefined candidate answer set A. The candidate with the highest
probability is determined as the final answer, which is given by:

u = (vq +vimд ) ◦ (vq +vc ) ◦ (vq +vk ), (22)

pa = softmax(Wu + b), (23)

where we denote ◦ as the element-wise multiplication between two vectors; vq , vimд , vc , and
vk are the representation of question Q , the attended visual representation of image I , attended
semantic representation of concept C , and attended semantic representation of knowledge S ,
respectively. u is the joint representation from question and image across multiple levels and
multiple sources.W and b are the parameters of the last full connected layer, and pa is the output
of the softmax layer, i.e., the distribution of probability of answer candidates. The candidate with
the maximum probability is picked out as the predicted answer.

4 EXPERIMENT

4.1 Dataset

We evaluate our model on two large-scale VQA datasets, i.e., the VQA v1.0 and VQA v2.0 datasets,
due to the large amount of training instances and the diversity of question types.

VQA v1.0 is a large-scale visual question answering dataset that contains 204,721 images from
the COCO dataset and a newly created abstract scene dataset that contains 50,000 scene images.
We evaluate our model on this dataset for only real images. For each image in the VQA dataset,
three questions are annotated, and each question has 10 answers from 10 different annotators.
We only report our results in the open-ended task, which is more challenging. In the open-ended
task, we select the answer with the highest activation from all possible outputs. We collect the
most frequent 3,000 answers in the training data as the candidate answer set. We evaluate the
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proposed approach not only on validation dataset but also on a test server, which is provided for
blind evaluation in the test set for fair comparison [3].

VQA v2.0 [13] is the second version of VQA dataset, which is more balanced in answer distri-
bution than the first version. To solve the language bias problem in the VQA task, each question
is associated with a pair of similar images that results in two different answers to the question. In
this way, it is harder to infer the answer for VQA models without observing the image. The images
in VQA v2.0 are totally the same with VQA v1.0, but the number of questions is about twice of
VQA v1.0. We use same setting to preprocess the data and train models on the VQA v2.0 dataset.

4.2 Evaluation Metrics

Visual QA is formulated as a multi-class classification problem on both datasets. We follow the
evaluation metrics as the baseline approaches on the two datasets. For the VQA dataset, Refer-
ence [3] set an evaluation server publicly for blind evaluation on the test set. The test set is divided
into four splits: test-dev, test-standard, test-challenge, and test-reserve, each of which contains
about 20K images. We evaluate our ablation model for experiment analysis on the test-dev set of
VQA v1.0 and evaluate our best model on the test-dev and test-standard set of both the VQA v1.0
and VQA v2.0 datasets. For the open-ended task, Reference [3] used a voting mechanism to score
the accuracy of a predicted answer:

acc (ans ) =min

{
#humans that said ans

3
, 1

}
,

where ans is the answer predicted by visual QA models. We use the same evaluation metrics in
both the VQA v1.0 and VQA v2.0 datasets.

4.3 Experiment Setting

We show our experimental settings, hyper-parameters, and training process here.
For the question model, we use the natural language toolkit NLTK2 to tokenize questions, cast all

words into lowercase, and only keep those words appearing at least twice in the train-val set. We do
not make any additional preprocessing to those words, e.g., removing stop words and stemming.
A two-layer GRU is used to encode the question, which has 620-dimensional word vectors and
2,400-dimensional hidden states. We initialize all weights in the GRU layer from scratch. We take
the last hidden state of the GRU layer as the question representation so that the dimension of the
question feature vector is 2,400.

For the image model, we extract visual features from the last convolutional layer (i.e., “res5c”)
of the pre-trained ResNet-152 model by feeding resized images with 448 × 448 resolution. Each
feature vector has a dimension of 2,048 and corresponds to a 32 × 32 pixels region of the input
image. Thus, we get a feature map of 14 × 14 × 2,048 dimensions for each input image. The di-
mension of hidden state in 2D GRU is set to the same with the question feature, i.e., 2,400. We
get a 14 × 14 × 2,400 dimensional contextual aware feature map after passing the original feature
map into the 2D GRU module. Then we project both the question feature and context-aware visual
representation of the image into the same 512-dimensional space and perform attention on visual
representation.

For the concept model, we select the most frequent 256 words appearing in question–answer
training pairs as our concept vocabulary after removing stop words. A multi-label dataset is de-
rived from the MSCOCO dataset based on the concept vocabulary and captions associated with the
image. Further, we train a multi-label classification model with ResNet-152 [15] on the multi-label

2http://www.nltk.org/.
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dataset. We detect concepts from images by taking the activation of the last layer of the multi-
label classification network. There are two major differences in our concept detector from Refer-
ence [46]. We use a more powerful classification model, i.e., ResNet with 152 layers pre-trained
on ImageNet, instead of VGGNet with 19 layers [42]. Besides, we use the popular loss function
“SigmoidCrossEntropyLoss” in the multi-label classification task to fine-tune the network. For
each concept, we get the same embedding vector with the same question word, i.e., 2,400 dimen-
sions. Similarly to the image model, we project the question vector and concept vector to the
512-dimensional space and then perform attention on concepts.

