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Abstract

This paper is concerned with the stabilization problem of networked control systems where the main focus is the packet-loss issue. Two types
of packet-loss processes are considered. One is the arbitrary packet-loss process, the other is the Markovian packet-loss process. The stability
conditions of networked control systems with both arbitrary and Markovian packet losses are established via a packet-loss dependent Lyapunov
approach. The corresponding stabilizing controller design techniques are also given based upon the stability conditions. These results are also
extended to the unit time delay case. Finally, the numerical example and simulations have demonstrated the usefulness of the developed theory.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Networked control systems (NCSs) are feedback control sys-
tems with control loops closed via digital communication chan-
nels. Compared with the traditional point-to-point wiring, the
use of the communication channels can reduce the costs of ca-
bles and power, simplify the installation and maintenance of
the whole system, and increase the reliability. NCSs have many
industrial applications in automobiles, manufacturing plants,
aircrafts, and HVAC systems (Walsh & Ye, 2001). However,
the insertion of the communication channels creates discrepan-
cies between the data records to be transmitted and their asso-
ciated remotely transmitted images, and hence raises new in-
teresting and challenging problems such as quantization, time
delays, and packet losses. As a result, conventional control the-
ories must be re-evaluated before applying to NCSs. Recently,
NCSs have been a hot research topic and a wealth of litera-
ture have appeared. For example, the discussions of the sig-
nal quantization (Brockett & Liberzon, 2000; Liberzon, 2003),
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time delays (Nilsson, Bernhardsson, & Wittenmark, 1998;
Yue, Han, & Lam, 2005; Zhang, Branicky, & Phillips,
2001; Zhang, Shi, Chen, & Huang, 2005), packet losses
(Azimi-Sadjadi, 2003; Seiler & Sengupta, 2005; Yu, Wang,
Chu, & Xie, 2004; Zhang et al., 2001), and limited informa-
tion issue (Shi & Murray, 2005; Tatikonda & Mitter, 2004),
scheduling (Walsh & Ye, 2001) were presented and some use-
ful results were reported. In general, there are two major ap-
proaches to accommodate these issues in an NCS design. One
way is that one first designs the control system without regard
to the networks, and then determines a performance level that
the networks should satisfy (for example, maximum allowable
transfer interval) so that the closed-loop system maintains its
performance (for example, stability) when some control and
sensor signals are transmitted via the networks (Nešić & Teel,
2004; Zhang et al., 2001). The other approach is to treat the
network protocol and traffic as given conditions and design
the control strategies that explicitly take the network-induced
issues into account (Azimi-Sadjadi, 2003; Seiler & Sengupta,
2005; Yu et al., 2004).

Packet loss is one of the most important and special issues
of NCSs. Some results have been available. Under the as-
sumption that the network is modeled as a switch governed by
a Bernoulli process, Zhang et al. (2001) proposed a criterion
to check whether the NCS is stable at a certain rate of packet
losses, and searched for the maximum packet-loss rate under
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which the overall system remains stable. The method they used
derives from the stability analysis for asynchronous dynamic
systems. With packet-loss rate known and constant, Seiler and
Sengupta (2005) formulated the NCS as a Markovian jump sys-
tem with two operation modes, then applied the techniques de-
veloped for Markovian jump systems. A dynamic output feed-
back controller design method was proposed such that the NCS
is mean square stable and has H∞ gain below certain value
in terms of linear matrix inequalities (LMIs). Moreover, Yu et
al. (2004) modeled the packet-loss process as an arbitrary but
finite switching signal. This enables them to apply the theory
from switched systems to stabilize the NCS. However, in the
framework considered in the references mentioned above, the
controller is directly connected to the actuator. That means no
packets are dropped in control signals. A general framework
was considered in Azimi-Sadjadi (2003), where both sampling
signals and control commands are transmitted through the net-
work and may be dropped during the transmissions. The linear
quadratic Gaussian control problem was studied based on dy-
namic programming approach.

