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ABSTRACT
Skeleton-based human action recognition has attracted much at-
tention with the prevalence of accessible depth sensors. Recently,
graph convolutional networks (GCNs) have been widely used for
this task due to their powerful capability to model graph data. The
topology of the adjacency graph is a key factor for modeling the
correlations of the input skeletons. Thus, previous methods mainly
focus on the design/learning of the graph topology. But once the
topology is learned, only a single-scale feature and one transfor-
mation exist in each layer of the networks. Many insights, such
as multi-scale information and multiple sets of transformations,
that have been proven to be very effective in convolutional neu-
ral networks (CNNs), have not been investigated in GCNs. The
reason is that, due to the gap between graph-structured skeleton
data and conventional image/video data, it is very challenging to
embed these insights into GCNs. To overcome this gap, we reinvent
the split-transform-merge strategy in GCNs for skeleton sequence
processing. Specifically, we design a simple and highly modularized
graph convolutional network architecture for skeleton-based action
recognition. Our network is constructed by repeating a building
block that aggregates multi-granularity information from both the
spatial and temporal paths. Extensive experiments demonstrate that
our network outperforms state-of-the-art methods by a significant
margin with only 1/5 of the parameters and 1/10 of the FLOPs.
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1 INTRODUCTION
Human action recognition attracts considerable attention due to
their potential for many applications. Recently, skeleton-based ac-
tion recognition has been widely studied because skeleton data con-
vey compact information of body movement and have strong adapt-
ability to dynamic circumstances, e.g., variations in viewpoints,
occlusions and complicated background [13]. Previous works for-
mulate skeleton data as a sequence of grid-shaped joint-coordinate
vectors and use CNNs [4][41][33][44][54][30][1] or recurrent neu-
ral networks (RNNs) [31][21][20][34][24][28][27] to learn the ac-
tions. As skeleton data naturally lies in a non-Euclidean space with
joints as vertexes and their connections in the human body as
edges, CNN- and RNN-based methods cannot fully utilize the rich
information conveyed in the graph structure of skeleton data.

Recently, graph convolutional networks, with their superior
capability in dealing with graph data, have been introduced to
skeleton-based action recognition and have achieved state-of-the-
art performance [26][52][46][43][25][29][9][42][39]. Most of these
methods focus on the design/learning of the graph topology. Yan et
al. [52] introduced GCNs to model skeleton data and constructed a
predefined graph with a fixed topology constraint. Shi et al. [42]
proposed to learn an adaptive graph by parameterizing the graphs,
and then updated the graph jointly with convolutional parameters.
Gao et al. [9] introduced a high-order approximation for a larger
receptive field of the graph. Peng et al. [39] tried to search for dif-
ferent graphs at different layers via automatic neural architecture
searching (NAS) [55]. However, once the graph is generated, only
a single scale and one transformation exist in each layer of the
networks. As a consequence, the backbone of these GCN-based
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Figure 1: GoogLeNet inception block for CNNs and our
spatio-temporal inception block for GCNs. Both blocks
follow the split-transform-merge strategy. In our spatio-
temporal (ST) inception block, the inputs are split into three
paths: a spatial path for spatial features, a temporal path for
sequential features, and a residual path for the reuse of the
input features. In the spatial path, graph convolutions with
1× to 4× hop connections are applied. In the temporal path,
graph convolutions are applied to position features and mo-
tion features.

methods has intrinsic limitations on extracting and synthesizing in-
formation from different scales and transformations from different
paths at different levels.

Intuitively, many insights from the design philosophy of CNN
can be integrated into GCN-based backbone networks. Specifi-
cally, a) inputs can be split into different paths with a few lower-
dimensional embeddings or identity mappings (GoogLeNet [45],
ResNeXt [51], ResNet [14]); b) different sets of transformations can
be applied to each path (GoogLeNet [45], ResNeXt [51]); c) the
outputs of all the paths can be aggregated with concatenation or
summation (ResNet [14], ResNeXt [51], GoogLeNet [45], DenseNet
[16]). However, due to the graph structure of skeleton data, it is
very challenging to embed these insights in GCNs. For example,
for multi-scale spatial processing, instead of using multiple ker-
nel sizes in CNNs, a customized operation for different orders of
hop connections is needed for GCNs. For multi-view temporal pro-
cessing (position and motion), motion features specified for graph
convolution of skeleton sequences are still not touched. In fact,
many biological studies [17][35][3][7][48] have shown that, 20% of
cells in primate visual systems are responsive to dynamic motion
changes, but are not sensitive to spatial details [6].

