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Abstract

Temporally localizing actions in a video is a fundamental

challenge in video understanding. Most existing approach-

es have often drawn inspiration from image object detection

and extended the advances, e.g., SSD and Faster R-CNN, to

produce temporal locations of an action in a 1D sequence.

Nevertheless, the results can suffer from robustness prob-

lem due to the design of predetermined temporal scales,

which overlooks the temporal structure of an action and

limits the utility on detecting actions with complex varia-

tions. In this paper, we propose to address the problem

by introducing Gaussian kernels to dynamically optimize

temporal scale of each action proposal. Specifically, we

present Gaussian Temporal Awareness Networks (GTAN) —

a new architecture that novelly integrates the exploitation

of temporal structure into an one-stage action localization

framework. Technically, GTAN models the temporal struc-

ture through learning a set of Gaussian kernels, each for a

cell in the feature maps. Each Gaussian kernel corresponds

to a particular interval of an action proposal and a mixture

of Gaussian kernels could further characterize action pro-

posals with various length. Moreover, the values in each

Gaussian curve reflect the contextual contributions to the

localization of an action proposal. Extensive experiments

are conducted on both THUMOS14 and ActivityNet v1.3

datasets, and superior results are reported when comparing

to state-of-the-art approaches. More remarkably, GTAN

achieves 1.9% and 1.1% improvements in mAP on testing

set of the two datasets.

1. Introduction

With the tremendous increase of online and personal me-

dia archives, people are generating, storing and consuming

a large collection of videos. The trend encourages the devel-
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Figure 1. The intuition of a typical one-stage action localization

(upper) and our GTAN (lower). The typical method fixes temporal

scale in each feature map and seldom explores temporal structure

of an action. In contrast, temporal structure is taken into account

in our GTAN through learning a set of Gaussian kernels.

opment of effective and efficient algorithms to intelligently

parse video data. One fundamental challenge that underlies

the success of these advances is action detection in videos

from both temporal aspect [6, 9, 17, 30, 39, 43] and spatio-

temporal aspect [11, 18]. In this work, the main focus is

temporal action detection/localization, which is to locate

the exact time stamps of the starting and the ending of an

action, and recognize the action with a set of categories.

One natural way of temporal action localization is to ex-

tend image object detection frameworks, e.g., SSD [23] or

Faster R-CNN [27], for producing spatial bounding boxes in

a 2D image to temporal localization of an action in a 1D se-

quence [4, 19]. The upper part of Figure 1 conceptualizes a

typical process of one-stage action localization. In general,

the frame-level or clip-level features in the video sequence

are first aggregated into one feature map, and then multiple

1D temporal convolutional layers are devised to increase the
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size of temporal receptive fields and predict action propos-

als. However, the temporal scale corresponding to the cell

in each feature map is fixed, making such method unable

to capture the inherent temporal structure of an action. As

such, one ground-truth action proposal in the green box is

detected as three ones in this case. Instead, we propose to

alleviate the problem by exploring the temporal structure

of an action through learning a Gaussian kernel for each

cell, which dynamically indicates a particular interval of an

action proposal. A mixture of Gaussian kernels could even

be grouped to describe an action, which is more flexible

to localize action proposals with various length as illustrat-

ed in the bottom part of Figure 1. More importantly, the

contextual information is naturally involved with the feature

pooling based on the weights in Gaussian curve.

By delving into temporal structure of an action, we

present a novel Gaussian Temporal Awareness Networks

(GTAN) architecture for one-stage action localization. Giv-

en a video, a 3D ConvNet is utilized as the backbone to

extract clip-level features, which are sequentially concate-

nated into a feature map. A couple of convolutional lay-

ers plus max-pooling layer are firstly employed to shorten

the feature map and increase the temporal size of recep-

tive fields. Then, a cascaded of 1D temporal convolutional

layers (anchor layers) continuously shorten the feature map

and output anchor feature map, which consists of features of

each cell (anchor). On the top of each anchor layer, a Gaus-

sian kernel is learnt for each cell to dynamically predict a

particular interval of an action proposal corresponding to

that cell. Multiple Gaussian kernels could even be mixed

to capture action proposals with arbitrary length. Through

Gaussian pooling, the features of each cell is upgraded by

aggregating the features of contextual cells weighted by

the values in the Gaussian curve for final action proposal

prediction. The whole architecture is end-to-end optimized

by minimizing one classification loss plus two regression

losses, i.e., localization loss and overlap loss.

