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Abstract

Knowledge Distillation (KD) is a popular technique to

transfer knowledge from a teacher model or ensemble to

a student model. Its success is generally attributed to the

privileged information on similarities/consistency between

the class distributions or intermediate feature representa-

tions of the teacher model and the student model. How-

ever, directly pushing the student model to mimic the prob-

abilities/features of the teacher model to a large extent

limits the student model in learning undiscovered knowl-

edge/features. In this paper, we propose a novel inheritance

and exploration knowledge distillation framework (IE-KD),

in which a student model is split into two parts - inheritance

and exploration. The inheritance part is learned with a sim-

ilarity loss to transfer the existing learned knowledge from

the teacher model to the student model, while the explo-

ration part is encouraged to learn representations different

from the inherited ones with a dis-similarity loss. Our IE-

KD framework is generic and can be easily combined with

existing distillation or mutual learning methods for training

deep neural networks. Extensive experiments demonstrate

that these two parts can jointly push the student model to

learn more diversified and effective representations, and

our IE-KD can be a general technique to improve the stu-

dent network to achieve SOTA performance. Furthermore,

by applying our IE-KD to the training of two networks, the

performance of both can be improved w.r.t. deep mutual

learning.

1. Introduction

Knowledge distillation is one of the most popular meth-

ods for transferring knowledge from one network (teacher)

*This work was done when the author was visiting Alibaba as a re-

search intern.
†Corresponding author.

to another (student). It was first proposed by Hinton et

al. [10] to transfer knowledge from a large teacher network

(or ensemble) to a small student network that is easier to

deploy. It works by training the student to predict the tar-

get classification labels and mimic the class probabilities

of the teacher, as these features contain additional informa-

tion about how the teacher tends to generalize [10]. All

recent distillation works follow this philosophy of an ad-

ditional consistency control between the class probabilities

or intermediate representations of the teacher network and

the student network. KD [10] and Tf-KD [32] focus on the

consistency of output class probabilities. AT [33], AB [13],

FT [16], OD [12], FEED [22] and FitNet [24] propose dif-

ferent consistency controls of intermediate features. FSP

[31] proposes a consistency control of the intra-similarities

among intermediate features. In summary, all recent distil-

lation methods differ in the metric of consistency between

the student model and the teacher model.

However, directly pushing the student model to mimic

the probabilities/features of the teacher model limits the stu-

dent model in learning new knowledge/features. As shown

in Fig. 1(a), the student model trained with KD learns

very similar patterns compared with the well-trained teacher

(more results will be shown in supplementary materials). In

this case, the “cheetah” misclassified as a “crocodile” by

the teacher model is also misclassified by the student model

trained by KD. The model attributes most of its prediction

to the tail of the “cheetah” which resembles a “crocodile”.

As a result, the student network fails to incorporate new rel-

evant patterns on ears and mouth that are quite discrimina-

tive between the “cheetah” and “crocodile”. Therefore, we

need a mechanism to find more useful features for correct

predictions that are omitted by the teacher network.

Intuitively, simply mimicking outputs of the teacher net-

work will narrow the search space for the optimal parame-

ters of the student network and lead to a poor solution from

a feature learning view. Furthermore, we find that this phe-

nomenon becomes more evident when transferring knowl-
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(a) Visualization of learned knowledge
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Figure 1. Left: Visualization of learned knowledge for classification, including the teacher network (LRP of Teacher), student network

trained with KD (LRP of KD), inheritance part of IE-KD (LRP of Inh.) and exploration part of IE-KD (LRP of Exp.). LRP [21] is used to

interpret the network by visualizing which pixels contribute how much to the classification. Right: Training loss (dotted lines) and testing

loss (bold lines) on CIFAR-10 of the student network (ResNet-56) which is trained via independent learning (training-from-scratch), KD

and IE-KD (using ResNet-20 as teacher network). For a fair comparison, KD and IE-KD correspond to FT and IE-FT here. Directly

pushing the student network to mimic the outputs of the teacher network limits the student network in learning new knowledge. It even

leads to a poor solution when the student network is larger than the teacher network (high training and testing loss at the same time).

edge from a small teacher network to a large student net-

work (shown in Fig. 1(b)). According to the observation in

[1, 5], small networks often have as sufficient capacity as

large networks but represent the features in a more concise

manner [24]. Therefore, a large network should not only

mimic this compact representation with some of their pa-

rameters to reduce the redundancy of itself, but also should

free other parameters to explore more different and comple-

mentary features to improve its diversity and generalization

ability. Based on the aforementioned analyses, in this paper,

we propose a novel inheritance and exploration knowledge

distillation framework (IE-KD), to train a student network

by partially following the knowledge from the teacher net-

work and partially exploring for new knowledge that are

complementary to the teacher network.