In this paper, we adopt the strategy of repeating layers in CNNs
and reinvent the split-transform-merge strategy in GCNs for spatial
and temporal skeleton sequence processing in each layer. For each
layer, the inputs are split into three paths: a spatial path for spatial

features, a temporal path for sequential features, and a residual path
for the reuse of the input features, as shown in Fig. 1. The spatial
path (named spatial inception) is further split into four branches.
We apply 1st to 4th order adjacency sampling as four sets of graph
transformations with 1× to 4× hop connections. The following
are the specified graph transformations with 1 × 1 convolution,
batch normalization and ReLU. The temporal path (named temporal
inception) consists of two sets of transformations. One set is a
direct graph convolution on position features of the same joints
across consecutive frames, and the other set is a graph convolution
on motion features of the same joints across consecutive frames.
Notably, this is the first time that the motion features of joints
have been used in skeleton-based action recognition. Finally, in
the merging stage, the outputs of both spatial path and temporal
path are first concatenated and fused with 1 × 1 convolution. Then,
features of the three paths are aggregated by summation. The whole
block is named the spatio-temporal inception for its analogy to
inception modules in CNNs.

To verify the superiority of our proposed spatio-temporal incep-
tion graph convolutional network (STIGCN) for skeleton-based ac-
tion recognition, extensive experiments are conducted on two large-
scale datasets. Our network outperforms state-of-the-art methods
by a significant margin with only 1/5 of the parameters and 1/10 of
the FLOPS. Furthermore, while other methods rely on a two-stream
pipeline that requires skeleton data and crafted bone data as inputs,
our method only requires raw skeleton data as input.

The contributions of this paper are summarized as follows:
• We propose a graph convolution backbone architecture,
termed spatio-temporal inception graph convolutional net-
work, for skeleton-based action recognition. This network
overcomes the limitations of state-of-the-art methods in ex-
tracting and synthesizing information of different scales and
transformations from different paths at different levels.
• To overcome the gap of the convolution operation between
CNNs and GCNs, we reinvent the split-transform-merge
strategy in GCNs for skeleton sequence processing.
• Our method indicates that increasing the number of trans-
formation sets is a more effective way of gaining accuracy
than simply creating wider GCNs. We hope this insight will
facilitate the iteration of GCN-based backbones for spatio-
temporal sequence analyses.
• On two large-scale datasets for skeleton-based action recog-
nition, the proposed network outperforms state-of-the-art
methods by a significant margin with surprisingly fewer
parameters and FLOPs. The code and pretrained models will
be released to facilitate related future research.

2 RELATEDWORK
2.1 Skeleton-Based Action Recognition
In human action recognition, skeleton data have attracted increas-
ing attention due to their robustness against body scales, viewpoints
and backgrounds. Conventional methods in skeleton-data-based
human action recognition utilize handcrafted feature descriptors to
model the human body [49][8][18] [50]. However, these methods
either ignore the information of interactions between specific sets
of body parts or suffer from complicated design processes.



CNN-based and RNN-based methods have been well investi-
gated for skeleton-based action recognition. CNN-based methods
[31][21][20][34][24][28][27] formulate skeleton data as a pseudo-
image based on manually designed transformation rules. RNN-
based methods [4][41][33][44] [54][30][1] focus on modeling the
temporal dependency of the inputs, where joint data of the human
body are rearranged by grid-shaped structure. However, both CNN-
based and RNN-based models neglect the co-occurrence pattern
between spatial and temporal features since the skeleton data are
naturally embedded in the form of graphs rather than a vector
sequence or 2D grid.

Recently, GCNs have been introduced to skeleton-based action
recognition and have achieved state-of-the-art performance. Most
of these methods focus on the design/learning of the graph topology.
Yan et al. [52] first introduced GCNs to model skeleton data and
constructed a predefined graph with a fixed topology constraint. Shi
et al. [42] proposed learning an adaptive graph by parameterizing
the graphs and then updated the graph jointly with convolutional
parameters. Gao et al. [9] introduced a high-order approximation
for a larger receptive field of the graph and learned it by solving a
sparsified regression problem. Peng et al. [39] tried to search for
different graphs at different layers via NAS [55].

