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Abstract
We study the problem of constructing black-box
adversarial attacks, where no model information
is revealed except for the feedback knowledge
of the given inputs. To obtain sufficient knowl-
edge for crafting adversarial examples, previous
methods query the target model with inputs that
are perturbed with different searching directions.
However, these methods suffer from poor query
efficiency since the employed searching directions
are sampled randomly. To mitigate this issue, we
formulate the goal of mounting efficient attacks as
an optimization problem in which the adversary
tries to fool the target model with a limited num-
ber of queries. Under such settings, the adversary
has to select appropriate searching directions to
reduce the number of model queries. By solving
the efficient-attack problem, we find that we need
to distill the knowledge in both the path of the
adversarial examples and the path of the search-
ing directions. Therefore, we propose a novel
framework, dual-path distillation, that utilizes the
feedback knowledge not only to craft adversarial
examples but also to alter the searching directions
to achieve efficient attacks. Experimental results
suggest that our framework can significantly in-
crease the query efficiency.

1. Introduction
Recent studies have shown that neural networks exhibit vul-
nerability to adversarial examples (Szegedy et al., 2014),
which are constructed to fool models by adding impercep-
tible perturbations to normal examples. A host of methods
have been developed to craft adversarial examples, and
they can be utilized to analyze the weakness of machines
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(Athalye et al., 2018), evaluate model robustness (Carlini &
Wagner, 2017; Moosavi-Dezfooli et al., 2016) and devise
robust neural networks (Goodfellow et al., 2015; Madry
et al., 2018). However, most of them are white-box attacks
where the target models are transparent to the adversary.
Black-box attacks can be more practical and valuable in
real-world applications as long as the intrinsic details of the
black box can be omitted.

From the view of an attack, accessing all the information of
the target model may not be realistic in many real-world sit-
uations (Ilyas et al., 2018). In restrictive black-box settings,
some works (Moosavi-Dezfooli et al., 2016; Dong et al.,
2018; Poursaeed et al., 2018; Papernot et al., 2017; Zhang
et al., 2020) build a transparent surrogate model to generate
adversarial examples to attack the target, which are termed
transfer-based attacks. Recent works (Bhagoji et al., 2018;
Chen et al., 2017; Tu et al., 2019; Ilyas et al., 2018; 2019;
Cheng et al., 2019) propose accessing the target model with
inputs perturbed by different searching directions and utiliz-
ing the feedback knowledge to craft adversarial examples,
which are termed query-based attacks.

However, current black-box attack methods suffer from
either a low attack success rate or a high query complex-
ity. It is shown that transfer-based attacks suffer from low
attack success rates (Chen et al., 2017), because they con-
struct adversarial examples either for a local surrogate model
(Moosavi-Dezfooli et al., 2016; Dong et al., 2018; Poursaeed
et al., 2018; Papernot et al., 2017) or in an unsupervised
approach (Zhang et al., 2020) without sufficient knowledge
of the target models. In query-based attacks, the adversary
requires extensive model queries to search the data space.
The demand for extensive queries stems from the fact that
searching directions employed by existing methods lack the
ability to adjust the target model. Hence, the problem of
improving query efficiency still falls short of full mitigation.

Existing works improve the query efficiency mainly from
two directions, either finding a more efficient gradient esti-
mation algorithm (Chen et al., 2017; Bhagoji et al., 2018;
Tu et al., 2019; Ilyas et al., 2018) or utilizing more prior
information (Ilyas et al., 2019; Cheng et al., 2019). All
these methods estimate the gradient with respect to the in-
put images by randomly sampling the searching directions.
Although these randomly selected searching directions can
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Figure 1. Difference between dual-path distillation and the existing
black-box attack framework.

approximate the gradients well, a better searching directions
selection method is required for efficiency considerations.
In this paper, we formulate the problem of efficient attacks
as an optimization problem with respect to searching direc-
tions. The search distribution is optimized to adapt to the
target model for generating appropriate searching directions.
The feedback knowledge is distilled through not only the
path of adversarial examples but also the path of search
distributions. The intuition behind dual-path distillation is
to guarantee the better use of feedback knowledge from the
target model. The difference between the derived dual-path
framework and the existing framework is depicted in Fig. 1.

Our contributions are summarized as follows:
• We are the first to formulate the problem of efficient

black-box attacks with respect to the searching direc-
tions. This challenging optimization problem is reduced
to a dual-path distillation method that can be applied to
existing attacks effortlessly.