In our IE-KD, the knowledge is transferred by the two

principles of consistency and diversity. Consistency ensures

that the well learned knowledge encoded in the teacher net-

work is successfully inherited by the student network. Di-

versity ensures that the student network can explore new

features that are complementary to the inherited ones. The

motivation of IE-KD comes from the theory of heredity in

evolution [7]. Heredity involves inheritance and variation

of traits. Evolution results from natural selection acting on

diversity in populations, which originally stems from mu-

tations. There are three key factors for evolution: a) in-

heritance of compact and effective traits from parents en-

coded by genes, b) new diversified genotypes generated

from genetic mutations, and c) natural selection through

stressful environments. Motivated by this, we split the stu-

dent network into two parts: one inherits the compact and

effective knowledge encoded by factors from the teacher

network via consistency/inheritance loss (similarity), and

the other is pushed to generate different features via diver-

sity/exploration loss (dis-similarity). The supervised task

(classification/detection) loss plays the role of natural se-

lection, guiding the exploration part to converge to diverse

yet effective features.

Another closely related motivation for IE-KD comes

from the exploration of actions in Q-learning [20], and the

popular AlphaGo [26], where half the actions follow the

predictions of the policy network, and the other half are

randomly sampled from the remaining action space that en-

sures adequate exploration of the state space. Besides, [4]

proposes a similar form of loss function to attack the heat

maps of one white-box DNN, making its attention focus

on other regions of the image. Inspired by these insights,

we propose our IE-KD framework to improve the training

of student network, by exploring the new and undiscovered

knowledge apart from the teacher-learned knowledge.

Overall, our IE-KD framework is generic and can be eas-

ily combined with existing distillation or mutual learning

methods for training deep neural networks. Extensive ex-

periments demonstrate that these two parts can jointly push

the student model to learn more diversified and effective

representations, and our IE-KD can be a general technique

to improve the student network to achieve SOTA perfor-

mance. Furthermore, by applying our IE-KD to the training

of two networks, the performance of both can be improved

w.r.t. deep mutual learning.
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2. Related Work

In this paper, we focus on knowledge transfer between

networks. All related works can be divided into three types:

consistency control from a pre-trained teacher network to

a student network by distillation, simultaneous learning of

network pairs by consistency control, and self-distillation

by teacher free regularization.

Consistency Control from a pre-trained teacher net-

work or ensemble to a student network. Various ap-

proaches exist to transfer knowledge from a pre-trained

large network or ensemble to an untrained small network,

i.e., knowledge distillation. The transferred knowledge lies

in a consistency of output probabilities (KD [10]), interme-

diate features (AT [33], AB [13], FT [16], OD [12], FEED

[22], FitNet [24]), or similarities between intermediate fea-

tures (FSP [31]). Each method differs in the metric of con-

sistency, including KL divergence between output proba-

bilities (KD [10], BAN [9]), regression with additional pa-

rameters between the mapping of intermediate features (Fit-

Net [24]), L1 distance between projected factors (FT [16]),

L1 distance between the pooled attentions (AB [13]), and

L2 distance between rectified activations (OD [12]). FEED

[22] proposed L1 distances between the features of an en-

semble of teacher networks and the untrained small net-

work. CRD [29] proposed a contrastive-based objective

for transferring high-order dependencies in representational

space between deep networks.

Simultaneous learning by consistency control among

a group of untrained networks. Recently, researchers

have proposed to relax the requirements of a pre-trained

large network by starting with a pool of untrained networks

and learns simultaneously with a consistency control. Deep

mutual learning [35] shows that an ensemble of students

could learn collaboratively and teach each other through-

out the training process by consistency control of output

probabilities. More recently, FFT [15], ONE [36] and CL

[28] proposed consistency control between an ensemble of

sub-network classifiers and each sub-network, where each

sub-network mutually teaches one another in an online-

knowledge distillation manner.