2.2 Backbone Convolutional Neural Networks
Many works have shown that synthesizing the outputs of different
information paths in a building block is helpful. Deep neural de-
cision forests [23] are tree-patterned multi-branch networks with
learned splitting functions. GoogLeNet [45] uses an inception mod-
ule to introduce multi-scale processing in different paths of the
building block. The generated multi-scale features are merged by
concatenation. ResNet [14] uses a residual learning framework in
which the identity mapping of the inputs and the convolutional
outputs are merged through elementwise addition. ResNeXt [51]
designs a building block that aggregates a set of transformations. In
DenseNet [16], the feature maps of all the preceding layers are fed
into the current layer, and the feature maps of this layer are used as
inputs to all the subsequent layers. A transition layer is designed to
synthesize the feature maps of all the layers in one dense block. Qiu
et al. [40] split 3×3×3 convolutions into 1×3×3 convolutional filters
on spatial domain and 3×1×1 convolutions on temporal connec-
tions between adjacent feature maps. LocalCNN [53] uses a local
operation as genetic building blocks for synthesizing global and
local information in any layer. In the local path, Yang et al. [53]
used a sampling module to extract local regions from the inputs,
and the feature extraction module and feature fusion module were
designed to transform and merge features.

2.3 Graph Convolutional Networks
GCNs are widely used on irregular data, e.g., social networks and
biological data. The key challenge is to define convolutions over
graphs, which is difficult due to the unordered graph data. The
principle of constructing GCNs mainly follows the spatial per-
spective or the spectral perspective. Spatial perspective methods
[5][37][10][36][22] directly perform convolutions on the graph ver-
texes and their neighbors, then normalize the outputs based on
manually designed rules. Spectral GCNs transform graph signals

into spectral domains by graph Laplacian methods [5][15], and then
apply spectral filters on the spectral domains. In [11], Chebyshev
expansions are used to approximate the graph Fourier transform,
and the graph convolution is well approximated by a weighted
summation of Chebyshev transformations over the skeleton data.

3 APPROACH
3.1 Motivation
The topology of the adjacency graph is the key factor for modeling
correlations of the input skeletons. Therefore, state-of-the-art meth-
ods, including NAS [39], adaptive graph learning [42] and sparsified
graph regression [9], mainly focus on the design/learning of the
graph topology. However, once the graph is generated, only a single
scale and one transformation exist in each layer of the networks.
As a consequence, the backbone of these methods has intrinsic
limitations on extracting and synthesizing information of different
scales and transformations from different paths at different levels.

Intuitively, the success of the split-transform-merge strategy in
recently developed backbone convolutional neural networks could
be adopted for GCN-based backbone networks. However, due to
the gap between graph skeleton data and traditional images/videos,
it is not trivial to apply the split-transform-merge strategy in CNNs
to GCNs. Specified modules are required to extract and synthesize
features frommultiple scales and transformations on graph data. To
solve this problem, we design such modules, including a multi-scale
spatial graph convolution module and a motion graph convolu-
tion module, and propose a simple graph convolution backbone
architecture for skeleton-based action recognition.

3.2 Instantiation
In this section, we describe our design of spatio-temporal inception
block for skeleton-based action recognition. First, we briefly show
how to construct a multi-scale spatial graph convolution.

Consider an undirected graph G = {V, E,A} composed of n =
|V | nodes. The nodes are connected by |E | edges and the connec-
tions are encoded in the adjacency matrix A ∈ Rn×n . Fin ∈ Rn
is the input representation of G. After a graph Fourier transform,
the convolutional filtering in spatial domain could be formulated
as an inner-product operation in spectral domain [12]. Specifi-
cally, the graph Laplacian L, of which the normalized definition
is L = In − D−1/2AD−1/2 and Di j =

∑
j Ai j , is used for Fourier

transform. Then a graph filtered by operator дθ , parameterized by
θ , can be formulated as

Fout = дθ (L)Fin = Uдθ (Λ)U
T Fin , (1)

where Fout is the output feature of the input graph,U is the Fourier
basis, L = UΛUT , and Λ is the corresponding eigenvalue of L. Ham-
mond et al. [12] proved that the filterдθ could be well approximated
by Rth order Chebyshev polynomials,

Fout =
R∑
r=0

θ ′rTr (L̂)Fin , (2)

where θ ′r denote Chebyshev coefficients. The Chebyshev polyno-
mial is recursively defined as

Tr (L̂) = 2L̂Tr−1 (L̂) −Tr−2 (L̂′) (3)
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Figure 2: The overall architecture of our spatio-temporal inception graph convolutional network. It consists of a stack of ST
inception blocks shown in Fig. 1 (b). This network takes raw skeleton data as inputs and is trained in an end-to-end manner.

with T0 = 1 and T1 = L̂. L̂ = 2L/λmax − In is normalized to [−1, 1].
In general, the graph L filtered by дθ can be approximated as a

linear combination of input representation transformed by Cheby-
shev polynomials. As a consequence, a spatial graph convolution with
a receptive field of k can be formulated as a linear transformation of
a kth order Chebyshev polynomial matrix.