• We propose a residual search distribution that can further
improve the query efficiency.

• Extensive experiments demonstrate that our method can
considerably improve the efficiency of various black-box
attack methods and achieve state-of-the-art performance.

2. Related Work
In this section, we describe the generic formulation for con-
structing adversarial examples and review the most related
works on the existing black-box attack framework.

2.1. Problem Setting

Given an input-label pair (x, y), an adversarial example
xadv tries to fool the target model C with imperceptible
perturbations. For targeted attacks, the adversary tries to
mislead the classifier to a specific target label ytar, while
in untargeted attacks, ytar can be any incorrect label. The
adversarial attack task can be generically formulated as

C (xadv) = ytar, s.t. ‖xadv − x‖p ≤ ε, (1)

where ε bounds the distance between x and xadv measured
by the `p norm.

We can thus generate adversarial examples by solving a
constrained optimization problem

xadv = arg min
‖x′−x‖p≤ε

f (x′) . (2)

Here, f(x) is the classification loss of input x with respect
to the target label ytar, e.g., the cross-entropy loss. Accord-
ing to Eq. (2), we can use the gradient information of the
inputs to construct adversarial examples. Some works that
use white-box attacks (Goodfellow et al., 2015) assume that
the adversary has full knowledge of the target model. It is
shown that, in white-box attacks, the first-order approxima-
tion method can efficiently generate adversarial examples
(Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016;
Carlini & Wagner, 2017; Madry et al., 2018; Dong et al.,
2018). Projected gradient decent (Madry et al., 2018) is a
state-of-the-art method, which utilizes the iterative method
(Kurakin et al., 2017) to craft adversarial examples

xt+1
adv =

∏
Bp(x,ε)

(
xtadv − ηgtx

)
, (3)

where
∏

is the projection operator, Bp (x, ε) stands for the
`p ball centered at x with a radius ε, η is the step size and
gtx denotes the gradient of the loss w.r.t. xt, and t is the step
number of the iteration.

2.2. Black-Box Attacks

The assumption of black-box attacks is restrictive. In black-
box attacks, the parameters of the target model are agnostic.
Thus, the focus of black-box attacks is to acquire sufficient
information to approximate the gradients1.

Some methods utilize the transferability (Szegedy et al.,
2014) of adversarial examples for gradient approximation,
which are termed transfer-based attacks (Dong et al., 2018;
Papernot et al., 2017; Poursaeed et al., 2018). These at-
tacks train a local surrogate model to calculate gradients
and suppose that the constructed adversarial examples can
fool the target model because of transferability. Obviously,
the difference between the surrogate model and the target
model will lead to a bad approximation of the gradients.
Besides the supervised approach, a recent work shows that
the adversarial examples can be generated without requir-
ing surrogate models (Zhang et al., 2020). Specifically, the
unsupervised black-box attack constructs the adversarial
examples through modeling the data manifold.

Different from transfer-based attacks, query-based attacks
approximate the gradients by searching the data space.
Specifically, they first perturb the inputs with different
searching directions, then feed them into the target model,

1Combinatorial optimization is an alternative without gradient
estimation (Moon et al., 2019), but it is applicable only to the
`∞-norm.
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and finally combine the inputs and outputs to approximate
the gradients. According to the obtained outputs, query-
based attacks can be roughly divided into two categories:
score-based and decision-based attacks.

In score-based attacks (Chen et al., 2017; Tu et al., 2019;
Ilyas et al., 2018), the probabilities (or logits) are available
for the adversary, thus, zeroth-order optimization can be
employed to estimate the gradients. The symmetric differ-
ence quotient (Lax & Terrell, 2014) is employed to estimate
gradients pixel by pixel (Chen et al., 2017). The random
gradient-free method (Nesterov & Spokoiny, 2017) and natu-
ral evolution strategy (Wierstra et al., 2011) are then utilized
to improve the query efficiency (Tu et al., 2019; Ilyas et al.,
2018). These methods explore the data space based on a
search distribution U . At each step t, the gradient gtx of the
classification loss w.r.t. the input xtadv is estimated over q
searching directions. The estimated gradient ĝx takes the
generic form of

ĝtx =
1

q

q∑
i=1

f (xtadv + αui)− f (xtadv)

α
ui, (4)

where ui is a searching direction randomly sampled from U
and α governs the estimation quality. When the gradient is
obtained, it can be used to update the adversarial example.

