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Part-based methods for person re-identification have been widely studied. In existing part-based meth-
ods, although multiple parts are explored, only coarse-grained features of these parts are utilized. Thus,
too much fine-grained information is discarded, which limits their ability to extract detailed discrimina-
tive features. To tackle this problem, we propose a novel person re-identification network to learn dis-
criminative features across multiple granularities from body regions which are also multi-grained.
Specifically, we detect multi-granularity body regions at different stages of a backbone network, and
multi-granularity features are learned from body regions with corresponding granularities. To overcome
the severe mismatching problem of fine-grained regions and to learn discriminative features, the detec-
tion of multi-granularity body regions and the learning of multi-granularity features are jointly opti-
mized. This joint optimization pushes the learned features concentrating on body regions. Moreover,
with the body regions well located, the multi-granularity features can be well aligned. Extensive exper-
iments on four popular datasets show that our method is the state-of-the-art in recent years.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Person re-identification (ReID) aims at identifying specific per-
son from a set of surveillance cameras across time. It plays a signif-
icant role in many vision-related applications, e.g., video
surveillance, content-based video retrieval, and identification from
CCTV cameras. Compared to other computer vision tasks, ReID is of
great challenge due to differences of background, deviations in
shape, and occlusion of the subjects [1,2].

Image representation learning plays a crucial role in person
ReID. As shown in Fig. 1(a), images are usually fed to deep convo-
lutional neural networks (CNNs) to extract the final representation.
However, the final features are often too coarse and lose too much
detail information. To solve this problem, many part-based models
have been proposed [2–5]. By learning discriminative local features
as a complement to global features, they can extract additional rich
features and thus achieve better ReID performance.

According to the local region generation way, part-based mod-
els can be divided into three categories: pose-based, attention-
based, and stripe-based. In pose-based methods, prior knowledge,
e.g., pose estimation or human segmentation, is used to locate local
regions of a human body accurately [6,2,7–9]. These methods han-
dle local regions of a human body by extra convolutional branches.
The attention-based methods learn attention masks to select a
focused foreground [10–12]. In stripe-based category, the feature
maps are split into several predefined horizontal stripes [4,13–
15]. However, they all perform ReID with the features from the last
layer, which have coarse granularity and contain limited local
information. Furthermore, these methods are based on the
assumption that person images are well aligned, so the corre-
sponding stripes can be matched. However, misalignment is very
common in person ReID.

However, methods in all three categories have one common
drawback: though multiple parts/regions are explored, only
coarse-grained features of these parts are utilized, as shown in
Fig. 1(b). The local regions are first cropped either at the input
[6] or at different stages in backbone CNNs [2], and are then fed
into convolutional branches afterwards, leading to that the final
features of these regions are coarse-grained. This limits the diver-
sity and discrimination of the final features.

To tackle this problem, we propose to learn multi-granularity
features from multi-granularity body regions for person ReID. We
detect local regions across multiple granularities at different stages
of a backbone network. As shown in Fig. 1(c), we detect four fine-
grained body parts in the first stage, two body parts in the second
stage, the whole body region in the third stage, and the whole
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Fig. 1. (a): A backbone convolutional network for person ReID. (b): The green
bounding box marks the coarse-grained features used in existing part-based
models. (c): The blue bounding box marks the multi-granularity features learned
from multi-granularity body regions in our model.
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image in the forth stage. For regions in each granularity, instead of
feeding them to extra local branches afterwards, we directly apply
a feature extraction module to learn corresponding features. In this
manner, the original granularities of features are kept, and more
detail information are retained. Finally, multi-granularity features
learned from multi-granularity body regions are fused for person
ReID. Fig. 1 clearly illustrates the difference between our model
and existing part-based models.

It is worth noting that we do not simply conduct the multi-
granularity region detection and multi-granularity feature learning
in a straightforward two-stage manner. There are two challenging
problems in our task. First, when fine-grained features are used,
the misalignment becomes a big problem, especially for fine-
grained regions, since the fine-grained features are extracted from
shallow layers in which the receptive field is small and thus are
very sensitive to translation, pose variations, etc. This may be the
reason why current works only use coarse-grained features for
all parts. Second, the fine-grained features are very sensitive to
noises or other image content which are not helpful for ReID. Thus,
we face the problem of how to ensure the extracted fine-grained
features are discriminative for person ReID. To tackle these prob-
lems, we design a model to jointly optimize the multi-
granularity region detection and multi-granularity feature
learning.

In summary, the contributions of this paper are threefold:

� We learn features across multiple granularities from the back-
bone network without feeding them to extra local branches.
In this manner, the final features are diverse: both fine-
grained features with rich details and coarse-grained abstract
features are well reserved.

� Our multi-granularity features are learned from multi-
granularity parts. The location of multi-granularity parts and
the learning of multi-granularity features are jointly optimized.
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This joint optimization pushes the learned features focusing on
human body regions. Moreover, with the multi-granularity
parts accurately located, the multi-granularity features can be
well aligned, and the background noise can be well reduced.