The main contribution of this work is the design of an

one-stage architecture GTAN for addressing the issue of

temporal action localization in videos. The solution also

leads to the elegant view of how temporal structure of an ac-

tion should be leveraged for detecting actions with various

length and how contextual information should be utilized

for boosting temporal localization, which are problems not

yet fully understood in the literature.

2. Related Work

We briefly group the related works into two categories:

temporal action proposal and temporal action detection.

The former focuses on investigating how to precisely local-

ize video segments which contain actions, while the latter

further classifies these actions into known classes.

We summarize the approaches on temporal action pro-

posal mainly into two directions: content-independent pro-

posal and content-dependent proposal. The main stream

of content-independent proposal algorithms is uniformly

or sliding window-ly sampling in a video [24, 33, 41],

which leads to huge computations for further classifica-

tion. In contrast, content-dependent proposal methods, e.g.,

[3, 5, 7, 8, 21], utilize the label of action proposals during

training. For instance, Escorcia et al. [5] leverage Long

Short-Term Memory cells to learn an appropriate encoding

of a video sequence as a set of discriminative states to in-

dicate proposal scores. Though the method avoids running

sliding windows of multiple scales, there is still the need of

executing an overlapping sliding window that is inapplica-

ble when the video duration is long. To address this prob-

lem, Single Stream Temporal proposal (SST) [3] generates

proposals with only one single pass by utilizing a recurrent

GRU-based model, and Temporal Unit Regression Network

(TURN) [8] builds video units in a pyramid manner to avoid

window overlapping. Different from the above method-

s which generate proposals in a fixed multi-scale manner,

Boundary Sensitive Network (BSN) [21] localizes the ac-

tion boundaries based on three actionness curves in a more

flexible way. Nevertheless, such actionness-based methods

may fail in locating dense and short actions because of the

difficulty to discriminate between very close starting and

ending peaks in the curve.

Once the localization of action proposals completes, the

natural way for temporal action detection is to further classi-

fy the proposals into known action classes, making the pro-

cess in two-stage manner [4, 12, 29, 30, 38, 43]. However,

the separate of proposal generation and classification may

result in sub-optimal solutions. To further facilitate tempo-

ral action detection, there have been several one-stage tech-

niques [2, 19, 40] being proposed recently. For example,

Single Stream Temporal Action Detection (SS-TAD) [2] u-

tilizes the Recurrent Neural Network (RNN) based archi-

tecture to jointly learn action proposal and classification.

Inspired by SSD [23], Lin et al. [19] devise 1D temporal

convolution to generate multiple temporal action anchors

for action proposal and detection. Moreover, with the devel-

opment of reinforcement learning, Yeung et al. [40] explore

RNN to learn a glimpse policy for predicting the starting

and ending points of actions in an end-to-end manner. N-

evertheless, most of one-stage methods are still facing the

challenge in localizing all the action proposals due to the

predetermined temporal scales.

In short, our approach belongs to one-stage temporal

action detection techniques. Different from the aforemen-

tioned one-stage methods which often predetermine tem-

poral scales of action proposals, our GTAN in this paper

contributes by studying not only learning temporal struc-

ture through Gaussian kernels, but also how the contextual

information can be better leveraged for action localization.
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Figure 2. An overview of our Gaussian Temporal Awareness Networks (GTAN) architecture. The input video is encoded into a series

of clip-level features via a 3D ConvNet, which are sequentially concatenated as a feature map. Two 1D convolutional layers plus one

max-pooling layer are followed to increase the temporal size of receptive fields. Eight 1D convolutional layers are cascaded to generate

multiple feature maps in different temporal resolution. On the top of each feature map, a Gaussian kernel is learnt on each cell to predict

a particular interval of an action proposal. Moreover, multiple Gaussian kernels with high overlap are mixed to a larger one for detecting

long actions with various length. Through Gaussian pooling, the action proposal is generated by aggregating the features of contextual cells

weighted by the values in the Gaussian curve. The GTAN is jointly optimized with action classification loss plus two regression losses,

i.e., localization loss and overlap loss for each proposal. Better viewed in original color pdf.

3. Gaussian Temporal Awareness Networks

In this section we present the proposed Gaussian Tempo-

ral Awareness Networks (GTAN) in detail. Figure 2 illus-

trates an overview of our architecture for action localization.