A recent work (Ilyas et al., 2019) shows that incorporat-
ing time- and data-dependent priors can increase query ef-
ficiency. It points a new direction to improve black-box
attacks. Then the transfer-based prior shows superiority in
decreasing the query complexity (Cheng et al., 2019). In
fact, these methods assume that real gradients have certain
properties that can be used as priors before attacks. If the em-
ployed priors are consistent with the properties of real gradi-
ents, then model queries for this consistent knowledge can
be saved. Because the estimated gradients are constructed
by searching directions, these methods sample directions
that have the same properties as real gradients. Nevertheless,
these methods crucially depend on the utilized priors and
extensive experiments to verify the effectiveness of potential
priors. Different from these methods, our method can adapt
the searching directions to the properties of the target model
without any prior information.

In decision-based attacks, only the final decision is accessi-
ble. Random walk can work well for decision-based attacks
(Brendel et al., 2018). This method starts from an adversar-
ial example with large distortions and performs rejection
sampling based on a distribution to progressively decrease
the distortion (Brendel et al., 2018). A recent work shows
that incorporating low-frequency priors can increase the
query efficiency (Guo et al., 2019). However, this method
suffers from the same shortcomings as methods based on
priors.

3. Method
In this section, we first reformulate the problem of efficient
black-box attacks with respect to the searching directions.
Then, we propose a new method, dual-path distillation, to
improve black-box attacks by better utilization of feedback
knowledge from the target model. An efficient residual
search distribution is proposed to make full use of the feed-
back knowledge. Finally, we show that dual-path distillation
can be effortlessly applied to existing black-box attack meth-
ods.

3.1. The Problem of Efficient Black-Box Attacks

In black-box attacks, the adversary has a limited budget
(e.g., the maximum number of queries) to access the target
model. Previous methods randomly draw q searching direc-
tions and perturb the original input with these directions to
access the target model. To alleviate the negative impact
of this random selection process, the number of random
sample searching directions must be large enough to ap-
proximate the gradients well, which causes an increase in
the number of queries. However, a large sample size will
definitely reduce the attack efficiency. On the other hand, if
the searching directions are carefully chosen to significantly
reduce the classification loss in Eq. (2), the convergence
rate of the gradient approximation will be improved com-
pared to randomly selected searching directions. Thus, we
propose to endow the adversary with the ability to identify
the searching directions that can significantly reduce the
classification loss. That is, we prefer the estimated gradient,
which can significantly reduce the classification loss in Eq.
(2). To this end, we define the efficient attack loss as

min
ĝx

J := f (x′ − ηĝx)− f (x′) . (5)

Here, we denote xtadv by x′ for simplicity and use it in the
rest of the paper. The problem of efficient black-box attacks
is difficult to solve due to its nonconvex nature with respect
to ĝx. In this paper, we propose to solve the problem using
approximation techniques. To this end, we approximate the
loss function by its first-order Taylor expansion at point x′.
The efficient attack loss then becomes:

min
ĝx

J ≈ f (x′)− ηg>x ĝx − f (x′) = −ηg>x ĝx. (6)

Suppose the adversary samples q searching directions
{ui}qi=1 and uses the random gradient-free method (Nes-
terov & Spokoiny, 2017) to estimate the gradients. There-
fore, we can substitute (4) into (6):

min
{ui}qi=1

J ≈ −η
q

q∑
i=1

h (x′,ui, α) g>xui, (7)

where h (x′,ui, α) =
f(x′+αui)−f(x′)

α . Eq. (7) provides a
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reformulation of the black-box optimization problem with
respect to the searching directions.

Unfortunately, problem (7) does not have a closed-form so-
lution because of the nonconvex nature of h (x′,ui, α). To
solve the problem of efficient attacks, we need to calculate
the gradient gui of the loss J w.r.t. ui. However, the param-
eters of h (x′,ui, α) are unavailable since h is a function of
f and the parameters of f are hidden. This major obstacle
prevents us from calculating gui

.