In this paper, we consider the stabilization problem of NCSs
under a general framework. The packet-loss process, defined as
the sequence of the time intervals between consecutively suc-
cessfully transmitted data, is categorized into two types. One
type is called the arbitrary packet-loss process which takes val-
ues in a finite set arbitrarily. This model is similar to the one
considered in Yu et al. (2004). However, there are at least two
differences between this paper and (Yu et al., 2004). The first is
that our framework is more general. Our framework accommo-
dates both-side networks (one between sampler and controller,
and the other between controller and actuator), while Yu et al.
(2004) allows the network from sampler to controller only. The
second is that our results can be reduced to the results in Yu
et al. (2004). The packet-loss dependent Lyapunov function is
used here to establish the stabilization conditions, while Yu et
al. (2004) adopted a common Lyapunov function and the results
are quadratic. The other type is called the Markovian packet-
loss process which is modeled as a discrete-time Markov chain
with known transition probability matrix. This model takes the
Bernoulli model (Seiler & Sengupta, 2005) as a special case,
and enables us to take full advantage of the well-developed
theory for Markovian jump systems to tackle our problem.

The organization of the paper is as follows. Section 2 de-
scribes the NCS framework and two models of the packet-loss
process. The stability of NCSs is analyzed in Section 3, and
Section 4 tackles the stabilization problem. We extend the re-
sults to the case when NCSs suffer from both packet losses and
unit time delays in Section 5. Numerical example and simula-
tions are presented in Section 6. Finally, Section 7 concludes
the paper.

Notation: Z+ denotes the set of nonnegative integers. Rn,
Rm×n and S+ denote, respectively, the n-dimensional Eu-
clidean space, the set of m × n real matrices, and the set of
n×n real symmetric positive definite matrices. Notation X�Y

(respectively, X > Y ) where X and Y are real symmetric matri-
ces, means that X − Y is positive semi-definite (respectively,
positive definite). I is the identity matrix of compatible dimen-
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Fig. 1. Networked control systems with packet-losses.

sions. The superscript “T’’ denotes the transpose for vectors
or matrices. ‖ · ‖ refers to the Euclidean norm for vectors and
induced 2-norm for matrices. E(·) stands for the mathemati-
cal expectation operator. “∗’’ is used to complete symmetric
matrices as in[

M1 ∗
MT

2 M3

]
=

[
M1 M2
MT

2 M3

]
.

2. Problem formulation

The framework of NCSs considered in the paper is depicted
in Fig. 1. The process to be controlled is modeled by a linear
discrete-time system

x(k + 1) = Ax(k) + Bu(k), (1)

where k ∈ Z+ is the time step, x(k) ∈ Rn and u(k) ∈ Rm are
the system state and control input, respectively. x0�x(0) is the
initial state. A and B are two constant matrices of appropriate
dimensions. Networks exist between sampler and controller,
and between controller and zero-order hold. The sampler is
clock driven, the controller and zero-order hold are event driven
and the data are transmitted in a single packet at each time step.

LetI�{i1, i2, . . .}, a subsequence of {1, 2, 3, . . .}, denote the
sequence of time points of successful data transmissions from
the sampler to the zero-order hold, and s�maxik∈I (ik+1 − ik)

be the maximum packet-loss upper bound. Then the following
concept and mathematical models are introduced to capture the
nature of packet losses.

Definition 1. Packet-loss process is defined as

{�(ik)�ik+1 − ik : ik ∈ I} (2)

which takes values in the finite state space S�{1, 2, . . . , s}.

Definition 2. Packet-loss process (2) is said to be arbitrary if
it takes values in S arbitrarily.

Definition 3. Packet-loss process (2) is said to be Markovian if
it is a discrete-time homogeneous Markov chain on a complete
probability space (�,F, P), and takes values in S with known
transition probability matrix ��(�ij ) ∈ Rs×s , where

�ij� Pr(�(ik+1) = j | �(ik) = i)�0

for all i, j ∈ S, and
∑s

j=1 �ij = 1 for each i ∈ S.



82 J. Xiong, J. Lam / Automatica 43 (2007) 80–87

Remark 4. When � =
[
p 1 − p

p 1 − p

]
with 0�p�1, the two-

state Markov process is reduced to a Bernoulli process (Seiler
& Sengupta, 2005).

The networked controller is a state-feedback controller

u = Kx, (3)

where K ∈ Rm×n is to be designed. From the viewpoint of the
zero-order hold, the control input is

u(l) = u(ik) = Kx(ik)

for ik � l� ik+1 −1. The initial inputs are set to zeros: u(l)=0,
0� l� i1 − 1. Hence the closed-loop system becomes

x(l + 1) = Ax(l) + BKx(ik) (4)

for ik � l� ik+1 − 1, ik ∈ I. The objective of this paper is to
construct controller (3) so that NCS (4) is stable.