It consists of two main components: a base feature network

and a cascaded of 1D temporal convolutional layers with

Gaussian kernels. The base feature network is to extract

feature map from sequential video clips, which will be fed

into cascaded 1D convolutional layers to generate multiple

feature maps in different temporal resolution. For each cell

in one feature map, a Gaussian kernel is learnt to control

temporal scale of an action proposal corresponding to that

cell as training proceeds. Furthermore, a Gaussian Kernel

Grouping algorithm is devised to merge multiple Gaussian

kernels with high overlap to a larger one for capturing long

actions with arbitrary length. Specifically, each action pro-

posal is generated by aggregating the features of contextual

cells weighted by the values in the Gaussian curve. The

whole network is jointly optimized with action classifica-

tion loss plus two regression losses, i.e., localization loss

and overlap loss, which are utilized to learn action catego-

ry label, default temporal boundary adjustment and overlap

confidence score for each action proposal, respectively.

3.1. Base Feature Network

The ultimate target of action localization is to detect ac-

tion instances in temporal dimension. Given an input video,

we first extract clip-level features from continuous clips via

a 3D ConvNet which could capture both appearance and

motion information of the video. Specifically, a sequence

of features {fi}
T−1
i=0 are extracted from 3D ConvNet, where

T is the temporal length. We concatenate all the features

into one feature map and then feed the map into two 1D

convolutional layers (“conv1” and “conv2” with temporal

kernel size 3, stride 1) plus one max-pooling layer (“pool1”

with temporal kernel size 3, stride 2) to increase the tem-

poral size of receptive fields. The base feature network is

composed of 3D ConvNet, two 1D convolutional layers and

max-pooling layer. The outputs of the base feature network

are further exploited for action proposal generation.

3.2. Gaussian Kernel Learning

Given the feature map output from the base feature net-

work, a natural way for one-stage action localization is to

stack 1D temporal convolutional layers (anchor layers) to

generate proposals (anchors) for classification and bound-

ary regression. This kind of structure with predetermined

temporal scale in each anchor layer can capture action pro-

posals whose temporal intervals are well aligned with the

size of receptive fields, however, posts difficulty to the de-

tection of proposals with various length. The design limits

the utility on localizing actions with complex variations.

To address this issue, we introduce temporal Gaussian

kernel to dynamically control the temporal scales of propos-

als in each feature map. In particular, as shown in Figure
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Figure 3. Visualization of Gaussian Kernel Grouping.

2, eight 1D temporal convolutional layers (anchor layers)

are first cascaded for action proposal generation in different

temporal resolution. For each cell in the feature map of the

anchor layer, a Gaussian kernel is learnt to predict a particu-

lar interval of an action proposal corresponding to that cell.

Formally, we denote the feature map of j-th convolutional

layer as {fi}
T j−1
i=0 ∈ R

T j×Dj

, 1 ≤ j ≤ 8, where T j and

Dj are the temporal length and feature dimension of the

feature map. For a proposal P j
t whose center location is t,

we leverage its temporal scale by a Gaussian kernel Gj
t . The

standard deviation σj
t of Gj

t is learnt via a 1D convolutional

layer on a 3 × Dj feature map cell, and the value is con-

strained within the range (0, 1) through a sigmoid operation.

The weights of the Gaussian kernel Gj
t are defined as

W j
t [i] =

1

Z
exp(−

(pi − µt)
2

2σj
t

2
) ,

s.t. pi =
i

T j
, µt =

t

T j
,

i ∈ {0, 1, ..., T j − 1}, t ∈ {0, 1, ..., T j − 1},

(1)

where Z is the normalizing constant. Taking the spirit from

the theory that the σj
t could be considered as a measure of

width (Root Mean Square width, RMS) in Gaussian kernel

Gj
t , we utilize σj

t as the interval measure of action proposal

P j
t . Specifically, the σj

t can be multiplied with a certain

ratio to represent the default temporal boundary:

ac = (t+ 0.5)/T j , aw = rd · 2σj
t/T

j , (2)

where ac and aw are the center location and width of de-

fault temporal boundary and rd represents temporal scale

ratio. The W j
t is also utilized for feature aggregation with

a pooling mechanism to generate action proposals, which

will be elaborated in Section 3.4.

Compared to the conventional 1D convolutional anchor

layer which fixes the temporal scale as 1/T j in j-th layer,

ours employs the dynamic temporal scales by leveraging

the learned Gaussian kernel of each proposal to explore the

action instances with complex variations.