To address this problem, we propose to employ zeroth-order
optimization as a black-box gradient estimation technique
to approximate gui

. This yields (see Supplementary for
details):

ĝui
= − η

qqv

qv∑
j=1

φ (ui + βvij)− φ (ui)

β
vij

≈ − η

qqv

qv∑
j=1

h (x′,ui, α)h (x′ + αui,vij , αβ)vij

(8)

where φ (ui) = h (x′,ui, α) g>xui, vij is a searching di-
rection randomly sampled from a search distribution and
β controls the sampling variance. Because of the limited
query budget, we propose using a rough gradient estimate to
alter the sampled direction. A recent work (Tu et al., 2019)
shows that a rough gradient estimate can be obtained via
one model query, so we set qv = 1 in this paper and denote
vij by vi in the rest of the paper.

The derived formulation (8) shows that the adversary can
learn to select the searching directions instead of randomly
selecting them by accessing the target model. However,
searching directions used in step t will be dropped and
novel directions will be sampled for gradient estimation in
step t+ 1. Thus, the ability to alter the searching directions
utilized in step t has no benefit in estimating the gradient
at step t+ 1. To solve this problem, we propose dual-path
distillation (DPD).

3.2. Dual-Path Distillation

The proposed dual-path distillation method aims to learn
the ability of selecting searching directions through an addi-
tional function. Without loss of generality, we can employ a
function ϕ to transform a sampled direction into a desired
direction. Thus, we can endow the adversary with the ability
to identify appropriate directions by solving the following
problem:

min
θ

J = −η
q

q∑
i=1

h (x′, ϕ (ui;θ) , α) g>xϕ (ui;θ) , (9)

where θ denotes the parameters of ϕ. In light of (8), we
can first utilize the feedback knowledge to calculate the

gradients of the generated directions. According to the
chain rule, we can then calculate the gradients gθ of the loss
J w.r.t. θ:

∂J

∂θ
=

q∑
i=1

∂J

∂ϕ (ui;θ)

∂ϕ (ui;θ)
>

∂θ
≈

q∑
i=1

ĝϕ(ui;θ)
∂ϕ (ui;θ)

>

∂θ
.

(10)
With the gradient gθ, the parameters of function ϕ can be
updated when the feedback information of the target model
is provided.

The gradient gx for altering adversarial examples can be
estimated as:

ĝx =
1

q

q∑
i=1

h (x′, ϕ (ui;θ) , α)ϕ (ui;θ) . (11)

If ϕ is a linear function and the search distribution is a
normal distribution, we then obtain:

min
A

J = −η
q

q∑
i=1

h (x′, Aui, α) g>xAui. (12)

The gradients to update adversarial examples can be esti-
mated as:

ĝx =
1

q

q∑
i=1

h (x′, Aui, α)Aui. (13)

We can see that the Hessian-aware method (Ye et al., 2018)
is a special case of DPD under these assumptions.

We name the derived general framework as dual-path distil-
lation since it distills knowledge not only in the adversarial
examples path but also in the search distribution path. The
basic idea behind the dual-path distillation method is to
make full use of the feedback knowledge, which is con-
sistent with distillation in (Hinton et al., 2015; Kim et al.,
2018). In detail, recent works (Kim et al., 2018; Heo et al.,
2019) show that mitigating information leakage is necessary
for knowledge distillation. Thus, DPD provides a reasonable
direction to improve the efficiency of black-box attacks.

However, Eq. (8) implies that DPD requires extra model
queries to calculate the gradients for updating the function
ϕ. This property seems to be harmful to the efficiency of the
proposed DPD method. Therefore, DPD demands further
exploitation to make full use of the feedback knowledge.

According to the definition of h, three feed-
back values f (x′), f (x′ + αϕ (ui;θ)) and
f (x′ + αϕ (ui;θ) + αβvi) are required to calculate
ĝϕ(ui;θ), while only the first two of them are used in Eq.
(11) for calculating the gradients ĝx. In effect, we can also
use f (x′ + αϕ (ui;θ) + αβvi) and f (x′) to estimate the
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gradient at point x′ as

ĝx =
1

q

q∑
i=1

f (x′ + αzi)− f (x′)

α
zi

=
1

q

q∑
i=1

h (x′, zi, α) zi,

(14)

where zi = ϕ (ui;θ) + βvi.