3.2.1 Spatial Inception. An overall instantiation of our ST incep-
tion building block is shown in Fig. 1 (b). It consists of a spatial-
inception (SI) path, a temporal inception (TI) path and a residual
path. There are three components in each inception path: sam-
pling, convolution and fusion. We now present the details of spatial
inception first.

Adjacency Sampling. Inspired by the spectral formulation of
graph convolutions, we reformulate the feature sampling module as
a matrix multiplication operation between skeleton representations
and a graph transformation defined as Chebyshev polynomials.
The r th order Chebyshev polynomial Tr (L̂), as defined in Eq. (3),
represents the r th order hop connections between skeleton joints.
Fig. 3 shows that most joints in the graph can be reached by 4 hop
connections from the center joint (labeled as 1). Thus we choose
R = 4 to approximate the multi-scale graph filtering operation. A
higher order approximation may bring larger performance gains
with additional computational costs, but this direction is not the
priority of this paper. In detail, the 0th to 4th order Chebyshev
polynomials are defined as follows:

T0 = I ,

T1 = L̂,

T2 = 2L̂2 − I ,

T3 = 4L̂3 − 3L̂,

T4 = 8L̂4 − 8L̂2 + I .

(4)

As illustrated in Fig. 1, there are 4 branches in the SI path, corre-
sponding to the 1st to 4th order graph transformations, respectively.
T0 represents the identity transformation, which is identical to the
residual connection. Therefore, the 0th order sampling module is
already included in the residual path. Following the adaptive graph
topology introduced in [42], we apply layer-dependent bias and
data-dependent bias to the transformation matrix for more flexible
hop connections. Other parameters of the predefined transforma-
tion matrix are fixed during training except for the adaptive bias.

Convolution Module. The graph convolution module is used
to extract graph features of every scale. It consists of a 1 × 1 convo-
lutional layer, a batch normalization layer and a ReLU layer. The
number of output feature maps is set to 1/4 of the total width

of the spatial path for computational efficiency. Bottleneck-like
architecture will be investigated in our future work.

Fusion Module. The feature fusion module is introduced to
generate more robust and discriminative representations by synthe-
sizing outputs of all paths. In this paper, the feature fusion module
is formed as a concatenation layer of all the outputs, followed by a
1 × 1 convolutional layer with batch normalization and ReLU. The
number of output channels of the 1× 1 convolutional layer is set to
the number of input channels to maintain the cardinality.

3.2.2 Temporal Inception. As shown in Fig. 1 (b), there are two
branches in TI path. One branch directly takes features of the same
joints in consecutive frames as inputs for position feature process-
ing. The other branch feeds inputs into the motion samplingmodule
for motion feature processing. This is the first time that motion
features of joints are used in skeleton-based action recognition.

Motion Sampling. The second-order spatial information, i.e.,
the bone information, was first introduced in [42] and then widely
used in later works [39][9]. However, the second-order temporal
information is still ignored in previous works. In this paper, we
design a motion sampling module to explicitly model the second-
order temporal information, termed the motion information. In
particular, the motion information is defined as the difference be-
tween consecutive frames. For example, given a frame of skeleton
data at time t ,

vt = {(x
(t )
1 ,y

(t )
1 , z

(t )
1 ), · · · , (x

(t )
n ,y

(t )
n , z

(t )
n )}

where (x (t )i ,y
(t )
i , z

(t )
i ) are the 3D coordinates of the ith joint at time

t and its next frame at time t + 1 is

vt+1 = {(x
(t+1)
1 ,y

(t+1)
1 , z

(t+1)
1 ), · · · , (x

(t+1)
n ,y

(t+1)
n , z

(t+1)
n )}.

The vector of the motion is calculated as

mt = vt+1 −vt = {(x
(t+1)
1 − x

(t )
1 ,y

(t+1)
1 − y

(t )
1 , z

(t+1)
1 − z

(t )
1 ), · · · ,

(x
(t+1)
n − x

(t )
n ,y

(t+1)
n − y

(t )
n , z

(t+1)
n − z

(t )
n )}.