3.3. Gaussian Kernel Grouping

Through learning temporal Gaussian kernels, the tempo-

ral scales of most action instances can be characterized with

Algorithm 1 Gaussian Kernel Grouping

Input:

Original Gaussian kernel set S = {G(ti, σi)}
T−1
i=0 ;

Intersection over Union (IoU) threshold ε;
Output:

Mixed Gaussian kernel set G;
1: Choose the beginning grouping position p = 0;
2: Initialize mixed Gaussian kernel set G = ∅;
3: Initialize base Gaussian kernel Gbs = G(tp, σp), the ending grouping

position z = p + 1;
4: while p ≤ T − 1 do
5: Compute IoU value O between kernel Gbs and G(tz, σz);
6: if O > ε then
7: Group Gbs and G(tz, σz) to G′ according to Eq.(3), replace Gbs

with the new mixed kernel G′;
8: else
9: Add kernel Gbs to mixed kernel set G;

10: p = z, Gbs = G(tp, σp);
11: end if
12: z = z + 1;
13: end while
14: return G

the predicted standard deviation. However, if the learned

Gaussian kernels span and overlap with each other, that may

implicitly indicate a long action centered at a flexible posi-

tion among these Gaussian kernels. In other words, utilizing

the center locations of these original Gaussian kernels to

represent this long proposal may not be appropriate. To

alleviate this issue, we attempt to generate a set of new

Gaussian kernels to predict center location and temporal

scales of proposals for long action. Inspired by the idea of

temporal actionness grouping in [43], we propose a novel

Gaussian Kernel Grouping algorithm for this target.

Figure 3 illustrates the process of temporal Gaussian

Kernel Grouping. Given two adjacent Gaussian kernels

G(t1, σ1) and G(t2, σ2) whose center location and standard

deviation are t and σ, we compute the temporal intersection

and union between two kernels by using the width aw of

the default temporal boundary defined in Section 3.2. In

upper part of Figure 3, the length of temporal intersection

between two kernels is H , while the length of union is L. If

the Intersection over Union (IoU) between the two kernels

H/L exceeds a certain threshold ε, we merge them into one

Gaussian kernel (bottom part of Figure 3). The new mixed

Gaussian kernel is formulated as follows

W [i] =
1

Z
exp(−

(pi − µ′)2

2σ′2
) ,

s.t. pi =
i

T
, µ′ =

t1 + t2
2 · T

, σ′ =
L

2
,

i ∈ {0, 1, ..., T − 1}.

(3)

In each feature map, Algorithm 1 details the grouping

steps to generate merged kernels.

3.4. Gaussian Pooling

With the learned and mixed Gaussian kernels, we cal-

culate the weighted sum of the feature map based on the

values in Gaussian curve and obtain the aggregated feature

F . Specifically, given the weighting coefficients W j
t of
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Figure 4. Comparisons of manual extension plus average-pooling

strategy (left) and Gaussian pooling strategy (right) for involving

temporal contextual information of action proposals.

Gaussian kernel Gj
t at center location t in j-th layer, the

aggregated feature for proposal P j
t is formulated as

F j
t =

1

T j

∑T j
−1

i=0

W j
t [i] · fi, (4)

where the representation F j
t is further exploited for the ac-

tion classification and temporal boundary regression.

The above Gaussian pooling mechanism inherently takes

the contextual contributions around each action proposal

into account. In contrast to the manual extension plus

average-pooling strategy to capture video context informa-

tion (left part of Figure 4), ours provides an elegant alter-

native to adaptively learn the weighted representation (right

part of Figure 4) based on the importance.

3.5. Network Optimization

Given the representation of each proposal from Gaussian

pooling, three 1D convolutional layers are utilized in paral-

lel to predict action classification scores, localization pa-

rameters and overlap parameter, respectively. Action clas-

sification scores ya = [ya0 , y
a
1 , ..., y

a
C ] indicate the probabil-

ities belonging to C action classes plus one “background”

class. Localization parameters (∆c,∆w) denote temporal

offsets relative to default center location ac and width aw,

which are leveraged to adjust the temporal coordinate

ϕc = ac + α1aw∆c and ϕw = aw exp (α2∆w) , (5)

where ϕc, ϕw are refined center location and width of the

proposal. The α1, α2 are utilized to control the impact of

temporal offsets. In particular, we define an overlap param-

eter yov to represent the precise IoU prediction of the pro-

posal, which benefits the proposal re-ranking in prediction.