� The proposed method achieves the best performance on four
person ReID datasets. Extensive experiments on these datasets
verify the effectiveness of our approach. MGRe achieves
90.1%/96.2% mAP/Rank-1 in Market1501 and 82.0%/91.3%
mAP/Rank-1 in DukeMTMC-reID.

2. Related work

Regarding discriminative feature learning for person ReID,
many methods have been proposed to enhance certain regions in
the feature maps. According to the region generation way, these
methods can be divided into three categories: pose-based, stripe-
based and attention-based.

2.1. Pose-based models

Pose-based models utilize prior pose information with the help
of extra pose estimation models or human segmentation models.
Zhao et al. first locate local body regions based on pose estimation
models and then fuse these local regions hierarchically [2]. Li et al.
extract deformable parts using spatial transform networks (STN)
[16] based on defined spatial constraints of body parts. In addition,
they proposed a gesture-based feature weighted sub-network to
learn the weight of features and then selectively fuse features. In
order to solve the problem of misalignment and posture shift of
person data, Su et al. proposed a two-stream deep convolutional
network: one for global features and the other for local features
[6]. This method enhances the feature representation of body parts
obviously. Saquib et al. utilized pose information in a rather
straightforward way [17]. They added an additional input channel
for each of the 14 main body keypoints, pushing the network to
learn posture information by itself. Meanwhile, they added a
branch to let the network to learn viewpoint information. Ustinova
et al. noticed that the last stages of the original Bilinear-CNN archi-
tecture completely removes the geometric information from con-
sideration by performing orderless pooling [18]. They achieved a
better embedding by performing bilinear pooling in a more local
way, where each pooling is confined to a predefined human body
region. To address the issue of occlusion, Gao et al. [19] proposed
a Pose-guided Visible Part Matching (PVPM) method that jointly
learns the discriminative features with pose-guided attention and
self-mines the part visibility in an end-to-end framework. Zhao
et al. utilized composite models to extract specific salience features
from different parts of the human body in an unsupervised way
[20]. Wang et al. solved the issue of occlusion in a more explicit
way[21]. They first used a CNN backbone and a key-points estima-
tion model to extract semantic local features. Then, local features
of an image were viewed as nodes of a graph and an adaptive direc-
tion graph convolutional (ADGC) layer was proposed to pass rela-
tion information between nodes. When aligning two groups of
local features from two images, they viewed it as a graph matching
problem.

2.2. Attention-based models

Attention-based models aims at eliminating the effects of back-
ground differences by learning attention masks to select a focused
foreground. Li et al. propose a harmonious attention model to inte-
grate soft pixel attention and hard regional attention [10]. Multiple
attention masks are produced in multiple stages and merged with
the final global features. An attribute attention network is pro-
posed in [11]. This method generates attention masks according
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to attribute classification [11]. It learns attribute features with ReID
features in a unified learning framework. Hou et al. proposed
interaction-and-aggregation network (IANet) that learns the atten-
tion mask by modeling geometric variations [22]. In IANet, features
are robust to body pose and scale variations. Chen et al. observed
that previously learned salient features may hinder the network
from learning other important information [23]. Thus, they intro-
duced a cascaded suppression strategy, which enables the network
to mine diverse potential useful features that be masked by the
other salient features stage-by-stage. These previous approaches
mainly learn attention using local convolutions, ignoring the min-
ing of knowledge from global structure patterns. To address such
issue, Chen et al. proposed an effective Relation-Aware Global
Attention (RGA) module which captures the global structural infor-
mation for better attention learning [24]. For the purpose of intro-
ducing additional contextual information, Yang et al. stacked
numbers of convolutional layers in their encoder-decoder style
attention module to achieve larger receptive fields [25]. However,
most of the previous attention-based works concentrated only on
coarse or first-order attention design, e.g. spatial and channels
attention, while rarely exploring higher-order attention mecha-
nism. To solve this problem, Chen et al. [26] and Xia et al. [27] utl-
ized high-order attention information to produce the
discriminative attention proposals. Chen et al. [26] proposed the
High-Order Attention (HOA) module to capture the subtle differ-
ences among pedestrians. Xia et al. [27] proposed a novel attention
mechanism to directly model long-range relationships via second-
order feature statistics.

2.3. Stripe-based models

Stripe-based models split an image into predefined patches. Sun
et al. [4] propose a simple but effective approach: part-based con-
volutional baseline (PCB). They cut the high-level feature map into
six stripes evenly and the re-assign outliers in each part using a
refined part pooling methods. Inspired by PCB, Wang et al. [14]
proposed a multiple granularity network (MGN). MGN has three
branches on top of the network: one branch is for global feature
and the rest two branches are for local representations for person
re-identification. However, MGN only splits the final coarse-
grained feature maps into stripes. Based on PCB, Zheng et al. fur-
ther integrate the gradual cues between local and global informa-
tion through pyramidal branches [15].
3. Proposed method

In previous part-basedmethods, althoughmultiple parts are uti-
lized, only the most coarse-grained features of these parts are used
torepresentan image forReID, i.e., theoutputsof the last convolution
layer of the feature extraction net. These coarse features are highly
abstract and robust, but they discard toomuchdetailed information.
In this paper, we propose a novelmethod termedmultiple granular-
ities ReID (MGRe). As shown in Fig. 2, features and regionswith fine-
to-coarse granularities are jointly learned.