Teacher-free regularization. In Tf-KD [32], label

smoothing regularization was introduced as a virtual teacher

model for KD, without any additional peer networks

needed. SD [30] proposed to use snapshots from earlier

epochs as teacher model. These works still comply to the

consistency between student network and referred targets,

either manually designed or selected from snapshots.

In this study, we propose a new framework for trans-

ferring knowledge from the teacher network to a student

network. Beyond the consistency control used in distilla-

tion and mutual learning, IE-KD further involves a diversity

control. In addition, our IE-KD approach supports similar

mutual learning between a group of networks and achieves

much better performance.

3. Method

Fig. 2 illustrates the framework of our approach. The

features of the student network is divided into two parts.

One part (indicated by the orange color) is trained to mimic

the compact features of the teacher network using an in-

heritance loss, and the other part (blue) is encouraged

to learn new features different from the teacher network

via an exploration loss. The supervised task (classifica-

tion/detection) loss guides the exploration part to converge

to diverse yet effective features. Overall, the student net-

work is trained with the inheritance loss and the exploration

loss, together with the conventional supervised target loss.

Since the teacher network is pre-trained, the compact

features could be pre-learned as well using auto-encoder,

which we will discuss in Sec. 3.1. Then, we will discuss

the details of IE-KD in Sec. 3.2, followed by extension to

deep mutual learning manner in Sec. 3.3.

3.1. Compact Knowledge Extraction

We denote the features of the teacher as fT , the features

of the inheritance part and exploration part of the student

network as finh and Fexp, respectively. The challenge in

measuring the similarity/dis-similarity between these fea-

tures is that they usually have different shapes and sizes. To

solve this problem, we embed them into a shared latent fea-

ture space of the same dimension via an encoder, and the

embedded features are indicated by FT , Finh and Fexp, re-

spectively. We adopt the factor-based embedding module

in [16] to extract knowledge from the specific convolutional

block of the teacher network.

In particular, an auto-encoder, consisting of several con-

volutional and deconvolutional layers, is adopted to extract

transferable factors FT from the teacher network. We use

three convolution layers and three transposed convolution

layers. All six layers use 3× 3 kernels, stride of 1, padding

of 1, and batch normalization with leaky-ReLU with rate

of 0.1 followed by each of the six layers. Only at the sec-

ond convolution, the number of output feature maps is com-

pressed to the number of factor feature maps. Similarly, the

second transposed convolution layer is resized to match the

feature maps of the teacher network. The detailed archi-

tecture can be found in the supplementary materials. The

auto-encoder is trained by the common reconstruction loss:

Lrec = ||fT −R(fT )||
2, (1)

where fT is the feature maps of the teacher network and

R(fT ) is the output of the auto-encoder.

3.2. Inheritance and Exploration

The goal of IE-KD is to enhance the features of the

student network, fS , by using the compact features of the
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Figure 2. Overview of IE-KD framework. The student network is split into two parts. One part (colored in orange) inherits the compact

and effective representations encoded by factors from the teacher network via consistency/inheritance loss (similarity), and the other part

(colored in blue) is pushed to generate different features via diversity/exploration loss (dis-similarity). The supervised task (classifica-

tion/detection) loss guides the exploration part to converge to diverse yet effective features.

teacher network, fT . Directly pushing the student model to

mimic the features of the teacher model limits the student

model in learning undiscovered features. Therefore, instead

of treating and training fS as a whole, we randomly split

it into two parts, finh and fexp, and regulate them sepa-

rately with two counterpart losses, an inheritance loss Linh

that pushes finh to mimic fT as much as possible, and an

exploration loss Lexp that allows fexp to learn different or

unrelated features to fT . Similarly, we use two separate en-

coders to embed finh and fexp into factors Finh and Fexp

that have the same dimension as FT , which relieves the stu-

dent network from the burden of directly learning the output

of the teacher network.

We would like to emphasize that the specific implemen-

tation of the inheritance loss and exploration loss are or-

thogonal to our IE-KD framework. All metrics that mea-

sures the similarity and dis-similarity of two representations

can be easily adopted into our framework for the inheri-

tance part and exploration part, respectively. Below, we

only discuss a simple and effective implementation of Linh

and Lexp.

Inheritance loss. Linh is designed to inherit the exist-

ing knowledge from the teacher model by minimizing the

difference between Finh and FT , and is represented as:

Linh = ||
Finh

||Finh||2
−

FT

||FT ||2
||1. (2)

Similar to [16], we apply L1 normalization to the factors.