For the knowledge model, the top 5 concepts generated in the concept model are queried in
the knowledge base (i.e., Wikipedia). For each concept, we crawl the top 5 sentences from the
summary of the corresponding Wikipedia articles. Therefore, we get a total of 25 sentences for
each image for knowledge representation. As mentioned in Section 3.3, each sentence is encoded
into a 2,400-dimensional vector with the pretrained Skip-Thought model. Further, we the project
question vector and knowledge vector to the 512-dimensional space and perform attention on
knowledge.

We sum pool the visual feature, concept feature, and knowledge feature respectively weighted
with their attention scores as attended representation of the image at different levels. In this way,
we get three 2,400-dimensional vectors for multi-level image representation as well as the same
dimensional question vector. These feature are joint embedded in the form of Equation (22) and
fed into a softmax layer to predict the answer.

In our experiments, we use stochastic gradient descent with momentum 0.9 as the solver. The
batch size is fixed to 100. We set the base learning rate to 0.05. After 15 epochs, we drop the
learning rate to 1 of 10 of the previous one every 5 epochs. In addition, gradient clipping technology
and dropout are exploited in training. To further promote the performance of our model, we also
pretrain our model on the Visual Genome [5] dataset and then fine-tune the model on the VQA
dataset. We keep the same question and answer vocabulary in Visual Genome dataset with the
one in VQA dataset.

4.4 Ablation Model

To analyze the contribution of each component in our model and demonstrate how the multi-
source multi-level attention works better than single-level attention, we ablate the full model and
demonstrate the effectiveness of each component.

• Q + I [3]: a baseline model with no attention.
• Q + Visual Att.: our visual attention model without context-aware visual representation
• Q + Context-aware Visual Att. (BiGRU): context-aware visual representation with Bidirec-

tional GRUs for context modeling, used in our previous work [54].
• Q + Context-aware Visual Att. (2DGRU): component (A) of our model
• Att-CNN + LSTM [46]: the attribute representation as the first input of LSTM, then follow-

ing the question
• Q + Concept: a simple version of concept attention, taking the output of concept detector

as the attention weights, independent on the question
• Q + Semantic Att.: component (B) of our model, taking the relation of concepts with both

image and question into the attention weights
• Q + Knowledge: remove attention parts of component (C)
• Q + Knowledge Att.: component (C) of our model
• Q + Concept Att. + Knowledge Att.: component (B) + component (C) of our model
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Table 1. Ablation Model on the Test-dev Split of VQA v1.0 Dataset

Ablation Model Accuracy

Q + I [3] 57.75
Q + Visual Att. 62.29
Q + Context-aware Visual Att. (BiGRU) 62.50
Q + Context-aware Visual Att. (2DGRU) 62.84
Att-CNN + LSTM [46] 55.57
Q + Concept 56.62
Q + Concept Att. 59.28
Q + Knowledge 56.31
Q + Knowledge Att. 57.46
Q + Concept Att. + Knowledge Att. 60.78
MLAN [54] 63.69
MSMLAN w/o Knowledge Att. 64.05
MSMLAN 64.43

The top four models only utilize visual features from convolution layer, the next

three models only utilize the concepts instead of visual features and then followed

by three knowledge-based models. MLAN is our previous work [54] that applies

attention to the multi-level representation of images. MSMLAN is our extended

work that applies attention to the multi-source multi-level representation of im-

ages. MLAN w/o Knowledge Att. removes attention part from knowledge atten-

tion module (C) in the full model.

• MLAN [54]: component (A) + component (B) of our model, the final model proposed in our
previous work [54]

• MSMLAN w/o Knowledge Att.: MSMLAN but remove attention part in component (C)
• MSMLAN: the final model in this work, the fusion of Visual Att, Concept Att, and Knowl-

edge Att.

We report the performance of our ablation models on the test-dev set of the VQA v1.0 dataset
in Table 1. These models are trained on the training dataset and half of the validation set, as in
Reference [51]. Further analysis will be given in the next section.

4.5 Results and Analysis

We will explain how each component works in our model by the ablation experiment shown in
Table 1. It is observed that our multi-source multi-level attention model outperforms all single-
level attention model significantly, i.e., attention on the region-based visual feature, attention on
high-level concepts, as well as attention on external knowledge.