Combining Eq. (11) and Eq. (14), we can finally approxi-
mate the gradient with respect to x′ as follows:

ĝx =
1

q

q∑
i=1

h (x′, ϕ (ui;θ) , α)ϕ (ui;θ)

+
1

q

q∑
i=1

h (x′, ϕ (ui;θ) + βvi, α) (ϕ (ui;θ) + βvi) ,

(15)

Therefore, all query feedback can be utilized to update the
adversarial examples and optimize the search distributions.
This means that DPD reuses all query feedbacks for altering
the searching directions and requires no extra model queries.
Nevertheless, we find that the second term in Eq. (15)
contains a randomly sampled direction vi. We introduce a
similar way to transform the sampled direction vi as that
of updating ui. Another function ψ (vi;w) is employed to
transform the searching direction vi used in Eq. (15). By
introducing ψ, there are two transform functions (ϕ (ui;θ)
and ψ (vi;w)) for calculating the gradient ĝx in Eq. (15)
and we can estimate the gradient as

ĝϕi
≈ −η

q
h (x′, ϕi, α)h (x′ + αϕi, ψi, αβ)ψi,

ĝψi ≈ −
η

q
h (x′, ψi, α)h (x′ + αψi, ϕi, αβ)ϕi,

(16)

where we denote ϕ (ui;θ) and ψ (vi;w) by ϕi and ψi, re-
spectively. However, we derive Eq. (8) based on the ran-
domly sampled searching directions, while the searching
directions in (16) are optimized to decrease the efficient
attack loss, which may be harmful to the convergence of
these two transform functions (ϕ and ψ).

To alleviate the negative impact on the convergence of the
transform functions, we adopt a residual connection of the
search distribution that draws inspiration from (He et al.,
2016). We model the residual search distribution by

ϕres (ui;θ) = ϕ (ui;θ) + ui,

ψres (vi;w) = ψ (vi;w) + vi.
(17)

This formulation of the proposed residual search distribution
implies that it has the properties of random directions and
optimized directions.

3.3. Implementation

As DPD offers an efficient method of finding searching
directions, it can be applied effortlessly to improve the effi-
ciency of existing methods that require random searching
directions. Algorithm 1 summarizes the dual-path distilla-
tion algorithm. Before we show how to apply our method,
we first classify existing black-box attack methods into 3
categories as described in Table 1: methods without pri-
ors or a predefined distribution, methods with priors but no
predefined distribution and methods with both priors and
a predefined distribution. To demonstrate that dual-path
distillation is applicable to all three categories, we select
one of the most efficient attacks in each category to show
that DPD can be easily applied.

For methods without priors or predefined distribution, we
combine NES (Ilyas et al., 2018) with our framework,
termed NES + DPD, we need to replace the original Gaus-
sian distribution in NES with the proposed residual search
distribution described in Eq.(17). Note that, although ZO-
ADMM (Zhao et al., 2019) involves fewer model queries
than that of NES (Ilyas et al., 2018), NES can achieve a
higher attack success rate than ZO-ADMM. Hence, we re-
gard NES as the baseline attack in this category.

For methods with priors but no predefined distribution, we
apply our framework to BTD (Ilyas et al., 2019), termed
BTD + DPD. BTD utilizes data- and time-dependent priors
to reduce the query complexity. In effect, the data-dependent
prior can be incorporated by reducing the dimensionality
of the sampling directions. To the leverage time-dependent
prior, BTD uses the last estimated gradient ĝt−1x to update
the estimated gradient ĝtx with a correction direction (∆).
That is, ĝx = ĝt−1x + η∆. Formally, ĝt−1x is denoted as d
and the correction factor (Ilyas et al., 2019) is estimated as
follows:

∆ =
f (x′ + α (d+ βu))− f (x′ + αd)

αβ
u

= h (x′ + αd,u, αβ)u.

(18)

Algorithm 1 Pseudocode of dual-path distillation
1: repeat
2: Transform the sampled directions using (17)
3: Calculate the gradients used for updating adversarial

examples according to (15)
4: Compute the gradients used for updating the trans-

form function using (16)
5: Update the adversarial examples through (3)
6: Optimize the distribution transform functions using

(10)
7: until meet the break criterion
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Table 1. Differences between various kinds of black-box attacks.
methods priors predefined distribution

NES (Ilyas et al., 2018), BoundaryAttack (Brendel et al., 2018),
7 7ZO-ADMM (Zhao et al., 2019), ZOO (Chen et al., 2017)

BanditsTD (Ilyas et al., 2019), N attack (Li et al., 2019), FD (Bhagoji et al., 2018) 3 7

P-RGFD (Cheng et al., 2019), LowFrequency (Guo et al., 2019),
3 3AutoZoom (Tu et al., 2019)

Substituting Eq. (18) into (6), we obtain

ĝu ≈ −η
q
h
(
x′ + αd,u, αβ

)
h
(
x′ + αd+ αβu,v, αβ2)v,

(19)
which is consistent with Eq. (8). In fact, Eq. (18) implies
that if we perturb x′ with αd and scale the variance α to
αβ in Eq. (8), then we can obtain Eq. (19). The gradient ĝv
can be estimated in a similar way. Then, we can employ ĝu
and ĝv to update the utilized search distribution transform
functions.