The L1 distance acts as a similarity metric in a very simple

form. Any other similarity metrics for vectors can be easily

adopted as a inheritance loss, such as L2, cosine distance

(L = 1− cos(x, y)), partial L2 distance [12], etc.

Exploration loss. Lexp is designed to act oppositely as

Linh, learning representations that are different from the in-

herited ones. Inspired by [4], a straightforward choice is to

minimize the negative difference between Fexp and FS :

Lexp = −||
Fexp

||Fexp||2
−

FS

||FS ||2
||1. (3)

We would like to point out that the sign change of the ex-

ploration loss is different from pushing Fexp to learn a neg-

ative teacher factor −FT , which obviously correlates with

FT . Lexp aims to encourage the exploration part to focus

on other regions of the image [4], exploring new features

that are complementary to the inherited ones.

Likewise, there exist many different metrics to measure

the dis-similarity, such as negative L2 distance (L = −||x−
y||2), orthogonality measure (L = |cos(x, y)|), CKA [17],

negative partial L2 distance [12], etc.

Training. The teacher network’s factor auto-encoder is

firstly trained with the reconstruction loss. Then, the factor

encoders and backbone network of the student network is

trained simultaneously with target loss (classification, de-

tection, etc.), inheritance loss and exploration loss:

L = Lgoal + λinhLinh + λexpLexp, (4)

where λinh and λexp are the corresponding loss weights,

respectively.

3.3. Extension to Deep Mutual Learning

In the above sections, we propose a new framework to

improve a student network by transferring knowledge from

a teacher network in an inheritance and exploration manner.

A straightforward idea is that we can further improve the

teacher network via the same process with the better student

network. Thus, our IE-KD approach can be extended to a

deep mutual learning manner [35] (termed as IE-DML), to

make both the teacher and student networks benefit from

our IE-KD mechanism.
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In the original Deep Mutual Learning [35] strategy, two

peer networks (Θ1 and Θ2) are optimized simultaneously

with KL distance to measure the consistency of two net-

work’s predictions. In IE-DML, we replace the KL regular-

ization with two IE-KD processes (described in Sec. 3.2)

which have opposite directions, i.e., network Θ1 to Θ2 and

network Θ2 to Θ1. For example, in the process of network

Θ1 to network Θ2, network Θ2 is trained by regarding net-

work Θ1 as the teacher network. Additionally, since both

networks are trained from scratch, the auto-encoder needs

to be trained together with the backbone networks.

The overall loss function LΘ1
for network Θ1 is com-

posed of four components: target loss, reconstruction loss,

inheritance loss and exploration loss:

LΘ1
= Lgoal1+λrecLrec1+λinhLinh1+λexpLexp1, (5)

where the λrec, λinh and λexp are the corresponding loss

weights, respectively. Similarly, the objective loss function

LΘ2
for network Θ2 can be computed as:

LΘ2
= Lgoal2+λrecLrec2+λinhLinh2+λexpLexp2. (6)

In this way, each model is trained by the inheritance and ex-

ploration with the compact knowledge from the other one.

Finally, two networks are updated alternatively follow-

ing four steps until convergence: a) update the predictions

of the teacher and student networks for an input mini-batch;

b) compute the stochastic gradient w.r.t. LΘ1
, and update

Θ1; c) update the predictions of the teacher and student net-

works for the current mini-batch; d) compute the stochastic

gradient w.r.t. LΘ2
, and update Θ2.

4. Experiments

The efficiency of our IE-KD mechanism is evaluated on

both classification and detection tasks. For classification,

CIFAR and ImageNet datasets are used. For detection,

the PASCAL VOC dataset is used. We compare our pro-

posed IE-KD with independent learning and several state-

of-the-art knowledge distillation methods. In independent

learning, both the teacher and student networks are inde-

pendently trained from scratch. In distillation, the student

network is trained by transferring knowledge from the pre-

trained teacher network via consistency controls. By com-

paring with distillation, we demonstrate that our IE-KD is a

general method to improve the student network to achieve

SOTA performance and our exploration loss plays a key role

in enhancing the network features.

4.1. Datasets and Settings

CIFAR-10 and CIFAR-100 [18] consist of 50, 000 train-

ing and 10, 000 test images drawn from 10 and 100 classes.