The first four rows in Table 1 compare our context-aware visual attention model with those
models without attention mechanism. The results prove our two contributions to visual attention
mechanism. We use element-wise multiplication to replace addition in the SAN [51] model and
get better performance, which supports our assumption that element-wise multiplication is a
better multimodal fusion approach than addition in visual question answering task. The second
contribution is that we incorporate contextual information from surrounding regions into target
regions, which benefits the spatial inference in images. In our previous work [54], the context of
the individual region is modeled by a bidirectional GRU, which achieves marginal improvement
compared to the traditional visual attention method. In this work, we improve this part by using
multi-directional 2D GRUs instead of the bidirectional GRUs and get 0.55% absolute promotion.
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The advantage of multi-directional 2D GRUs over bidirectional GRUs lies in twofold: On one hand,
multi-directional GRU can model the region’s dependency in two dimensions and four directions,
avoiding reordering problems from 2D spatial configuration to the 1D sequence in traditional
GRUs. On the other hand, the number of regions in each dimension that 2D GRUs need to
memorize is much smaller than that in 1D sequence (14 vs. 196 in our experiments), alleviating the
long-term dependency problems. Besides, the 2D GRUs model is more efficient than bidirectional
GRUs model in context-aware visual encoding. The 2D GRUs has two independent dimensions
to control information flow, and each dimension will have two possible directions, resulting in
four GRU layers in four different directions. Therefore, we will use visual feature vi, j as inputs
four times in total. Bidirectional GRU uses each visual feature twice; however, they need model
quadratic length dependency than 2D GRUs, since they flatten the 2D structured visual features
into linear sequences. In our experiments, the visual feature map has 14 × 14 spatial arrangement,
so we have 14 × 6 × 4 times operations in 2D GRUs while 196 × 4 × 2 times operations. So, 2D
GRUs have more efficient computation than bi-GRU.

The middle three rows in Table 1 incorporate high-level concepts into the VQA framework. The
first model uses the output of the final probability layer of CNN as the high-level representation
of the image, while the second model tries to ground the semantic concepts with the question
by sharing their word embedding parameters. We get 2.7% performance gain when we attend to
concepts related to both images and questions. This demonstrates attention on high-level concepts
is effective and could find more important semantic information from the image and remove noisy
information irrelevant to the question.

The third block in Table 1 show the effectiveness of the knowledge discovery and knowledge-
based reasoning in VQA task. “Q + Knowledge Att.” model introduces attention mechanism into
the knowledge-level description, which leads to 1.15% increase over “Q + Knowledge” model.
Besides, “Q + Concept Att. + Knowledge Att.” model gets 1.5% increase over “Q + Concept Att.”
model, which should give the credit to the knowledge-based reasoning module.

The last block in Table 1 joins different-level attention into one unified framework and achieve
significant improvement compared with any single-level attention model. MLAN [54] is our previ-
ous work, which combined context-aware visual attention and concept attention together. When
we extend this work to the knowledge domain, we get another 0.74% performance improvement.
This demonstrates the attention mechanism not only on different level image representation but
also on different sources are complementary and can benefit each other. Besides, we also remove
the attention part from the knowledge component to demonstrate the contribution of attention
mechanism in the knowledge representation.

We compare our model with the state-of-the-art methods on two large datasets. The results are
shown in Table 2 on the VQA v1.0 dataset and Table 3 on the VQA v2.0 dataset, respectively. For
a fair comparison, we report the results using the single model with several settings. In the VQA
v1.0 dataset shown in Table 2, our proposed model achieves the best performance when compared
with the state-of-the-art models including bilinear pooling-based methods [11, 24], though we use
a more simple and effective framework. References [31] and [34] use two methods that exploit
both visual attention and textual attention; the difference is that they perform textual attention
on questions rather than high-level concepts in our model. We achieve better results than both
of them, because we exploit more concepts from the image as well as knowledge rather than the
question itself. In the VQA v2.0 dataset shown in Table 3, our proposed models achieve comparable
model with more recent proposed structured attention [55] and bottom-up attention [2]. Refer-
ence [55] proposed a structured representation of image with a grid-structured CRF model, which
is similar to our 2D GRU module for context-aware image encoding. Reference [2] proposed a more
effective image feature encoding method that replaced the convolutional features with object-level
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Table 2. Comparison Results on VQA v1.0 Dataset