To the best of our knowledge, P-RGFD, which has both
priors and a predefined distribution, is the state-of-the-art
method among all the categories. To demonstrate the effec-
tiveness of our method, we evaluate dual-path distillation
on P-RGFD, and the improved method is termed P-RGFD
+ DPD, which can achieve the new state-of-the-art perfor-
mance.

P-RGFD proposes using transfer-based priors to devise a
covariance matrix and select searching directions that obey
the constructed covariance matrix, where transfer-based pri-
ors represent the gradient of a surrogate model. According
to (Cheng et al., 2019), the loss function for estimating
gradients is formulated as

min ` (ĝx) = ‖gx‖2 −
(
gTxCgx

)2(
1− 1

q

)
gTxC2gx + 1

qg
T
xCgx

,

(20)
where C = E

[
uuT

]
is the covariance matrix, q denotes the

number of sampled directions and gx is the gradient of the
target model. To minimize ` (ĝx), C is constructed with the
gradient of a surrogate model.

In light of dual-path distillation, we can alter C directly
according to the feedback knowledge. To this end, we
simplify the loss based on the orthonormal assumption used
in (Cheng et al., 2019). Then the loss takes the form of (see
Supplementary for details)

min ` (ĝx) = − q

D + q − 1

D∑
i=1

(
gTxpi

)2
s.t.pTi pj = 0 for i 6= j, ‖pi‖2 = 1 for ∀i

(21)

Table 2. Impact of different searching directions.
searching ui ϕ (ui;θ) ϕ (ui;θ) ϕres (ui;θ)
directions vi vi ψ (vi;w) ψres (vi;w)

ASR 98.4% 98.6% 99.3% 99.9%
AVG. Q 969 540 712 482

where pi is the ith eigenvector of C; D represents the di-
mension of inputs. It is noted from Eq. (21) that we need
to train D networks, one for each eigenvector, which is
impractical. To solve this problem, we employ a mix-up
approach (Christopher Beckham & Pal, 2019) to train a
network to generate many eigenvectors. Specifically, we
synthesize features with different masks to generate differ-
ent eigenvectors and use these eigenvectors to search the
data space. From the viewpoint of DPD, the generated pi
is actually a searching direction. Then, we can use Eq.(8)
to alter these directions. For a fair comparison, we also use
the transfer-based priors in P-RGFD + DPD. In detail, we
pretrain the network to attack a surrogate model and use the
pretrained network for initialization.

4. Experiments
In this section, we first provide the evaluation methodology.
Then, we show the effectiveness of the proposed residual
search distribution through ablation experiments. After that,
we present experimental results to demonstrate that our
method can accelerate the efficiency of different black-box
attack methods. Furthermore, we investigate the search
distribution to present some interesting findings.

4.1. Methodology

Following previous methods (Cheng et al., 2019; Ilyas et al.,
2019), we evaluate all the methods on 1000 images ran-
domly sampled from the validation set of ImageNet (Deng
et al., 2009). We perform targeted and untargeted attacks
with both `2 and `∞ norms to highlight the fact that the
proposed framework is effective in different settings. All
the attacks are assessed on three normally trained models:
Inception-v3 (Szegedy et al., 2016), VGG-16 (Simonyan
& Zisserman, 2015), and ResNet-50 (He et al., 2016). All
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Table 3. Results of untargeted black-box attacks against Inception-v3, VGG-16 and ResNet-50 without defense. We report the attack
success rate (ASR) and the average number of queries (AVG. Q).