Networks are trained using SGD with Nesterov momentum.

The initial learning rate is set to 0.1, the momentum is set to

0.9, and the mini-batch size is set to 128. The learning rate

is divided by 10 at the 80th and 120th epochs. The training

process ends at the 160th epoch.

ImageNet consists of 1.2M training images and 50k val-

idation images with 1, 000 classes. We perform large-scale

experiments on ImageNet to verify our potential ability to

transfer more complex and detailed information. Networks

are trained for 100 epochs. The learning rate begins at 0.1
and is multiplied by 0.1 at every 30 epochs.

We apply our method to Single Shot Detector (SSD)

[19]. Networks are trained on a mixture of the PASCAL

VOC2007 and VOC2012 [8] trainval sets, which are widely

used in object detection. The backbone network in all mod-

els is pre-trained using ImageNet. Networks are trained for

120k iterations with a batch size of 32. Detection perfor-

mance is evaluated on the VOC 2007 test set.

4.2. Implementation Details

We implement all networks in PyTorch [23] and the code

will be released later. The ratio of the number of input fea-

ture maps to the number of factor feature maps is set to

2. We randomly split representations of the student net-

work into inheritance and exploration parts, since the pa-

rameters of the network are randomly initialized and there is

no strong correlation among channels before learning. The

weights of both inheritance and exploration loss are set to

50 on CIFAR-10, 100 on ImageNet and PASCAL VOC.

Our IE-KD approach is a general framework and can

be easily combined with existing distillation methods. In

this paper, we combine our IE-KD framework with three

SOTA distillation methods, AT [33], FT [16] and OD [12] ,

and denote them as IE-AT, IE-FT and IE-OD, respectively.

In Sec. 3.2, we present the formulation of IE-FT as an

instantiation of our approach. For IE-AT, the output fac-

tors of the encoders are reduced to spatial attention maps

first, then the inheritance loss (Eq.(2)) and exploration loss

(Eq.(3)) are applied to the spatial attention maps between

the teacher network and the inheritance/exploration part of

the student network. For IE-OD, we revise the distance

formulations as in OD [12], i.e., Eq.(2) is reformulated as

Linh = ||(max(Finh, 0) − max(FS , 0)||2 and Eq.(3) be-

comes Lexp = −||(max(Fexp, 0)−max(FS , 0)||2.

4.3. Results of Image Classification

To control other factors and make a fair comparison,

we reproduced the algorithms of other methods based on

their codes and papers. Table 1 shows the Top-1 error rate

on CIFAR-10 when various architectures, including ResNet

[11], Wide ResNet [34] and VGG [27], are used. In the ta-

ble, the “teacher: baseline” and “student: baseline” columns

denote the network architecture and corresponding perfor-

mance of training from scratch. First, we use ResNet-56 as

teacher and ResNet-20 as student, that have same number of

channels but different blocks. Then, we test different types
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Table 1. KD [10], AT [33], FT [16], OD [12], Tf-KD [32], CRD [29] and IE-KD experiments results by training the student network with

pre-trained teacher (error, in %) on CIFAR-10.

Teacher: baseline Student: baseline KD AT FT OD Tf-KD (S) CRD IE-AT IE-FT IE-OD

ResNet-56: 6.39 ResNet-20: 7.78 7.37 7.13 6.85 6.81 7.41 6.80 6.70 6.57 6.53

WRN-40-1: 6.84 ResNet-20: 7.78 7.46 7.14 6.85 6.69 7.51 6.77 6.81 6.57 6.49

WRN-46-4: 4.44 VGG-13: 5.99 5.59 5.48 4.84 4.81 5.48 4.81 4.75 4.67 4.65

WRN-16-2: 6.27 WRN-16-1: 8.62 8.22 8.01 7.64 7.48 8.10 7.49 7.76 7.38 7.26

Table 2. KD [10], AT [33], FT [16], OD [12], Tf-KD [32], CRD [29] and IE-KD experiments results by training the student network with

pre-trained teacher (Top-1 and Top-5 error, in %) on ImageNet. The teacher is ResNet-34 and the student is ResNet-18.