3. Stability of NCS

In this section, we analyze the stability property of NCSs. For
NCSs with the arbitrary packet-loss process, a sufficient condi-
tion is derived by adopting a packet-loss dependent Lyapunov
function approach. For NCSs with the Markovian packet-loss
process, a necessary and sufficient condition is established by
using the theory from Markovian jump systems. The conditions
are given in terms of LMIs.

3.1. Arbitrary packet-loss stability

Definition 5. Let x(l; x0) be the trajectory of NCS (4) with ini-
tial state x0. Then NCS (4) with arbitrary packet-loss process
(2) is said to be stable if for any � > 0 there exists a ���(�) > 0
such that ‖x0‖ < � implies ‖x(l; x0)‖ < � for l ∈ Z+. Further-
more, it is said to be asymptotically stable if it is stable and
liml→∞ ‖x(l; x0)‖2 = 0 for any initial state x0 ∈ Rn.

Theorem 6. NCS (4) with arbitrary packet-loss process (2) is
asymptotically stable if there exist matrices Pi ∈ S+, i ∈ S,
such that

(Aj + BjK)TPj (A
j + BjK) − Pi < 0 (5)

holds for all i, j ∈ S, where Bj = ∑j−1
r=0 ArB.

Proof. From system (4), we have

x(ik+1) =
⎡
⎣A�(ik) +

�(ik)−1∑
r=0

ArBK

⎤
⎦ x(ik), ik ∈ I. (6)

The initial state of system (6) is x(i1) = Ai1x0. Now take the
packet-loss dependent Lyapunov function as

V (l)�xT(l)P(l−ik)x(l) (7)

for ik + 1� l� ik+1, ik ∈ I, and let i��(ik−1), j��(ik), we
have

V (ik) = xT(ik)P(ik−ik−1)x(ik) = xT(ik)Pix(ik),

V (ik+1) = xT(ik)(A
j + BjK)TPj (A

j + BjK)x(ik).

Therefore, V (ik+1) − V (ik) < 0 for any x(ik) �= 0 if inequality
(5) holds. Hence, limik→∞ V (ik) = 0.

Now consider the system state x(l) for ik + 1� l� ik+1, we
have

x(l) = (Ah + BhK)x(ik)

where h = l − ik ∈ S and Bh = ∑h−1
r=0 ArB. Hence V (l) −

V (ik)=xT(ik)[(Ah +BhK)TPh(A
h +BhK)−Pi]x(ik) < 0 for

any x(ik) �= 0 in view of (5). That is, V (l) < V (ik) for ik +
1� l� ik+1. Therefore, liml→∞ V (l)=0 since limik→∞ V (ik)=
0, and liml→∞ ‖x(l; x0)‖2 = 0. That is, the sequence {x(l) :
l ∈ Z+} converges to zero.

To prove NCS (4) is stable, let �1� max{maxh∈S ‖Ah‖2, 1},
�2�maxh∈S ‖Ph‖, �3�minh∈S {1/‖P −1

h ‖}, and ��
min{√1/�1,

√
�3/(�1�2)}. Then given any � > 0, we prove that

‖x0‖ < �� implies ‖x(l; x0)‖ < � for l ∈ Z+ in the following.
For 0� l� i1, since the initial inputs are zeros, we have x(l) =
Alx0, so ‖x(l; x0)‖�

√
�1‖x0‖ <

√
�1����. For l > i1, we

have �3‖x(l; x0)‖2 < V (l) according to the definition of Lya-
punov function, and V (l) < V (i1)��2‖x(i1)‖2 ��1�2‖x0‖2

from the proof above. So ‖x(l; x0)‖ <
√

(�1�2)/�3‖x0‖
<

√
(�1�2)/�3����. Thus, we conclude that ‖x(l; x0)‖ < � for

all l ∈ Z+ if ‖x0‖ < � with � = ��. According to Definition 5,
NCS (4) is asymptotically stable. �

Remark 7. In the proof of Theorem 6, V (l + 1) < V (l) is not
necessarily true for all l ∈ Z+.

3.2. Markovian packet-loss stability

Definition 8. NCS (4) with Markovian packet-loss process (2)
is said to be mean square stable if liml→∞ E(‖x(l; x0)‖2) = 0
for any initial state x0 ∈ Rn.

Theorem 9. NCS (4) with Markovian packet-loss process (2)
is mean square stable if, and only if, there exist matrices Pi ∈
S+, i ∈ S, such that

s∑
j=1

[�ij (A
j + BjK)TPj (A

j + BjK)] − Pi < 0 (8)

holds for all i ∈ S, where Bj is defined as in Theorem 6.