3.1. Network architecture

As shown in Fig. 2, our backbone is a ResNet-50 with four resid-
ual blocks. We locate multi-granularity body regions and extract
multi-granularity features from the output feature maps of these
four residual blocks in a fine-to-coarse manner via joint
optimization.

For each of the first three residual blocks, its output feature
maps are fed into a location module. The location module aims
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to locate body regions with different granularities. Four fine-
grained body regions (head, left half of the torso, right half of the
torso, and legs) are detected after residual block-1, two coarser
body regions (upper and lower body) are detected after residual
block-2, and the whole body region is detected after residual
block-3. The whole image is utilized after residual block-4; thus,
no location module is needed in this stage.

After the local regions are detected, a sampling module is
applied to sample corresponding feature maps for each region.
The sampled feature maps of all regions in each stage are concate-
nated via embedding operations and then used for person re-
identification. The body region location and person re-
identification are jointly trained. The final loss is the sum of three
location loss terms and four ReID loss terms.

Since the fine-grained feature maps of the first two residual
blocks lack semantic information and translation invariance, we
enhance them by adding high-level coarse-grained feature maps.
As shown in Fig. 2, we perform bilinear upsampling and convolu-
tion operations on the most coarse-grained feature maps output
by residual block-4 to ensure their size and number of channels
are the same as those of the two fine-grained feature maps. Then,
they are added up in an element-wise manner. In this way, the two
fine-grained feature maps are semantically guided.

Location Module. The location module automatically detects dif-
ferent body regions. The location of each body region is specified
by 4 independent parameters: DCx;DCy; l1; l2

� �
. ðDCx;DCyÞ are the

offsets between the predicted center and the predefined center of
the body region. The predefined centers of body regions are set
according to human geometry, as reported in Table 1. l1 and l2
are the width and height of the region respectively.

Given a feature map, we apply a block with convolution, ReLU,
batch normalization, max pooling and fully connected layers to
infer the following parameters:

tanh�1 DCxð Þ; tanh�1 DCy
� �

; log l1; log l2
� �

¼ LðGÞ; ð1Þ

where L denotes the location module and G is the input feature
map. DCx;DCy

� �
are scaled to ð�1;1Þ. The width and height are out-

put on log scales to ensure positivity. All of these predicated param-
eters are vectors because multiple body regions might be located in
one location module.

For location loss, we use pseudo labels predicted by a pose
estimation model [28]. The pose estimation is not needed in test-
ing. The joint optimization of location and ReID pushes learned
features focusing on human body regions. Given an image, the
coordinates of 17 human joint points are predicted. These 17 joint
points are denoted as I, and their horizontal and vertical coordi-
nates are denoted as X ¼ xi; i 2 If gand Y ¼ yi; i 2 If g, respec-
tively. Among these 17 joint points, points that belong to body
region p constitute the set Ip. Then, the horizontal and vertical
coordinates of these joints are denoted as Xp ¼ xi; i 2 Ip

� �
and

Yp ¼ yi; i 2 Ip
� �

, respectively. As is shown in Eq. (1), the location
module predicts the offsets of the center point and the length of
the body regions. Then, the four corners of the predicted region
can be determined:

xmin ¼ ðcx þ DcxÞ �W � l1=2
xmax ¼ ðcx þ DcxÞ �W þ l1=2
ymin ¼ ðcy þ DcyÞ � H � l2=2
ymax ¼ ðcy þ DcyÞ � H þ l2=2

8>>><
>>>:

ð2Þ

where W and H are the width and height of the input feature map
respectively. Then the location loss can be written as the square of
the difference between the locations predicted by our location mod-
ule and HRNet:



Table 1
Prior settings of body regions. Cx and Cy are the predefined centers, which are scaled to ð0;1Þ. N and M are the height and width of sampled feature maps, respectively.

Region Stage Cx Cy N M

head 1 1/2 1/12 8 8
half left torso 1 1/2 1/3 32 16
half right torso 1 1/2 1/3 32 16

legs 1 1/2 3/4 24 32
upper body 2 1/2 1/3 16 16
lower body 2 1/2 3/4 16 16
whole body 3 1/2 1/2 16 8

Fig. 2. The architecture of our proposed Multiple Granularities ReID (MGRe). The backbone network is a ResNet-50 that has four residual blocks. We extract features in four
stages, i.e., the output feature maps of four residual blocks. In addition, two fine-grained feature maps in the backbone are fused with the upsampled feature maps. (Example
image copyright Mihai Stefan (CC0 license)).
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Lloc ¼ xmin �min Xp
� �þ 0:05

� 	2
þ xmax �max Xp

� �� 0:05
� 	2

þ ymin �min Yp
� �þ 0:05

� 	2
þ ymax �max Yp

� �� 0:05
� 	2

;

ð3Þ

where 0.05 is the boundary margin.
Sampling Module. The sampling module samples corresponding

feature maps for each region. It has two inputs: location parame-
ters and a feature map. The sampling module samples the corre-
sponding region in the given feature map to a partial feature
map with a specific size, which are shown in Table 1.