Methods
l2-norm l∞-norm

Inception-v3 VGG-16 ResNet-50 Inception-v3 VGG-16 ResNet-50
ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓

NES (Ilyas et al., 2018) 95.5% 1718 98.7% 1081 98.4% 969 87.5% 1850 95.6% 1477 94.5% 1405
NES + DPD 97.1% 1035 99.2% 402 99.9% 482 94.8% 1063 98.7% 635 99.8% 814

BanditsTD (Ilyas et al., 2019) 97.2% 874 94.9% 278 96.8% 512 94.7% 1099 95.1% 288 96.5% 651
BanditsTD + DPD 98.6% 846 100.0% 216 100.0% 243 97.0% 1204 99.8% 445 99.9% 522

P-RGFD (Cheng et al., 2019) 99.1% 649 99.7% 370 99.6% 352 97.3% 812 99.6% 433 99.6% 452
P-RGFD + DPD 99.5% 263 100.0% 36 100.0% 37 98.7% 641 99.8% 162 99.8% 162

Table 4. Results of targeted black-box attacks against Inception-v3, VGG-16 and ResNet-50 without defense. We report the attack
success rate (ASR) and the average number of queries (AVG. Q).

Methods
l2-norm l∞-norm

Inception-v3 VGG-16 ResNet-50 Inception-v3 VGG-16 ResNet-50
ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓

NES (Ilyas et al., 2018) 22.1% 7350 83.4% 6224 60.5% 6540 7.9% 4866 24.5% 5083 16.8% 5017
NES + DPD 30.5% 4173 93.0% 2552 90.0% 3241 27.5% 4343 67.0% 4038 70.5% 4531

BanditsTD (Ilyas et al., 2019) 68.9% 4637 93.5% 2383 92.1% 3185 17.4% 5792 46.1% 5299 39.1% 5003
BanditsTD + DPD 70.8% 3970 95.0% 2221 93.5% 3084 28.0% 3882 68.5% 3825 71.1% 4216

P-RGFD (Cheng et al., 2019) 73.0% 5011 74.1% 3207 71.2% 2750 29.0% 4228 75.6% 3257 74.0% 3025
P-RGFD + DPD 80.6% 2768 99.1% 1002 99.9% 580 54.8% 3970 88.3% 3010 91.7% 2813

these networks are provided by torchvision (Marcel & Ro-
driguez, 2010). In addition, we perform attacks against a
defensive approach, JPEG compression (Guo et al., 2018),
because JPEG compression is the most robust approach
used in (Cheng et al., 2019). Following the experimental
protocol in (Cheng et al., 2019), we set the maximum distor-
tion ε =

√
0.001 ·D (ε = 0.05) under `2 (`∞), with images

scaled to [0, 1], where D is the dimension of the inputs.

Following previous works (Cheng et al., 2019; Ilyas et al.,
2019; Zhao et al., 2019), we limit the maximum number
of queries for each image to be 10, 000 and report both the
attack success rate (ASR) and the average number of queries
(AVG. Q). A successful attack means that the constructed
adversarial example can fool the target model before the
maximum number of queries is reached. Note that we calcu-
late the average number of queries over successful attacks,
which is a method widely used in the literature (Ilyas et al.,
2018; Cheng et al., 2019; Ilyas et al., 2019; Zhao et al.,
2019).

4.2. Ablation Experiments

We compare the proposed residual search distribution with
the different search distributions mentioned above. All these
approaches are evaluated on untargeted attacks with the `2-
norm, and the target model is set to ResNet-50.

The results are presented in Table 2. ui and vi means us-
ing searching directions that are randomly sampled from
a Gaussian distribution. ϕ (ui;θ) and ψ (vi;w) denote ap-
plying the transform functions to the randomly selected

searching directions ui and vi, respectively. ϕres (ui;θ)
and ψres (vi;w) are the proposed residual search distribu-
tions defined in Eq.(17).

We find that the searching directions generated by the resid-
ual search distribution outperform all the other searching
directions. On the other hand, the random directions are the
worst solution. These results are reasonable, because the
transformed searching direction contains more knowledge
distilled from the target model. Moreover, the performance
in the third column is worse than that in the last column,
which indicates the effectiveness of our residual approach.
Therefore, we employ residual search distributions in the
following experiments.

4.3. Results

The results of the untargeted attacks are summarized in
Table 3. We find that our method improves these methods
significantly. NES + DPD achieves a 99.9% attack success
rate when ResNet-50 is attacked, while the success rate
of P-RGFD is 99.6%. That is, NES + DPD can achieve a
comparable performance with or even better performance
than prior-based methods which are the current state-of-the-
art methods. This finding is promising since NES + DPD
uses no priors, while P-RGFD employs transfer-gradient and
data-dependent priors. In addition, only 36 model queries
are required for P-RGFD + DPD to mount a successful
attack to VGG-16 under the `2 norm.