Teacher Student KD AT FT OD Tf-KD (S) CRD IE-AT IE-FT IE-OD

Top-1 26.73 29.91 29.34 29.30 28.57 28.49 29.58 28.83 28.41 28.27 28.19

Top-5 8.57 10.68 10.12 10.00 9.71 9.67 10.06 9.87 9.54 9.39 9.33

Table 3. AT [33], FT [16], OD [12], CRD [29] and IE-KD experiments results by training the student network with pre-trained teacher

(mAP, in %) on PASCAL VOC2007. The teacher is ResNet-50 and the student is ResNet-18.

Teacher Student AT FT OD CRD IE-AT IE-FT IE-OD

76.79 71.61 72.00 72.68 73.08 73.11 73.16 73.32 73.51

of residual networks for teacher and student with WRN-40-

1 and ResNet-20. To investigate the effect of the absence of

shortcut connections, we further use WRN-46-4 as teacher

and VGG13 as student. To test the applicability for archi-

tectures with the same blocks but different channels, we use

WRN-16-2 as teacher and WRN-16-1 as student.

Results of 3 variants of IE-KD (IE-AT, IE-FT and IE-

OD) and other distillation methods on CIFAR-10 are pre-

sented in Table 1. We have two observations: 1) In all three

variants of IE-KD, our inheritance and exploration frame-

work consistently outperforms corresponding consistency-

based distillation method (IE-AT vs. AT, IE-FT vs. FT,

IE-OD vs. OD) with a significant margin. The inheritance

and exploration part can jointly push the student model to

learn more effective representations, resulting in a better

performance. 2) all variants of IE-KD shows better per-

formances than other latest distillation methods (KD [10],

AT [33], FT [16], OD [12], Tf-KD [32] and CRD [29])

consistently, regardless of the type of teacher/student net-

works. Furthermore, when faced with knowledge transfer

from small teacher network to large student network, our

IE-KD shows even more improvement than other distilla-

tion methods, results are presented in supplementary mate-

rials.

For further validation of generalization ability for large-

scale image classification task, we compare our IE-KD and

other distillation methods on ImageNet [25]. Results are

shown in Table 2. Following [16], we set ResNet-34 as a

pre-trained teacher network and ResNet-18 as an untrained

student network. IE-KD outperforms all other methods

again.

These results confirm that our IE-KD is a very general

and effective upgrade of existing distillation framework.

4.4. Results of Object Detection

We further verify the effectiveness of IE-KD for detec-

tion tasks. We set ResNet-50 as the teacher network and

ResNet-18 as the student network. Both networks are pre-

trained with ImageNet and fine-tuned on PASCAL VOC

2007. As shown in Table 3, with IE-KD from the teacher

network, the mean average precision (mAP) of the stu-

dent network is increased with a large margin (71.61% to

73.51%). In this scenario, our IE-KD still shows a no-

table improvement for the student network, showing that

our method can be applied to general computer vision tasks.

4.5. Extension to Deep Mutual Learning

As discussed in Sec. 3.3, we can alternatively update

the student network by IE-KD and the teacher network

also by IE-KD with the improved student network in a

deep mutual learning manner [35], termed IE-DML. The

learning rate strategy is the same as Sec. 4.1. The loss

weights for reconstruction, inheritance and exploration loss

are set as 0.8, 50 and 50. Table 4 compares IE-DML

with DML on CIFAR-100. We experiment on two net-

works with different depths (ResNet-32 / ResNet-110), dif-

ferent widths (ResNet32 / WRN-28-10), different building

blocks (ResNet-32 / MobileNet), and identical architectures

(ResNet32 / ResNet32). In all cases, IE-DML shows clearly

better improvement than DML and independent learning.

This implies that mutual learning of two networks can also

benefit significantly from our inheritance and exploration

framework. Our IE-KD is also a general upgrade of existing

mutual learning methods. These results further confirm that

IE-KD is a very general framework for knowledge transfer

between any type of networks and training strategies.
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Table 4. Comparison of top-1 error (%) on CIFAR-100 between DML [35] and our IE-DML.

Network Types Independent DML IE-DML

Net 1 Net 2 Net 1 Net 2 Net 1 Net 2 Net 1 Net 2

ResNet-32 ResNet-110 31.01 26.91 28.69 25.59 28.36 24.99

ResNet-32 WRN-28-10 31.01 21.31 29.27 21.04 28.06 20.63

ResNet-32 MobileNet 31.01 26.35 28.90 23.87 28.33 23.24

ResNet-32 ResNet-32 68.99 68.99 29.25 28.81 28.59 28.15

Table 5. Ablation study with different proportions of inheritance and exploration feature channels (top-1 error in %).