Inspired by STN [29], the differentiable sampling module is
designed. The transformation between input coordinates and out-
put coordinates according to the four location parameters is calcu-
lated as

xsi ¼ ðcx þ DcxÞ �W þ xti �M=2
� �� l1=M;

ysi ¼ ðcy þ DcyÞ � H þ yti � N=2
� �� l2=N;

(
ð4Þ

where ðxti ; yti Þ are the coordinates of a point in the sampled output
feature map and ðxsi ; ysi Þ are the corresponding source coordinates
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in the input feature map. W and H are the width and height of
the input feature map respectively. M and N are the width and
height of the sampled output feature map respectively. l1 and l2
are the width and height of the body region in the input feature
map. Using bilinear interpolation, the value at ðxti ; yti Þ in the output
feature map can be calculated as

Vc
i ¼

XH
n¼1

XW
m¼1

Uc
nm max 0;1� xsi �m



 

� �
max 0;1� ysi � n



 

� � ð5Þ

where Uc
nm is the value at ðn;mÞ in the c-th channel of the input fea-

ture map.
Feature Extraction Module. The feature extraction module

extracts features of the sampled partial feature maps. Each feature
extraction module is designed as one residual block. In this man-
ner, the extracted features have different granularities. Feature
extraction modules do not share weights because they are respon-
sible for extracting features with different granularities.

Embedding Operation. As illustrated in Fig. 3, we perform
embedding operations on the output feature maps of feature

extraction modules. Identification loss LID and triplet loss Ltriplet

[30,31] are used. During inference, four feature vectors in the four



Fig. 3. Illustration of embedding operations. In residual block-3 and residual block-
4, concatenation is omitted because there is only one feature map. GAP: global
average pooling. GMP: global max pooling.
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embedding operations are weighted and concatenated after nor-
malization to form the final feature:

F final ¼ ½kF1F̂1; k
F
2F̂2; k

F
3F̂3; k

F
4F̂4� ð6Þ

where kF is the weight factor for each feature vector.

3.2. Loss function

For the first three residual blocks, we have Lloc for location tasks

and LID and Ltriplet [30,31] for person ReID. Thus, the loss function for
the i-th output feature map of the first three residual blocks is

Li ¼ Lloci þ LIDi þ Ltripleti ð7Þ
After the fourth residual block, there is no location module, and the
loss function is

L4 ¼ LID4 þ Ltriplet4 ð8Þ
The final loss function can be written as:

L ¼ k
X3
i¼1

ðLloci þ LIDi þ Ltripleti Þ þ ðLID4 þ Ltriplet4 Þ ð9Þ

where k is the weight factor and i denotes the ith residual block.
4. Experiments

4.1. Datasets

We present our experiments on the following four widely used
person ReID datasets.

Market1501. This dataset [42] contains 32,668 images of 1501
identities. Bounding boxes are given by a pedestrian detector of a
deformable part model. The dataset is divided into a training set
with 12,936 images of 751 persons and a testing set of 750 persons
containing 3,368 query images and 19,732 gallery images.

DukeMTMC-reID. In this dataset [43,44], there are 1,404 iden-
tities appearing in more than two cameras and 408 identities
appears in only one camera. It is divided into a training set of
702 identities with 16,522 images and a testing set of 702 identi-
ties with 19,889 images. Only single query is supported for testing.

CUHK03. Following the new protocol similar to that of Mar-
ket1501, the CUHK03 dataset [45] is split into training set of 767
identities and testing set of 700 identities appears in only one cam-
era. This dataset has two methods of annotating bounding box,
including labeled by a human or detected by a detector.

MSMT17. This is a large-scale dataset [46] that contains
126,441 images taken by 15 cameras. This dataset is very challeng-
ing because it has both outdoor and indoor scenes. It is divided into
a training set of 32,621 images and a testing set of 93,820 images.
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4.2. Implementation details

All images are resized to 256� 128. Random flipping and eras-
ing are applied for data augmentation. Soft labels are used. We use
ResNet-50 [47] pretrained on ImageNet with instance-batch nor-
malization [48] as the base model. The Adam optimizer and warm-
ing up with a slope of 0.01 are used for training. MGRe is trained
with an initial learning rate of 0.00035. The learning rate is
decayed by 0.3 every 30 epoches from 120 to 210 epochs. We train
the model for 240 epochs in total. During inference, four 512-dim
feature vectors forms the final 2048-dim feature vector, as speci-
fied in Eq. (6). The loss is formulated as in Eq. (9). The weight fac-
tors kF and k are automatically selected on the validation set.