We also evaluate the effectiveness of different methods on
the more challenging targeted attack and display the re-
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Figure 2. The generated searching directions w.r.t. the number of queries. The searching directions in the first line are sampled from the
Gaussian distribution used in the NES, while directions in the second line are generated by our residual search distribution.

Table 5. Results of untargeted black-box attacks against Inception-v3, VGG-16 and ResNet-50 with defense. We report the attack
success rate (ASR) and the average number of queries (AVG. Q).

Methods
l2-norm l∞-norm

Inception-v3 VGG-16 ResNet-50 Inception-v3 VGG-16 ResNet-50
ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓ ASR ↑ AVG. Q ↓

NES (Ilyas et al., 2018) 18.7% 2540 46.3% 640 23.8% 1870 17.0% 1251 42.1% 644 16.8% 1305
NES + DPD 28.7% 1057 81.3% 330 56.8% 1066 27.4% 772 61.3% 597 36.4% 758

BanditsTD (Ilyas et al., 2019) 23.1% 774 44.2% 209 34.8% 679 33.6% 161 46.3% 472 33.1% 320
BanditsTD + DPD 33.5% 982 82.3% 667 56.8% 803 41.2% 155 64.5% 558 43.8% 587

P-RGFD (Cheng et al., 2019) 50.2% 1620 73.6% 1681 72.4% 1857 32.1% 423 46.1% 381 42.8% 539
P-RGFD + DPD 68.0% 194 90.6% 41 90.8% 41 64.3% 258 82.5% 195 82.7% 210

sults in Table 4. The results demonstrate that dual-path
distillation can drastically increase the attack success rate
of previous methods. In particular, the proposed framework
can increase the attack success rate of P-RGFD from 29.0%
to 54.8% when attacking Inception-v3 under the `∞ norm.
In addition to the improvement in the attack success rate, the
average numbers of queries are also reduced significantly in
all settings.

Table 5 shows the performance evaluated on the defense ap-
proach (Guo et al., 2018). Although the defensive method
makes the target model more robust against adversarial ex-
amples, applying dual-path distillation can still increase
the attack success rate and reduce the required number of
queries considerably. We find that even in the most difficult
setting in our experiments (attack Inception-v3 under the
`∞-norm), our method can increase the success rate from
17.0% to 27.4% and reduce the number of queries from
1251 to 772.

4.4. Discussion

To further demonstrate the effectiveness of the proposed
dual-path distillation method, we show some details of the
learned search distributions in this section.

First, we attempt to investigate the knowledge encoded in

Figure 3. The averaged cosine similarity between the searching
directions and real gradients. Here, we average the absolute value
of the cosine similarity, because the mean of uniform directions is
zero.

the residual search distribution. Intuitively, “appropriate”
searching directions should be dependent on the inputs. A
qualitative analysis is provided in Fig. 2. With the in-
crease in the number of model queries, searching directions
gradually omit some irrelevant pixels and contain more in-
formation that is similar to the object in the input image.
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In addition to qualitative analyses, we provide one quantita-
tive description for discovering the knowledge encoded in
the search distribution. From the finite difference perspec-
tive, which is also used in (Ilyas et al., 2019), we need to
find sufficient components to reconstruct the real gradients.
Thus, the high cosine similarity between the searching direc-
tions and the real gradients means that we can sample fewer
directions to approximate the real gradients. Fig. 3 shows
the cosine similarity between the sampled direction and the
real gradient. The result indicates that the directions gen-
erated by the residual search distribution are more similar
to the real gradients than those of the randomly generated
searching directions.

In summary, dual-path distillation transfers feedback knowl-
edge to residual search distributions, which endows the
sampled directions with two properties: correlation with the
content of the inputs and high cosine similarity to the real
gradients.

5. Conclusion
To improve black-box attacks, we formulate the problem of
efficient black-box attacks and introduce dual-path distilla-
tion, which can be effortlessly applied to the existing works.
Dual-path distillation increases query efficiency by making
use of feedback knowledge. In addition, we study different
knowledge utilization approaches and propose a residual
search distribution to further mitigate knowledge leakage.
Experimental results demonstrate that our method can sig-
nificantly improve existing black-box attacks and achieve
state-of-art performance. Dual-path distillation takes a fur-
ther step to eliminate the overhead cost of black-box attacks,
which can provide a new option to efficiently evaluate de-
fense approaches.
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