In the training stage, we accumulate all the proposals

from Gaussian pooling and produce the action instances

through prediction layer. The overall training objective in

our GTAN is formulated as a multi-task loss by integrating

action classification loss (Lcls) and two regression losses,

i.e., localization loss (Lloc) and overlap loss (Lov):

L = Lcls + βLloc + γLov, (6)

where β and γ are the trade-off parameters. Specifically, we

measure the classification loss Lcls via the softmax loss:

Lcls = −

C
∑

n=0

In=c log(y
a
n), (7)

where indicator function In=c = 1 if n equals to ground

truth action label c, otherwise In=c = 0. We denote giou as

the IoU between default temporal boundary of this proposal

and its corresponding closest ground truth. If the giou of this

proposal is larger than 0.8, we set it as a foreground sample.

If giou is lower than 0.3, it will be set as background sample.

The ratio between foreground and background samples is

set as 1.0 during training. The localization loss is devised

as Smooth L1 loss [10] (SL1) between the predicted fore-

ground proposal and the closest ground truth instance of the

proposal, which is computed by

Lloc = SL1(ϕc − gc) + SL1(ϕw − gw), (8)

where gc and gw represents the center location and width

of the proposal’s closest ground truth instance, respectively.

For overlap loss, we adopt the mean square error (MSE)

loss to optimize it as follows:

Lov = (yov − giou)
2. (9)

Eventually, the whole network is trained in an end-to-end

manner by penalizing the three losses.

3.6. Prediction and Post­processing

During prediction of action localization, the final ranking

score yf of each candidate action proposal depends on both

action classification scores ya and overlap parameter yov:

yf = max(ya) · yov. (10)

Given the predicted action instance φ = {ϕc, ϕw, Ca, yf}
with refined boundary (ϕc, ϕw), predicted action label Ca,

and ranking score yf , we employ the soft non-maximum

suppression (soft-NMS) [1] for post-processing. In each

iteration of soft-NMS, we represent the action instance with

the maximum ranking score yfm as φm. The ranking score

yfk of other instance φk will be decreased or not, according

to the IoU computed with φm:

y′

fk
=







yfk , if iou(φk, φm) < ρ

yfk · e
−

iou(φk,φm)2

ξ , if iou(φk, φm) ≥ ρ

, (11)

where ξ is the decay parameter and ρ is the NMS threshold.

4. Experiments

We empirically verify the merit of our GTAN by con-

ducting the experiments of temporal action localization on

two popular video recognition benchmarks, i.e., Activi-

tyNet v1.3 [13] and THUMOS14 [16].

4.1. Datasets

The ActivityNet v1.3 dataset contains 19,994 videos in

200 classes collected from YouTube. The dataset is divided

into three disjoint subsets: training, validation and testing,
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Table 1. The details of 1D temporal convolutional (anchor) layers.

RF represents the size of receptive fields.

id type kernel size #channels #stride RF

1 conv_a1 3 512 2 11

2 conv_a2 3 512 2 19

3 conv_a3 3 1024 2 35

4 conv_a4 3 1024 2 67

5 conv_a5 3 2048 2 131

6 conv_a6 3 2048 2 259

7 conv_a7 3 4096 2 515

8 conv_a8 3 4096 2 1027

by 2:1:1. All the videos in the dataset have temporal anno-

tations. The labels of testing set are not publicly available

and the performances of action localization on ActivityNet

dataset are reported on validation set. The THUMOS14

dataset has 1,010 videos for validation and 1,574 videos for

testing from 20 classes. Among all the videos, there are 220

and 212 videos with temporal annotations in validation and

testing set, respectively. Following [43], we train the model

on validation set and perform evaluation on testing set.

4.2. Experimental Settings

Implementations. We utilize Pseudo-3D [26] network

as our 3D backbone. The network input is a 16-frame

clip and the sample rate of frames is set as 8. The 2,048-

way outputs from pool5 layer are extracted as clip-level

features. Table 1 summarizes the structures of 1D anchor

layers. Moreover, we choose three temporal scale ratios

{rd}
3
d=1 = [20, 21/3, 22/3] derived from [22]. The IoU

threshold ε in Gaussian grouping is set as 0.7 by cross val-

idation. The balancing parameters β and γ are also deter-

mined on a validation set and set as 2.0 and 75. ξ and ρ are

set as 0.8 and 0.75 in soft-NMS. The parameter α1 and α2

are all set as 1.0 by cross validation. We implement GTAN

on Caffe [15] platform. In all the experiments, our networks

are trained by utilizing stochastic gradient descent (SGD)

with 0.9 momentum. The initial learning rate is set as 0.001,

and decreased by 10% after every 2.5k iterations on THU-

MOS14 and 10k iterations on ActivityNet. The mini-batch

size is 16 and the weight decay parameter is 0.0001.