The motion information can also be considered the optical flow
of skeleton sequence. The joints of the skeleton data are similar to
observed objects in RGB videos, and the optical flow is calculated as
the relative motion of objects between consecutive frames. There-
fore, it is natural to utilize the aforementioned motion sampling
operation for motion feature processing.

Convolution and Fusion. The feature extraction module is
designed to extract features from the frame sequence and motion
sequence. Different from the convolution in the SI path, we use a 3×1
kernel for temporal convolution, where kernel size 3 corresponds to
the temporal span, to construct temporal connections on adjacent



layer name output size components
3 × 300 × Nj data batch normalization

Stage 1 64 × 300 × Nj



S = 4 T = 2
1 × 1, 16 1 × 3, 32
1 × 1, 64 1 × 1, 64


× 1

Stage 2 64 × 150 × Nj

1 × 2 max pooling, stride 1 × 2


S = 4 T = 2
1 × 1, 16 1 × 3, 32
1 × 1, 64 1 × 1, 64


× 3

Stage 3 128 × 75 × Nj

1 × 2 max pooling, stride 1 × 2


S = 4 T = 2
1 × 1, 32 1 × 3, 64
1 × 1, 128 1 × 1, 128


× 3

Stage 4 256 × 37 × Nj

1 × 2 max pooling, stride 1 × 2


S = 4 T = 2
1 × 1, 64 1 × 3, 128
1 × 1, 256 1 × 1, 256


× 3

256 avg pooling, dropout
classifier Nc fc

Table 1: Architecture of spatio-temporal inception graph
convolutional networks. “S=4” and “T=2” denote the num-
bers of branches in spatial inception and temporal incep-
tion, respectively, followed by the size of kernels in convolu-
tionmodules and fusionmodules. Nj is the number of joints
in the graph. Nc is the number of action classes.

feature maps in the input sequence. The feature fusion module
concatenates the outputs of the two temporal branches, followed
by a 1 × 1 convolution, batch normalization and ReLU.

3.2.3 Spatio-Temporal Fusion. In the final merging stage, the out-
puts of spatial path, temporal path and residual path are aggregated
by summation.

3.3 Network Architecture
To maintain consistent with state-of-the-art GCNs [52][42][39], we
introduce ten ST inception blocks into our STIGCN. The overall
architecture is illustrated in Fig. 2 and Table 1. It is a stack of basic
building blocks shown in Fig. 1 (b). There are four stages in STIGCN,
consisting of 1, 3, 3 and 3 building blocks, respectively. The numbers
of output channels for these blocks are 64, 64, 64, 64, 128, 128, 128,
256, 256 and 256, respectively. Inside each block, “S=4” and “T=2”
denote the numbers of branches in SI and TI, respectively, followed
by the size of kernels in convolution modules and fusion modules.
A batch normalization layer is added to the beginning to normalize
the input data. Max pooling is applied after the first three stages, to
construct a temporal hierarchical structure. The extracted features
of the last block are fed into a global average pooling layer to pool
feature maps of different samples to the same size. After a dropout
layer, a softmax classifier is used to generate the final prediction.

4 EXPERIMENTS
4.1 Datasets and Evaluation Protocol
NTU RGB+D [41] is the most widely used and the largest multi-
modality indoor-captured action recognition dataset. It contains

Figure 3: Left: the 25 joint labels in NTU RGB+D. Right: the
18 joint labels in Kinetics-Skeleton.

56, 880 action clips (samples) from 60 action classes. For classifi-
cation task, we follow the benchmark evaluations in the original
work [41], which are cross-subject (X-Sub) and cross-view (X-View)
evaluations. In X-Sub evaluation, 40, 320 samples performed by 20
subjects are used as the training set, while the rest belong to the
testing set. X-View evaluation divides the dataset according to cam-
era views, where training and testing sets have 37, 920 and 18, 960
samples, respectively. For retrieval task, we follow the settings in
[32] and split the dataset into two parts: a training set containing
47, 180 samples from 50 action classes and a testing set contain-
ing 9, 700 samples from the remaining 10 action classes. No data
augmentation is performed in either task, and the data processing
procedure is the same as which in [52].