We follow the standard evaluation protocol in ReID. Specifically,
we adopt the cumulative matching characteristics (CMC) at Rank-1
(R-1) and mean average precision (mAP) for performance
evaluation.
4.3. Comparison with state-of-the-art approaches

MGRe is compared with 26 state-of-the-art methods proposed
in recent years to show our considerable performance advantage
over all the existing competitors. The experimental results are
summarized in Table 2. The compared methods are divided into
three categories. Methods category ‘‘Attention” learn attention
masks to enhance feature representation. Methods belong to cate-
gory ‘‘Stripe” divide the feature map of an input image into several
horizontal stripes to exploit features from multiple parts. Methods
in category ‘‘Pose” leverage the coarse pose/part semantic informa-
tion to assist ReID.

Market1501 and DukeMTMC. The results on Market1501 and
DukeMTMC are summarized in Table 2. MGRe achieves the best
mAP on Market1501 and outperforms all pose-based methods.

Our MGRe belongs to the ‘‘Pose” category and exhibits superior-
ity to all other models in this category, including Spindle, Pose-
driven, AACN, PIE, SPReID, P2-Net and DSA-reID. Spindle Net [2]
also crops human body regions in different stages, which is some-
what similar to our proposed approach. However, Spindle crops
small human body regions in coarse-grained feature maps and
crops large human body regions in fine-grained feature maps.
Moreover, only the coarse granularity features of these parts are
used in Spindle. In contrast, our MGRe crops proper-grained body
regions from corresponding-grained feature maps, and the final
features in MGRe have multiple granularities. DSA-reID achieves
the best results in this category. Our MGRe surpasses it by a large
margin, e.g., 7.7% mAP and 5.1% Rank-1 on DukeMTMC. MGRe
jointly optimizes the location of body regions and person re-
identification while DSA-reID separates these two processes. Our
joint optimization strategy on the one hand brings performance
gain and on the other hand saves inference time.

MGRe is also the state-of-the-art comparing with other two cat-
egories. The latest work SCAL [35] in category ‘‘Attention” achieves
the best performance. Our MGRe surpasses SCAL and achieves an
increase of 2.4% mAP and 2.3% Rank-1 on DukeMTMC. It worth not-
ing that st-ReID [37], the best one in category ‘‘Stripe” utilizes tem-
poral information, which is also very useful. MGRe can achieve
comparable results with st-ReID without using temporal informa-
tion. Moreover, MGRe also significantly outperforms Pyramid, the
second best one in category ‘‘Stripe”, and achieves an increase of
3.0% mAP onMarket1501. It is because Pyramid only splits the final
coarse-grained feature maps into stripes, while MGRe extracts
multi-granularity body regions from multi-granularity feature
maps.

CUHK03. The results on CUHK03 are also summarized in Table 2.
Here, both labeled and detected settings are used MGRe outper-



Table 2
Performance (%) comparison with state-of-the-art methods. Superscript * indicates models that rely on other datasets, e.g., pose estimation, human segmentation or person
attributes during training and inference. Superscript y denotes using temporal information. Our method does not need other datasets during inference. Bold numbers denote the
best performance, while numbers with underlines denote the second best.

Method Market1501 DukeMTMC CUHK03

Detected Labeled

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Attention HA-CNN [10](CVPR2018) 75.7 91.2 63.8 80.5 38.6 41.7 41.0 44.4
DuATM [32](CVPR2018) 76.6 91.4 64.6 81.8 – – – –
Mancs [33](ECCV2018) 82.3 93.1 71.8 84.9 60.5 65.5 63.9 69.0
AANet* [11](CVPR2019) 82.5 93.9 72.6 86.4 – – – –
CASN [12](CVPR2019) 82.8 94.4 73.7 88.7 68.0 73.7 64.4 71.5
IANet [22](CVPR2019) 83.1 94.4 73.4 87.1 – – – –
RGA-SC [24](CVPR2020) 88.4 96.1 – – 74.5 79.6 77.4 81.1
ABD-Net[34](ICCV2019) 88.3 95.6 78.6 89.0 – – – –
SCAL[35](ICCV2019) 89.3 95.8 79.6 89.0 68.6 71.1 72.3 74.8

Stripe Deep-Person [36](PR2020) 79.6 92.3 64.8 80.9 – – – –
PCB+RPP [4](ECCV2018) 81.6 93.8 69.2 83.3 57.5 63.7 – –
HPM [13] (AAAI2019) 82.7 94.2 74.3 86.6 – – – –
MGN [14](MM2018) 86.9 95.7 78.4 88.7 66.0 68.0 67.4 68.0
Pyramid [15](CVPR2019) 88.2 95.7 79.0 89.0 74.8 78.9 76.9 78.9

st-ReIDy [37](AAAI2019) 87.6 98.1 83.9 94.4 – – – –

Pose Spindle* [2] (CVPR2017) – 76.9 – – – – – –
Pose-driven* [38](CVPR2017) 63.4 84.1 – – – – – –
AACN*[39](ICCV2018) 66.9 85.9 59.2 76.8 – – – –
PIE* [5](TIP2019) 69.3 85.2 63.3 79.2 – – – –
SPReID* [7](CVPR2018) 81.3 92.5 71.0 84.4 – – – –