Dataset Teacher Student η = 0.0/1.0 0.3/0.7 0.5/0.5 0.7/0.3 1.0/0.0

CIFAR-10 ResNet-56 ResNet-20 7.56 6.84 6.53 6.71 6.86

CIFAR-100 ResNet-110 ResNet-32 28.01 27.23 25.67 26.37 27.49

ImageNet ResNet-34 ResNet-18 30.02 28.90 28.19 28.64 29.65

4.6. Ablation Study

Table 6. Ablation study with different metrics and different loss

weights on CIFAR-100. The teacher is ResNet-110 and the student

is ResNet-32.

(a) metrics

Metric Error (%)

L1 25.67

L2 25.76

cos 26.38

partial L2 26.71

L1+CKA 26.60

Baseline 31.01

(b) loss weights

λinh λexp Error (%)

5 5 29.84

50 50 25.67

500 500 27.77

50 500 26.69

500 50 26.33

0 0 31.01

In the introduction section, we describe the motivation

for a student network to mimic the compact representation

of a teacher network, and learn more different and comple-

mentary features to improve diversity and generalization.

To further analyze the necessity and contribution of inheri-

tance and exploration, We conduct ablation studies to ana-

lyze the effects of inheritance and exploration parts.

Inheritance vs. Exploration. In Table 5, we show

the results of using different proportions of feature channels

for inheritance and exploration, tested on different datasets

and network architectures. The settings of “0.0/1.0” and

“1.0/0.0” correspond to using either exploration or inheri-

tance only. The result shows that both inheritance and ex-

ploration are important, and even division achieves the op-

timal performance.

Metric. In Table 6(a), we show the results of using

different similarity metrics for the inheritance and explo-

ration loss. For simplicity, we use “L2” to represent L2

distance as similarity metric and its negative counterpart as

dis-similarity metric. The results show that no matter what

metric is used our IE-KD consistently improves the perfor-

mance of the student network.

Loss weights. Table 6(b) shows the results of using

different weights for the inheritance and exploration loss.

The results show that λinh = λexp = 50 achieves the opti-

mal performance.

4.7. How Does IE­KD Work?

Inheritance. We use layer-wise relevance propaga-

tion (LRP) [21] to interpret the network by visualizing

which pixels contribute how much to the classification [2].

Fig. 3 shows different images and their LRP heat maps

from independent learning, KD and IE-KD. We find that

LRP heat maps of the inheritance channels in IE-KD re-

semble the heat maps of the teacher network, which indi-

cates that the inheritance part mimics the compact features

of the teacher network well.

Furthermore, we use the number of active neurons [6] to

analyze the redundancy of internal representations of net-

works. For an intermediate representation, the number of

active neurons is the number of directions to which clas-

sification loss function c(x) is sensitive. The more active

neurons, the less redundancy the representation contains

[6]. The numbers of active neurons in the teacher network

(ResNet-110) and inheritance channels of student network

(ResNet-32) are 46 and 45, indicating that the inheritance

channels contain approximately the same number of active

neurons as the teacher network. Moreover, the total num-

ber of neurons in inheritance channels is only half of that

in the teacher network, which means that the knowledge is

represented more compactly by the inheritance component.

Exploration. First, we demonstrate that the explo-

ration part can help discover more discriminative input pat-

terns via some concrete examples. In Fig. 1(a), the “chee-

tah” is misclassified as a “crocodile” by the student model,

as the model attributes most of its prediction to the tail of

the “cheetah” that resembles a “crocodile”. The exploration

part of IE-KD model discovers new relevant patterns on ears

and mouth that are quite discriminative between the “chee-

tah” and “crocodile”, and helps predict it correctly. Fig. 3(a)

shows another example, where the independently trained

student is confused by the leaf part of a “pear” and mis-

classifies this image as a “butterfly”. The exploration part
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𝑃𝑒𝑎𝑟	 𝐺𝑇 : 		98%				𝐵𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑦: 			0.6%

𝐼𝑚𝑎𝑔𝑒

𝐿𝑅𝑃	𝑜𝑓	𝐼𝑛ℎ.

𝐿𝑅𝑃	𝑜𝑓	𝑇𝑒𝑎𝑐ℎ𝑒𝑟

𝐿𝑅𝑃	𝑜𝑓	𝐸𝑥𝑝.