Evaluation Metrics. We follow the official evaluation

metrics in each dataset for action detection task. On Activ-

ityNet v1.3, the mean average precision (mAP) values with

IoU thresholds between 0.5 and 0.95 (inclusive) with a step

size 0.05 are exploited for comparison. On THUMOS14,

the mAP with IoU threshold 0.5 is measured. We evaluate

performances on top-100 and top-200 returned proposals in

ActivityNet v1.3 and THUMOS14, respectively.

4.3. Evaluation on Temporal Action Proposal

We first examine the performances on temporal action

proposal task, which is to only assess the boundary qual-

ity of action proposals, regardless of action classes. We

compare the following advanced approaches: (1) Structure

Segment Network (SSN) [43] generates action proposals
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Figure 5. (a) Recall-IoU and (b) AR-AN curve on ActivityNet.

Table 2. AR and AUC values on action proposal. IoU threshold:

[0.5:0.05:1.0] for THUMOS14, [0.5:0.05:0.95] for ActivityNet.

Approach
THUMOS14 ActivityNet ActivityNet (test server)

AR AR AUC AUC

SST [3] 37.9 - - -

CTAP [7] 50.1 73.2 65.7 -

BSN [21] 53.2 74.2 66.2 66.3

GTAN 54.3 74.8 67.1 67.4

by temporal actionness grouping. (2) Single Shot Action

Detection (SSAD) [19] is the 1D variant version of Sin-

gle Shot Detection [23], which generates action propos-

als by multiple temporal anchor layers. (3) Convolution-

De-Convolution Network (CDC) [29] builds a 3D Conv-

Deconv network to precisely localize the boundary of action

instances at frame level. (4) Boundary Sensitive Network

(BSN) [21] locates temporal boundaries with three action-

ness curves and reranks proposals with neural networks. (5)

Single Stream Temporal action proposal (SST) [3] build-

s a RNN-based action proposal network, which could be

implemented in a single stream over long video sequences

to produce action proposals. (6) Complementary Tempo-

ral Action Proposal (CTAP) [7] balances the advantages

and disadvantages between sliding window and actionness

grouping approaches for final action proposal.

We adopt the standard metric of Average Recall in differ-

ent IoU (AR) for action proposal on both datasets. More-

over, following the official evaluations in ActivityNet, we

plot both Recall-IoU curve and Average Recall vs. Average

Number of proposals per video (AR-AN) curve in Figure

5. In addition to AR metric, the area under AR-AN curve

(AUC) is also reported in Table 2 as AUC is the measure on

test server of ActivityNet. Overall, the performances across

different metrics and two datasets consistently indicate that

our GTAN leads to performance boost against baselines.

In particular, AR of GTAN achieves 54.3% and 74.8% on

THUMOS14 and ActivityNet respectively, making the ab-

solute improvement over the best competitor BSN by 1.1%

and 0.6%. GTAN surpasses BSN by 1.1% in AUC when

evaluating on online ActivityNet test server. The results

demonstrate the advantages of exploiting temporal structure

for localizing actions. Furthermore, as shown in Figure 5,

the improvements are constantly attained across different

IoU. In terms of AR-AN curve, GTAN also exhibits better
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Figure 6. Visualization of action localization on a video example from ActivityNet by GTAN. The Gaussian kernels are learnt on the outputs

of “conv_a5” layer. The second and third kernels are mixed into a larger one. The default boxes (DB) are predicted by Gaussian kernels.

Table 3. Performance contribution of each design in GTAN.

Approach THUMOS14 ActivityNet v1.3

Fixed Scale X X

Gaussian Kernel X X X X

Gaussian Grouping X X

mAP 33.5 37.1 38.2 29.8 31.6 34.3

Table 4. The evaluations of Gaussian grouping on actions with

different lengths. GTAN− excludes Gaussian grouping in GTAN.