P2-Net [40](ICCV2019) 85.6 95.2 73.1 86.5 68.9 74.9 73.6 78.3

DSA-reID* [41](CVPR2019) 87.6 95.7 74.3 86.2 73.1 78.2 75.8 78.2
MGRe (ours) 90.1 96.2 82.0 91.3 79.3 81.6 82.4 84.9
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forms all other methods in three categories by a large margin. RGA-
SC [24] achieves the second best result, and our method surpasses
it by at least 4.8% and 2.0% in mAP and Rank-1 under the detected
setting, 5.0% mAP and 3.8% Rank-1 under the labeled setting. More-
over, it also significantly outperforms MGN [14] by over 10% mAP
whose motivation is somewhat similar to MGRe. The reason lies in
that MGN only utilizes multi-grained feature stripes, while MGRe
extracts multi-granularity body regions from multi-granularity
feature maps.

MSMT17.We further evaluate our method on a large-scale data-
set MSMT17. This dataset is released in 2018, therefore only a few
latest works report their results on this dataset. The results are
summarized in Table 3. Our method again outperforms all existing
methods. Although JG-Net [51] utilizes generative models to gen-
erate more training samples, MGRe still outperforms it and
achieves an increase of 10.0% mAP and 5.9% Rank-1. ABD-Net from
category ‘‘Attention” achieves the second best result on this data-
set. It applies strong orthogonal constraints to features and convo-
lution kernels of the network, leading to high computational
complexity. Similar to the results on Market1501 and
DukeMTMC-reID, MGRe again outperforms ABD-Net on this
dataset.
Table 3
Performance (%) comparison with state-of-the-art methods on MSMT17. Bold
numbers denote the best performance, while numbers with underlines denote the
second best. MGRe achieves the best performance on all datasets.

Method mAP R-1 R-5

Google [49](CVPR2015) 23.0 47.6 75.0
Pose-driven [6](CVPR2017) 29.7 58.0 73.6
GLAD [50](MM2017) 34.0 61.4 76.8
IANet [22](CVPR2019) 46.8 75.5 85.5
JG-Net [51](CVPR2019) 52.3 77.2 87.4
RGA-SC [24](CVPR2020) 57.5 80.3 –
ABD-Net [34] (ICCV2019) 60.8 82.3 90.6
MGRe (ours) 62.3 83.1 91.3
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4.4. Ablation study

To verify the effectiveness of each component and setting in
MGRe, we conduct several ablation studies on Market1501 and
DukeMTMC.

Component analysis. To investigate the effectiveness of modules
in different residual blocks, we do corresponding experiments.
Results are presented in Table 4. Baseline+i denotes modules are
inserted into the i-th block. Baseline+1+2+3 is the final MGRe. It
verifies that MGRe outperforms the baseline by a large margin.
Compared with Baseline+2+3, MGRe has certain performance
improvement in both datasets. There are two reasons for that the
improvement is slight. First, there may exist some redundant fea-
tures between Residual Block-1 and Residual Block-2/3. But com-
paring Baseline and Baseline+1, we can see performance booming.
Baseline+1 outperforms Baseline by over 3% mAP on both Mar-
ket1501 and DukeMTMC, which clearly reveals the effectiveness
of Residual Block-1. Residual Block-1 provides fine-grained fea-
tures which are helpful for differentiating some difficult pairs.
Moreover, it provides deep supervision to low-level features, thus
leading to a faster and better convergence for the network. Second,
the result of Baseline+2+3 is already very impressive, so it is diffi-
cult to achieve significant increase based on Baseline+2+3. In addi-
tion, Baseline+2 and Baseline+3 also achieve good performance. We
can conclude that modules in each block are effective. By combin-
ing features from all three blocks, MGRe (Baseline+1+2+3) achieves
the best results.

Architecture. Previous analysis show that MGRe reaches the best
performance by extracting multi-granularity features from corre-
sponding multi-granularity body regions. In order to verify the
effectiveness of the multi-granularity architecture, we change the
architecture to single-grained features and single-grained regions.

As reported in Table 5, Single-grained Features means that all of
the proposed modules, including location, sampling and FE mod-
ules are performed on the output feature maps of residual block-
4, i.e., the features are all coarse-grained. Single-grained Regions



Table 4
Evaluation (%) of components of MGRe architecture. Baseline+i denotes
inserting modules to the i-th block. Baseline+1+2+3 is the final MGRe.
Bold numbers denote the best performance, while numbers with
underlines denote the second best.