Kinetics-Skeleton [19] is a large-scale human action dataset
that contains 260, 000 video clips from 400 action classes. Yan et al.
[52] employed the open source toolbox OpenPose [2] to estimate
coordinates of 18 joints in each frame. For classification task, the
dataset is divided into a training set (240, 000 samples) and a testing
set (20, 000 samples). For retrieval task, the dataset is randomly
divided into a training set containing 228, 273 samples from 350
classes and a testing set containing 31, 727 samples from the re-
maining 50 action classes. We use the same data augmentation as
in [52]. The definitions of the joints and their natural connections
in these two datasets are shown in Fig. 3.

Evaluation Protocol. We calculate the top-1 accuracy on NTU
RGB+D and the top-1/top-5 accuracy on Kinetics-Skeleton to eval-
uate the performance. And in retrieval task, we calculate the mean
average precision (mAP) and cumulative matching characteristics
(CMC) at rank-1 on both datasets to evaluate the performance.

4.2 Implementation Details
Our framework is implemented on PyTorch [38] and the code will
be released later. Following [42], all experiments use stochastic gra-
dient descent with a Nesterov momentum of 0.9. For NTU RGB+D,
the batch size is 64, the weight decay is 5e−4 and the initial learning
rate is 0.1. The learning rate is divided by 10 at the 30th and 40th
epochs. The training process ends at the 50th epoch. For Kinetics-
Skeleton, the batch size is 128 and the training lasts 60 epochs. The
learning rate is set to 0.1 at the beginning and is divided by 10 at
the 45th and 50th epochs. The weight decay is 1.5e − 4.

4.3 Comparison with State-of-the-Art Methods
4.3.1 Action Classification. Our method is compared to state-of-
the-art methods, including handcrafted-feature-based methods [49],



Input Method X-Sub(%) X-View(%)

Joint

Lie Group [49] 50.1 82.8
HBRNN [4] 59.1 64.0

Deep LSTM [41] 60.7 67.3
P-LSTM [41] 62.9 70.3
ST-LSTM [33] 69.2 77.7
STA-LSTM [44] 73.4 81.2
VA-LSTM [54] 79.2 87.7

TCN [21] 74.3 83.1
SynCNN [34] 80.0 87.2

Deep STGCK [26] 74.9 86.3
ST-GCN [52] 81.5 88.3
DPRL [46] 83.5 89.8
SR-TSL [43] 84.8 92.4

STGR-GCN [25] 86.9 92.3
AS-GCN [29] 86.8 94.2
GR-GCN [9] 87.5 94.3
2S-AGCN [42] 86.6 93.7
NAS-GCN [39] 87.6 94.5
STIGCN (ours) 90.1 96.1

Joint+Bone 2S-AGCN [42] 88.5 95.1
NAS-GCN [39] 89.4 95.7

Table 2: Comparison of classification accuracy on NTU
RGB+D.

RNN-basedmethods [4][41][33][44][54], CNN-basedmethods [21][34],
and GCN-based methods [26][52][46][43][25][29][9][42][39]. The
results on NTU RGB+D and Kinetics-Skeleton are summarized in
Table 2 and Table 3, respectively. We can see that STIGCN outper-
forms other methods on both datasets by a notable margin .

It is worth noting that both 2S-AGCN and NAS-GCN use extra
bone data. They first train two independent models with joint data
and bone data respectively, then ensemble the outputs of them
during testing. STIGCN is trained in an end-to-end manner and
outperforms aforementioned methods without any ensemble or
extra bone data. When only joint data are used in 2S-AGCN and
NAS-GCN, STIGCN outperforms them by 3.5% and 2.5% on NTU
RGB+D X-Sub. We can conclude that STIGCN is much better at
leveraging the multi-scale and multi-view knowledge from the joint
sequence data, which significantly boosts the performance.

Moreover, Table 4 illustrates that STIGCN needs much fewer
parameters and FLOPs than state-of-the-art methods. It is 1/8 pa-
rameters and 1/18 FLOPs compared with NAS-GCN [39]. This
finding shows that STIGCN is more efficient at extracting represen-
tations from the skeleton sequence, which is important in practical
scenarios. More importantly, as the width and depth of our network
is the same as the network for single-stream inputs in 2S-GAN
[42] and NAS-GAN [39], the superior performance indicates that
increasing the number of transformation sets is a more effective
way of gaining accuracy than simply creating wider GCNs.