Approach
THUMOS14 ActivityNet v1.3

≥ 128 All ≥ 2048 All

GTAN− 22.1 37.1 49.4 31.6

GTAN 25.9 38.2 54.2 34.3

performance on different number of top returned proposal-

s. Even in the case when only less than 10 proposals are

returned, GTAN still shows apparent improvements, indi-

cating that GTAN is benefited from the mechanism of dy-

namically optimizing temporal scale of each proposal and

the correct proposals are ranked at the top.

4.4. Evaluation on Gaussian Kernel and Grouping

Next, we study how each design in GTAN influences the

overall performance on temporal action localization task.

Fixed Scale simply employs a fixed temporal interval for

each cell or anchor in an anchor layer and such way is

adopted in SSAD. Gaussian Kernel leverages the idea of

learning one Gaussian kernel for each anchor to model tem-

poral structure of an action and dynamically predict tempo-

ral scale of each action proposal. Gaussian Grouping further

mixes multiple Gaussian kernels to characterize action pro-

posals with various length. In the latter two cases, Gaussian

pooling is utilized to augment the features of each anchor

with contextual information.

Table 3 details the mAP performances by considering

one more factor in GTAN on both datasets. Gaussian Kernel

successfully boosts up the mAP performance from 33.5%

to 37.1% and from 29.8% to 31.6% on THUMOS14 and

ActivityNet v1.3, respectively. This somewhat reveals the

weakness of Fixed Scale, where the temporal scale of each

anchor is independent of temporal property of the action

proposal. Gaussian Kernel, in comparison, models tem-
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Figure 7. (a) AUC and (b) Average mAP performances of SSAD

and GTAN with different number of anchor layers on temporal

action proposal and localization tasks in ActivityNet.

poral structure and predicts a particular interval for each

anchor on the fly. As such, the temporal localization or

boundary of each action proposal is more accurate. More-

over, the features of each action proposal are simultaneous-

ly enhanced by contextual aggregation through Gaussian

pooling and lead to better action classification. Gaussian

grouping further contributes a mAP increase of 1.1% and

2.7%, respectively. The results verify the effectiveness and

flexibility of mixing multiple Gaussian kernels to capture

action proposals with arbitrary length. To better validate

the impact of Gaussian grouping, we additionally evaluate

GTAN on long action proposals. Here, we consider actions

longer than 128 frames in THUMOS14 and 2048 frames in

ActivityNet v1.3 as long actions, since the average duration

of action instances in THUMOS14 is ∼4 seconds which

is much smaller than that (∼50 seconds) of ActivityNet.

Table 4 shows the mAP comparisons between GTAN and

its variant GTAN− which excludes Gaussian grouping. As

expected, larger degree of improvement is attained on long

action proposals by involving Gaussian grouping.

4.5. Evaluation on the Number of Anchor Layers

In existing one-stage methods, e.g., SSAD, temporal s-

cale is fixed in each anchor layer and the expansion of

multiple temporal scales is implemented through increasing

the number of anchor layers. Instead, our GTAN learns
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Table 5. Performance comparisons of temporal action detection on

THUMOS14, measured by mAP at different IoU thresholds α.