Method Market1501 DukeMTMC

mAP Rank-1 mAP Rank-1

Baseline 85.8 94.3 76.6 86.5
Baseline+1 89.0 95.4 79.7 90.1
Baseline+2 89.0 95.2 80.0 90.6
Baseline+3 88.8 95.5 80.0 90.1

Baseline+2+3 90.0 95.5 81.7 90.7
MGRe(Baseline+1+2+3) 90.1 96.2 82.0 91.3

Table 5
Evaluation (%) of effectiveness of MGRe architecture on Market1501. Single-grained
Features means all the proposed modules including location, sampling and FE
modules are performed on the 4-th block. Bold numbers denote the best performance,
while numbers with underlines denote the second best. Single-grained Regions means
only global features are extracted in all blocks.

Method mAP R-1 R-5

Single-grained Features 87.5 95.1 98.2
Single-grained Regions 89.6 95.3 98.5

MGRe 90.1 96.2 98.5

Table 6
Performance (%) with occlusion. Occlusion denotes the performance of corresponding
methods when facing with occlusion on Market1501. Superscript * represents the
results are reproduced by us for fair comparison. Bold numbers denote the best
performance, while numbers with underlines denote the second best.

Method mAP R-1

Attention ABD-Net[34]* 88.0 95.0
ABD-Net [34](occlusion)* 80.7 91.6
Decline �7.3 �4.3

Striple MGN[14]* 86.6 94.8
MGN[14](occlusion)* 77.8 90.8
Decline �8.8 �4.0

Pose MGRe 90.1 96.2
MGRe (occlusion) 85.9 94.0
Decline �4.2 �2.2

Table 7
Effectiveness (%) of joint optimization of location and ReID on Market1501. Baseline
+JO denotes that the location modules are inserted into the baseline and then is
jointly optimized. MGRe w/o JO denotes using an off-the-shelf pose-estimation model
to locate body regions. Bold numbers denote the best performance, while numbers
with underlines denote the second best.

Method mAP R-1 R-5

Baseline 85.8 94.3 98.1
Baseline +JO 86.6 95.0 98.3
MGRe w/o JO 89.5 95.6 98.5

MGRe 90.1 96.2 98.5
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means that we only extract global features in all the output feature
maps of residual blocks, i.e., the regions are all coarse-grained. The
results clearly demonstrate that MGRe outperforms other designs.
Spindle [2] and PIE [5] extract multiple body regions and then feed
them to convolution layers with the same depth, which is some-
what similar to Single-grained Features. This experiment further
verifies that our MGRe outperforms other pose-based models.
Comparing the results of MGRe to that of Single-grained Regions,
we can see that MGRe outperforms Single-grained Regions in both
mAP and Rank-1. It clearly shows the sampling modules improves
the results. The reason lies in that there exist noises in feature
maps, especially in low-level fine-grained feature maps. Moreover,
there are misalignment problems, especially for fine-grained
regions, since the fine-grained features are extracted from shallow
layers in which the receptive field is small and thus are very sensi-
tive to translation, pose variations, etc. Sampling modules can filter
out the useless noise and make the features well aligned. In addi-
tion, through experiments we find that extracting whole-image
features in the output feature map of residual block-3 can achieve
slightly better results than extracting whole-body features. The
reason may be that each pixel in high-level feature maps has large
receptive fields; thus, cropping feature maps may lose much
information.

Performance with Occlusion. When certain body regions are
occluded, pose-based methods may fail to extract features from
those regions. In Table 6, we compare the performance of MGRe
in occluded situation to the best methods in other two categories.
Because SCAL and Pyramid have not released official codes, we
choose the second best methods, e.g., ABD-Net and MGN. We ran-
domly erase the testing set with a probability of 0.5 to simulate the
occlusion. We can see that ABD-Net and MGN all decline sharply in
performance. The results clearly illustrate that our MGRe is the
most robust to occlusion. The reason lies in that with pose guid-
ance, MGRe can be aware of those occlusion. And with the joint
optimization of location and feature learning, MGRe tends to focus
on other interested areas. In the contrast, attention-based may pay
attention to those occluded areas and stripe-based methods cannot
handle body region misalignment without pose guidance.
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Effectiveness of joint optimization. To evaluate the effectiveness
of the joint optimization (JO) of the multi-granularity region detec-
tion and multi-granularity ReID feature learning, we conduct cor-
responding experiments. The results are summarized in Table 7.
1) Baseline+JO denotes inserting location modules and the location
loss to the baseline without sampling and FE modules. In other
words, Baseline+JO learns the location of human region and the
pseudo labels are given by pose-estimation method. It worth men-
tioning that Baseline+JO only utilizes the final global features, the
same as Baseline. Thus comparing Baseline+JO with Baseline, we
can clearly see pose-estimation brings improvement in the training
phase. Through learning to predict the location of human regions,
the network will pay more attention to these regions and will pro-
vide more discriminative features. 2) MGRe w/o JO denotes directly
using an off-the-shelf pose-estimation model to locate body
regions. It separates the location task and ReID feature learning
task, leading to ReID task unable to achieve performance boost
through joint optimization. We can see MGRe outperforms MGRe
w/o JO by 0.6% mAP and 0.6% Rank-1. Moreover, MGRe w/o JO relies
on pose-estimation model during test phase which can bring addi-
tional GFLOPs.