Fig. 4 shows the training and testing curves of STIGCN and
NAS-GCN (joint) on NTU RGB+D X-Sub. STIGCN exhibits lower
training accuracy but higher testing accuracy, which indicates that
STIGCN is more generalizable to the testing data. With much fewer
parameters and FLOPs, STIGCN achieves a higher generalization
capacity by alleviating the overfitting problem.

Input Method Top-1(%) Top-5(%)

Joint

Feature [8] 14.9 25.8
P-LSTM [41] 16.4 35.3
TCN [21] 20.3 40.0

ST-GCN [52] 30.7 52.8
AS-GCN [29] 34.8 56.5
2S-AGCN [42] 35.1 57.1
NAS-GCN [39] 35.5 57.9
STIGCN (ours) 37.9 60.8

Joint+Bone 2S-AGCN [42] 36.1 58.7
NAS-GCN [39] 37.1 60.1

Table 3: Comparison of classification accuracy on Kinetics-
Skeleton.

Method Params(M) GFLOPs

2S-AGCN [42] 7.0 37.3
NAS-GCN [39] 13.0 73.2
STIGCN (ours) 1.6 4.0

Table 4: Comparison of number of parameters and FLOPs.
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Figure 4: Training and testing curves on NTURGB+DX-Sub.

4.3.2 Action Retrieval. To further validate the representation learn-
ing capability of STIGCN, we validate its performance on action
retrieval tasks. Following the configurations in [32], we split the
dataset into training and testing sets without action class overlap.
The model is trained on training set with only the cross entropy
loss, and tested by single query among all testing samples.

We choose 2S-AGCN [42] and NAS-AGCN [39] as baseline meth-
ods and train them by replicating the same training hyperparam-
eters and architectures as those in the original papers. Features
extracted from the trained models are used for retrieval. Since both
methods are trained with a two-stream pipeline, we train two mod-
els using joint-skeleton data and bone-skeleton data separately and
concatenate the output features for similarity calculation during
retrieval. Our STIGCN uses only single-stream joint-skeleton data.
For all three methods, outputs of the final average pooling layer
are used as features for retrieval.

Table 5 and Table 6 demonstrate that STIGCN achieves the
best performance. Specifically, compared with NAS-GCN [39], our
model achieves a 2.04% mAP gain on NTU RGB+D and a 1.04%
gain on Kinetics-Skeleton with only 1/8 of the parameters, 1/18 of
the FLOPs and 1/2 of the output features. When the feature dimen-
sion is the same, the gains become 6.04% and 2.05%. The superior



Input Method Feat dim mAP(%) CMC(%)

Joint 2S-AGCN [42] 256 73.83 93.97
NAS-GCN [39] 256 74.04 94.12
STIGCN (ours) 256 80.08 96.17

Joint+Bone 2S-AGCN [42] 512 77.18 95.36
NAS-GCN [39] 512 78.04 95.78

Table 5: Comparison of action retrieval results on NTU
RGB+D. “Feat dim”: the feature dimension.

Input Method Feat dim mAP(%) CMC(%)

Joint 2S-AGCN [42] 256 15.51 41.01
NAS-GCN [39] 256 16.13 41.88
STIGCN (ours) 256 18.18 44.35

Joint+Bone 2S-AGCN [42] 512 16.23 42.30
NAS-GCN [39] 512 17.04 43.07

Table 6: Comparison of action retrieval result on Kinetics-
Skeleton.

performance of STIGCN in the retrieval task reveals that the pro-
posed GCN backbone is better at general representation learning
for skeleton sequence data.

4.4 Ablation Analysis
4.4.1 Architecture. To validate the effectiveness of the proposed
transformations in spatio-temporal inception block, including adja-
cency sampling of multiple orders, motion sampling and feature
fusion, we present the performance of models with and without
these components on NTU RGB+D X-Sub. To ensure a fair com-
parison, the number of channels inside the block is fixed across all
settings. For example, if the number of channels of spatial path in
(a) is n, then the number of channels in each of the two branches
in spatial path in (b) is n/2. If the number of channels of temporal
path in (a − e) ism, then the number of channels in each of the two
branches of temporal path in (f ) ism/2.

Table 7 shows that the proposed network consistently benefits
from the introduced transformations. Moreover, settings (e) and (f )
show that the motion sampling module and feature fusion module
provide much help in action recognition due to the synthesis of
motion information and multiple scale information.