𝐿𝑅𝑃	𝑜𝑓	𝐾𝐷

𝐼𝑚𝑎𝑔𝑒

𝑃𝑒𝑎𝑟	 𝐺𝑇 : 33%					𝐵𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑦: 					50%

𝑀𝑜𝑤𝑒𝑟	 𝐺𝑇 : 68%				𝑆𝑛𝑎𝑘𝑒: 			23%

𝐼𝑚𝑎𝑔𝑒

𝐿𝑅𝑃	𝑜𝑓	𝐼𝑛ℎ.

𝐿𝑅𝑃	𝑜𝑓	𝑇𝑒𝑎𝑐ℎ𝑒𝑟

𝐿𝑅𝑃	𝑜𝑓	𝐸𝑥𝑝.

𝐿𝑅𝑃	𝑜𝑓	𝐾𝐷

𝐼𝑚𝑎𝑔𝑒

𝑀𝑜𝑤𝑒𝑟	 𝐺𝑇 : 	14%				𝑆𝑛𝑎𝑘𝑒: 		25%

𝐻𝑎𝑚𝑠𝑡𝑒𝑟	 𝐺𝑇 :90%				𝐵𝑜𝑤𝑙: 			8%

𝐼𝑚𝑎𝑔𝑒

𝐿𝑅𝑃	𝑜𝑓	𝐼𝑛ℎ.

𝐿𝑅𝑃	𝑜𝑓	𝑇𝑒𝑎𝑐ℎ𝑒𝑟

𝐿𝑅𝑃	𝑜𝑓	𝐸𝑥𝑝.

𝐿𝑅𝑃	𝑜𝑓	𝐾𝐷

𝐼𝑚𝑎𝑔𝑒

𝐻𝑎𝑚𝑡𝑒𝑟	 𝐺𝑇 : 			6%					𝐵𝑜𝑤𝑙: 		70%

Figure 3. Analysis on how exploration works. “GT” denotes the ground truth class of the image.
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Figure 4. Comparison of CKA similarity, numbers of active neurons, and loss changes when Gaussian noise is added.

finds negative relevance of the leaf part (indicated by blue)

that pushes the model to focus more on the pear and less on

the leaf. Similar result is shown in Fig. 3(b) and Fig. 3(c).

More results are provided in the supplementary materials.

Second, we measure the similarity between features

from the inheritance and exploration channels, when stu-

dent is trained independently or via IE-KD. Centered Ker-

nel Alignment (CKA) is introduced in [17] as a similarity

index to measure the similarity between two representa-

tions. A larger CKA denotes a higher similarity between

two sets of representations For a fair comparison, the in-

dependent model and IE-KD model are initialized with the

same random seed. As shown in Fig. 4(a), the CKA values

are smaller for IE-KD in the four networks on CIFAR-100.

This indicates more diverse features in the IE-KD model.

Third, we calculate the number of active neurons for IE-

KD and independent student networks. Fig. 4(b) demon-

strates that IE-KD student network has more active neurons

than the independent student network. As proved in [6], this

means that the features are more efficient.

Generalization. Similar to [35, 3, 14], we analyze the

sharpness of the converged minima of the independent and

IE-KD models in Fig. 4(c). Usually, sharp minima leads to

poorer generalization, while flat minima has better gener-

alization ability[3, 14]. The experiments are conducted on

CIFAR-100 using MobileNet. The converged training loss

of both models is approximately the same, 0.131 for IE-KD

model and 0.126 for independent model, which means the

depths of the two minima are close. As we increase the scale

of Gaussian noise added to model parameters, the training

loss of the independent model increases faster than that of

the IE-KD model. This suggests that the IE-KD model has

found a much flatter minimum, and it also provides another

explanation for the lower generalization loss of the IE-KD

model in Fig. 1(b).

5. Conclusion

We propose a novel framework for neural network dis-

tillation, using the technique of inheritance and exploration.

Our IE-KD framework is generic and can be easily com-

bined with existing distillation or mutual learning methods.

Through experiments, we examine the performance of the

proposed method using various networks in various tasks,

and prove that the proposed method substantially outper-

forms the state-of-the-arts of knowledge distillation. We be-

lieve it can shed light on more future works, such as design-

ing different forms of losses, or applying it to other tasks,

i.e., reinforcement learning.
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