Fig. 5. The ReID performance (mAP and Rank-1 accuracy) on the Market1501
dataset with different final feature dimension.
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Visualization of Focused Regions in MGRe. Furthermore, we per-
form class activation map (CAM) [52] to visualize which regions
the networks focus on during the training stage. The results are
shown in Fig. 4. This figure clearly demonstrates that MGRe pays
more attention to more areas of the human body, while the base
model mainly focuses on some specific areas. In fine-grained fea-
ture maps (the 2nd and 3nd columns in Fig. 4), MGRe focuses on
some important local areas of the human body, while in the
coarse-grained feature maps (the 4th and 5th columns in Fig. 4),
MGRe pays attention to global areas. By synthesizing the features
with the four granularities, the final activation map (the 6th col-
umn in Fig. 4) not only focuses on global human body regions
but also notices these scattered local areas.

Feature dimension. In this subsection, we investigate the influ-
ence of the feature dimension. Experimental results with different
final feature dimension C on Market1501 dataset are shown in
Fig. 5. It is worth mentioning that our final feature is composed
of four parts, each part feature dimension accounts for a quarter
of the final feature dimension. As the figure illustrates that both
the curves of mAP and Rank-1 initially shows an upward trend
and start to decline when C exceeds 2048. When the final feature
dimension C is set to 2048, a relatively high ReID performance
can be obtained. This indicates that simply adding the feature
dimension cannot bring much performance gain and we must
ensure the diversity of features when adding the feature
dimension.

Parameter analysis. In this subsection, we investigate the influ-
ence of the weight parameter kF1 to kF4. All of them are important
for our MGRe. Firstly, grid search method was used to search the
most appropriate value on the validation set of Market1501. The
validation set is composed of 100 person IDs, split from the train-
ing set of Market1501. Because these four parameters always inter-
fere with each other, we only change one of the four parameters
Fig. 4. Comparison of class activation maps between MGRe and base model during
training stage.
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and fix the others to observe the variation. The results are shown
in Fig. 6. As shown in the figure, all of the curves of mAP increase
first and then trend downward. Meanwhile, kF2 is the most sensitive
to MGRe because its results vary the most. When
kF1 ¼ 0:35; kF2 ¼ 0:5; kF3 ¼ 0:7 and kF4 ¼ 0:8, a relatively high ReID
performance can be obtained. This verifies that both fine-grained
and coarse-grained features are significant for our model.

Comparison with large-scale networks. In this subsection, we
compare MGRe with some large-scale networks including Base-
line+ResNet and ResNest. The results are summarized in Table 8.
We can see that the MGRe has a similar computational cost with
Baseline+ResNest101 but achieves better accuracy in both datasets.
MGRe outperforms Baseline+ResNest101 by 1.1% and 1.9% mAP on
Market1501 and DukeMTMC respectively. It is worth noting that
the feature dimension of MGRe and Baseline+ResNest101 are both
2048 (MGRe concatenates four 512-d features from 4 stages). What
is more, MGRe significantly outperforms Baseline+ResNest200 and
Baseline+ResNest269 which have larger computational costs. These
experiments clearly reveal the superiority of MGRe.
5. Conclusion

In this paper, we propose a novel multiple granularities ReID
approach for learning discriminative local and global features. In
MGRe, features with fine-to-coarse granularities are learned from
corresponding fine-to-coarse grained body regions in different
stages of the backbone network. Thus, we can obtain discrimina-
tive features where both fine-grained details and coarse-grained
abstract information are learned. In addition, the location of body
region and the learning of ReID features are optimized jointly. This
joint optimization strategy on the one hand push network to focus
on human body areas and on the other hand saves inference time.
Extensive ablation studies and comparisons verify the effective-
ness of the proposed method.
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Table 8
Comparison between MGRe and large-scale networks including ResNet and ResNeSt with different layers on Market1501 and DukeMTMC. Both accuracy and computational cost
are considered. Bold numbers denote the best performance, while numbers with underlines denote the second best.

Method Market1501 DukeMTMC GFLOPs Latency(s)

mAP(%) R-1(%) mAP(%) R-1(%)

Baseline+ResNet101 86.9 94.3 77.4 87.5 6.50 1.06
Baseline+ResNet152 87.3 94.6 78.0 87.6 8.95 1.85
Baseline+ResNeSt101 89.0 95.6 80.1 89.5 7.87 2.19

Baseline+ResNeSt200 88.8 95.7 79.9 89.4 12.61 2.37

Baseline+ResNeSt269 86.1 95.2 77.3 88.3 18.06 4.12
MGRe 90.1 96.2 82.0 91.3 7.89 1.79

Fig. 6. Experimental results (mAP) on Market1501 dataset when parameter kF varies.
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