Approach
test-dev test-standard

Yes/No Number Other All Yes/No Number Other All

LSTM Q + I [3] 78.9 35.2 36.4 53.7 79.0 35.6 36.8 54.1

1 deeper + norm [3] 80.5 36.8 43.1 57.8 80.6 36.5 43.7 58.2

DPPnet [35] 80.7 37.2 41.7 57.2 80.3 36.9 42.2 57.4

SAN [51] 79.3 36.6 46.1 58.7 - - - 58.9

FDA [21] 81.1 36.2 45.8 59.2 - - - 59.5

DMN+[49] 80.5 36.8 48.3 60.3 - - - 60.4

2 MCB + Att. [11] 82.2 37.7 54.8 64.2 - - - -

MCB + Att. + Glove [11] 82.5 37.6 55.6 64.7 - - - -

MCB + Att. + GloVe + VG [11] 82.3 37.2 57.4 65.4 - - - -

MLB [24] 84.1 38.2 54.9 64.1 - - - -

MLB + Att. [24] 83.9 37.9 56.8 65.8 - - - -

3

AC [48] 79.8 36.8 43.1 57.5 79.7 36.0 43.4 57.6

ACK [48] 81.0 38.4 45.2 59.2 81.1 37.1 45.8 59.4

ACSK [47] - - - - 81.1 37.2 45.9 59.5

4
HieCoAtt [31] 79.7 38.7 51.7 61.8 - - - 62.1

DAN [34] 83.0 39.1 53.9 64.3 82.8 39.1 54.0 64.2

5

MLAN (ResNet, train)[54] 82.9 39.2 52.8 63.7 - - - -

MLAN (ResNet, train+val +VG)[54] 81.8 41.2 56.7 65.3 81.3 41.9 56.5 65.2

MSMLAN (ResNet, train) 83.6 39.9 53.6 64.4 - - - -

MSMLAN (ResNet, train+val +VG) 83.8 41.2 56.7 66.1 83.7 41.3 56.6 66.2

We divide compared approaches into five categories based on different attention mechanisms. Category 1 does not use

any attention. Category 2 uses only visual attention. Category 3 extracts high-level concepts for image representation.

Category 4 applies attention to both images and questions. Category 5 includes different variations of our approach.

Table 3. Results on the VQA v2.0 Dataset

Approach
test-dev test-standard

Yes/No Number Other All Yes/No Number Other All

prior 61.0 0.3 1.1 25.7 61.2 0.4 1.2 26.0

1 language_only 67.2 31.4 27.4 44.2 67.0 31.6 27.4 42.3

deeper_lstm_Q_norm_I [3] 73.1 35.4 41.9 54.0 73.5 35.18 41.8 54.2

SAN [51] 81.0 44.1 52.5 63.3 - - - -

2 MF-SIG + VG [55] 81.3 43.0 55.6 64.7 - - - -

Bottom-up Att. [2] 81.8 44.2 56.1 65.3 82.2 43.9 56.3 65.67

3
mcb benchmark [11] 78.4 38.8 53.2 62.0 78.8 38.3 53.4 62.3

MUTAN [4] 79.1 39.0 53.5 62.4 - - - -

4
MLAN [54] 80.1 45.0 55.3 64.3 80.4 44.7 54.9 64.4

MSMLAN 81.2 44.8 55.3 64.8 81.5 45.1 55.3 65.0

5
MSMLAN+MUTAN 82.1 45.2 56.0 65.6 - - - -

MSMLAN+Bottom-up Att. 82.6 45.5 56.8 66.3 - - - -

We compare our results with state-of-the-art models. We divide compared approaches into five categories. Category

1 does not use any attention and builds baseline on this dataset. Category 2 includes three popular visual attention

models. Category 3 shows two bilinear pooling-based methods. Category 4 show our proposed multi-source multi-

level attention models. Category 5 combines our methods with bilinear operation and uses more powerful image

features to achieve better performance.
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Fig. 4. Qualitative results from visual question answering with attention visualization. Image regions re-

lated to the question are marked by the gray mask, while important concepts and knowledge sentences are

highlighted in red. Better view in color.
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features derived from an object detection model. When we use the same image feature with them,
we achieve the best performance in VQA v2.0, which demonstrates the comparibilty of our model
with these state-of-the-art methods. Besides, we also show some qualitative results in Figure 4 to
intutively visualize the attention in multi-source multi-level representation of images. Examples
in the first two rows show that correct attended image regions lead to the true answer. The middle
two rows show those cases where answers can be found directly from attended concepts. The
bottom two rows show those cases where external knowledge can help reasoning.

5 CONCLUSION

We propose Multi-source Multi-level Attention Networks to incorporate visual attention, concept
attention, as well as knowledge attention into an end-end framework to address automatic visual
question answering. Visual attention enables region-level visual understanding queried by ques-
tions while concept attention narrows the domain gap between questions and images. The incor-
poration of knowledge-level attention empowers our VQA model with the capability of knowledge
reasoning. Our model makes use of the complementarity of an attention mechanism on different
level representations and across multiple sources. Extensive experiments on two large datasets
demonstrate we not only outperform any single-level attention model but also achieve top results
via a simple but effective framework. Future work includes further exploration on learning visual
relationship for spatial reasoning and extracting useful knowledge from the external visual-textual
dataset.
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