THUMOS14, mAP@α
Approach 0.1 0.2 0.3 0.4 0.5

Two-stage Action Localization

Wang et.al. [35] 18.2 17.0 14.0 11.7 8.3

FTP [14] - - - - 13.5

DAP [5] - - - - 13.9

Oneata et.al. [25] 36.6 33.6 27.0 20.8 14.4

Yuan et.al. [41] 51.4 42.6 33.6 26.1 18.8

S-CNN [30] 47.7 43.5 36.3 28.7 19.0

SST [3] - - 37.8 - 23.0

CDC [29] - - 40.1 29.4 23.3

TURN [8] 54.0 50.9 44.1 34.9 25.6

R-C3D [38] 54.5 51.5 44.8 35.6 28.9

SSN [43] 66.0 59.4 51.9 41.0 29.8

CTAP [7] - - - - 29.9

BSN [21] - - 53.5 45.0 36.9

One-stage Action Localization

Richard et.al. [28] 39.7 35.7 30.0 23.2 15.2

Yeung et.al. [40] 48.9 44.0 36.0 26.4 17.1

SMS [42] 51.0 45.2 36.5 27.8 17.8

SSAD [19] 50.1 47.8 43.0 35.0 24.6

SS-TAD [2] - - 45.7 - 29.2

GTAN (C3D) 67.2 61.1 56.9 46.5 37.9

GTAN 69.1 63.7 57.8 47.2 38.8

one Gaussian kernel for each anchor in every anchor lay-

er and dynamically predicts temporal scale of the action

proposal corresponding to each anchor. The grouping of

multiple Gaussian kernels makes the temporal scale more

flexible. Even with a small number of anchor layers, our

GTAN should be more responsible to localize action pro-

posals with various length in theory. Figure 7 empirically

compares the performances between SSAD and our GTAN

on ActivityNet v1.3 when capitalizing on different number

of anchor layers. As indicated by the results, GTAN consis-

tently outperforms SSAD across different depths of anchor

layers from 4 to 8 on both temporal action proposal and

localization tasks. In general, more anchor layers provide

better AUC and mAP performances. It is expected that the

performance of SSAD decreases more sharply than that of

GTAN when reducing the number of anchor layers. In the

extreme case of 4 layers, GTAN still achieves 26.77% in

average mAP while SSAD only reaches 5.12%, which again

confirms the advantage of exploring temporal structure and

predicting temporal scale of action proposals.

4.6. Comparisons with State­of­the­Art

We compare with several state-of-the-art techniques on

THUMOS14 and ActivityNet v1.3 datasets. Table 5 list-

s the mAP performances with different IoU thresholds on

THUMOS14. For fair comparison, we additionally imple-

ment GTAN using C3D [34] as 3D ConvNet backbone. The

results across different IoU values consistently indicate that

GTAN exhibits better performance than others. In particu-

lar, the mAP@0.5 of GTAN achieve 37.9% with C3D back-

bone, making the improvements over one-stage approaches

SSAD and SS-TAD by 13.3% and 8.7%, which also employ

C3D. Compared to the most advanced two-stage method B-

Table 6. Comparisons of temporal action detection on ActivityNet.

ActivityNet v1.3, mAP

Approach
validation testing

0.5 0.75 0.95 Average Average

Wang et.al. [36] 45.11 4.11 0.05 16.41 14.62

Singh et.al. [31] 26.01 15.22 2.61 14.62 17.68

Singh et.al. [32] 22.71 10.82 0.33 11.31 17.83

CDC [29] 45.30 26.00 0.20 23.80 22.90

TAG-D [37] 39.12 23.48 5.49 23.98 26.05

SSN [43] - - - - 28.28

Lin et.al. [20] 48.99 32.91 7.87 32.26 33.40

BSN [21] 52.50 33.53 8.85 33.72 34.42

GTAN 52.61 34.14 8.91 34.31 35.54

SN, our GTAN leads to 1.0% and 1.9% performance gains

with C3D and P3D backbone, respectively. The superior

results of GTAN demonstrate the advantages of modeling

temporal structure of actions through Gaussian kernel.

On ActivityNet v1.3, we summarize the performance

comparisons on both validation and testing set in Table 6.

For testing set, we submitted the results of GTAN to online

ActivityNet test server and evaluated the performance on

the localization task. Similarly, GTAN surpasses the best

competitor BSN by 0.6% and 1.1% on validation and testing

set, respectively. Moreover, our one-stage GTAN is poten-

tially simpler and faster than two-stage solutions, and tends

to be more applicable to action localization in videos.

Figure 6 showcases temporal localization results of one

video from ActivityNet. The Gaussian kernels and grouping

learnt on the outputs of “conv_a5” layer are also visualized.

As shown in the Figure, Gaussian kernels nicely capture the

temporal structure of each action proposal and predict accu-

rate default boxes for the final regression and classification.

5. Conclusions

We have presented Gaussian Temporal Awareness Net-

works (GTAN) which aim to explore temporal structure of

actions for temporal action localization. Particularly, we

study the problem of modeling temporal structure through

learning a set of Gaussian kernels to dynamically predict

temporal scale of each action proposal. To verify our claim,

we have devised an one-stage action localization framework

which measures one Gaussian kernel for each cell in ev-

ery anchor layer. Multiple Gaussian kernels could be even

mixed for the purpose of representing action proposals with

various length. Another advantage of using Gaussian kernel

is to enhance features of action proposals by leveraging con-

textual information through Gaussian pooling, which bene-

fits the final regression and classification. Experiments con-

ducted on two video datasets, i.e., THUMOS14 and Activi-

tyNet v1.3, validate our proposal and analysis. Performance

improvements are also observed when comparing to both

one-stage and two-stage advanced techniques.
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