4.4.2 Fusion of Multiple Order Information. One key insight of
our spatio-temporal inception design is the fusion of features from
different branches, and each branch processes specific-order in-
formation. To inspect how the feature fusion module synthesizes
features of different branches, we visualize the input feature maps,
output feature maps and the weights of 1×1 convolutional layer in
the fusion module of SI and TI paths. For convenience, we visualize
the weights of one randomly selected filter, as well as its input
and output feature maps with the maximum coefficient, as shown
in Fig. 5. In this figure, (a) and (b) demonstrate that every branch
contributes to the output; (c)-(f) indicate that different branches
learn discriminative features. Thus, we can obtain more informative
outputs by synthesizing these features. In general, STIGCN merges
multiple sets of transformed information and benefits greatly from
the aggregated representations.
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Figure 5: The weight values of one random filter in the fu-
sionmodules of SI andTI paths, aswell as the corresponding
input/output features in the feature fusion module. (a) and
(b) are the values of the 256-dimensional weights. The hor-
izontal axis denotes the input channels and each color de-
notes one branch. (c)-(f) are input and output feature maps
with the maximum coefficient of different branches in SI
and TI. The horizontal axis denotes the temporal dimension
and the vertical axis denotes the feature channel dimension.
These figures show that STIGCN merges multiple order in-
formation and generates more informative representations.

4.4.3 The Effect of the Representation Dimension. We reduce the
dimension of output features of STIGCN, NAS-GCN and 2S-AGCN
via principal component analysis (PCA) and test their performance
on the NTU RGB+D retrieval task. The results are shown in Fig. 7.
The representation learned by STIGCN consistently outperforms
the others at varying dimensions from 200 to 3. An interesting ob-
servation is that the performance of 2S-GCN and NAS-GCN tends
to be similar when the feature dimension is very small. STIGCN, in
contrast, outperforms these twomodels by a wide margin. This find-
ing shows that with the synthesis of multiple sets of transformed
information, the representations from STIGCN are more robust to
the change of feature dimension.



Setting Order=1 Order=2 Order=3 Order=4 Motion Fusion Acc (%)

a ✓ 86.53
b ✓ ✓ 87.67
c ✓ ✓ ✓ 88.22
d ✓ ✓ ✓ ✓ 88.49
e ✓ ✓ ✓ ✓ ✓ 89.45
f ✓ ✓ ✓ ✓ ✓ ✓ 90.10

Table 7: Performance of different settings in STIGCN. “Order=i” means that there are i adjacency sampling modules in spatial
path. “Motion” denotes the motion sampling module, and “Fusion” represents the feature fusion module.

Figure 6: Comparison of classification accuracy of 12 difficult action classes on NTU RGB+D X-Sub.
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Figure 7: The evaluation of representations learned by dif-
ferent architectures with different dimensions.
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Figure 8: Visualizations of skeleton-sequence representa-
tion embeddings. Each sequence is visualized as one point,
and the colors denote different action classes.

4.4.4 Embedding Representations. Fig. 8 further shows the t-SNE
[47] visualization of the embedding of skeleton-sequence represen-
tations learned from NAS-GCN and STIGCN. We use the testing
set of NTU RGB+D and the output representations are projected
into a 2-dimensional space using t-SNE. This figure clearly shows
that representations generated by STIGCN are semantically better
grouped than those of NAS-GCN.

4.4.5 Classification Accuracy on Difficult Actions. We further ana-
lyze the performance of NAS-GCN and STIGCN on difficult action
classes, i.e., actions whose classification accuracy is less than 80%
in either NAS-GCN or STIGCN. As shown in Fig. 6, there are 12
difficult actions for NAS-GCN and 6 difficult actions for STIGCN.
STIGCN outperforms 2S-AGCN on all these difficult actions. This
finding shows that STIGCN has better ability to handle challenging
actions.

5 CONCLUSION
In this paper, we propose a simple graph convolution backbone
architecture called spatial temporal inception graph convolutional
networks for skeleton-based action recognition. It overcomes the
limitations of previous methods in extracting and synthesizing in-
formation of different scales and transformations from different
paths at different levels. On two large-scale datasets, the proposed
network outperforms state-of-the-art methods by a significant mar-
gin with surprisingly fewer parameters and FLOPs. Our method
indicates that increasing the number of sets of transformations
is a more effective way of gaining accuracy than simply creating
wider GCNs. We hope this insight will facilitate the iteration of
GCN-based backbones for spatio-temporal sequence analyses. In
the future, we will explore more types of transformations for the
design of graph convolution building blocks.
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