Proof. (Sufficiency) Because {�(ik) : ik ∈ I} is a discrete-time
homogeneous Markov chain, system (6) is in fact a discrete-
time Markovian jump linear system with s operation modes
(Costa, 1993; Ji, Chizeck, Feng, & Loparo, 1991). Consider the
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same Lyapunov function as in (7), we have

E(V (ik+1) | �(ik−1) = i) − V (ik)

= xT(ik)

⎛
⎝ s∑

j=1

[�ij (A
j + BjK)TPj (A

j + BjK)] − Pi

⎞
⎠

× x(ik) < 0

for any x(ik) �= 0 if inequality (8) holds. Hence, limik→∞ E(V

(ik)) = 0 and limik→∞ E(‖x(ik; x(i1))‖2) = 0. That is, system
(6) is mean square stable.

Note that two consecutive successful control inputs arrive at
the zero-order hold at ik and ik+1, respectively. This means no
new data is available for ik + 1� l� ik+1 − 1. Therefore, we
have

V (l) = xT(ik)[(Ah + BhK)TPh(A
h + BhK)]x(ik)

for ik+1� l� ik+1, where h=l−ik . Now let 	1�maxh∈S‖(Ah+
BhK)TPh(A

h + BhK)‖ and 	�	1/�3 > 0, where �3 was
defined in the proof of Theorem 6. Then V (l)�	V (ik)

for ik + 1� l� ik+1. Therefore, liml→∞ E(V (l)) = 0, so
liml→∞E(‖x(l; x0)‖2) = 0. This completes the sufficient part
of the proof.

(Necessity) Suppose that NCS (4) is mean square stable, then
system (6) must be mean square stable. Because system (6) is a
Markovian jump system, according to the stability results from
Markovian jump systems, there exist matrices Pi ∈ S+, i ∈ S,
such that (8) holds. This completes the whole proof. �

Remark 10. Inequality (8) can be written as
∑s

j=1 �ij [(Aj +
BjK)TPj (A

j+BjK)−Pi] < 0 because of
∑s

j=1 �ij=1. There-
fore, as expected, the arbitrary packet-loss stability implies the
Markovian packet-loss stability.

4. Stabilization of NCS

With the stability results developed in Section 3, the con-
troller design techniques are provided in this section.

Theorem 11. Consider discrete-time system (1), there exists
a state-feedback controller (3), over network with arbitrary
packet-loss process (2), such that NCS (4) is asymptotically
stable if there exist matrices Xi ∈ S+, i ∈ S, G ∈ Rn×n, and
Y ∈ Rm×n, satisfying the coupled LMIs[−G − GT + Xi (AjG + BjY )T

AjG + BjY −Xj

]
< 0 (9)

for all i, j ∈ S, where Bj is defined as in Theorem 6. In this
case, the controller is given by K = YG−1.

Proof. Pre- and post-multiplying (9) by [Aj +BjK, I ] and its
transpose and noting that Y = KG, we have

(Aj + BjK)Xi(A
j + BjK)T − Xj < 0

which is equivalent to inequality (5) with Pi = X−1
i . �

Remark 12. Theorem 11 contains the quadratic stabilization
result as a particular case. If we aggregate to LMIs (9) the
additional linear constraints G = X ∈ S+ and Xi = X, i ∈ S,
then we recover Theorem 1 of Yu et al. (2004) exactly.

The following theorem gives us a sufficient mean square
stabilization condition for discrete-time system (1) controlled
by (3) over network with Markovian packet-loss process. The
proof is similar to that of Theorem 11 and hence omitted.

Theorem 13. Consider discrete-time system (1), there exists
a state-feedback controller (3), over network with Markovian
packet-loss process (2), such that NCS (4) is mean square stable
if there exist matrices Xi ∈ S+, i ∈ S, G ∈ Rn×n and Y ∈
Rm×n, satisfying the coupled LMIs[−G − GT + Xi Mi

MT
i −


]
< 0 (10)

for all i ∈ S, where

Mi = [√�i1(AG + BY)T · · · √
�is(A

sG + BsY )T],

 = diag(X1, . . . , Xs)

and Bj is defined as in Theorem 6. In this case, the controller
is given by K = YG−1.

Remark 14. By virtue of s being an integer, we can obtain the
largest packet-loss upper bound smax easily.

Remark 15. If system (1) is discretized from a continuous-
time system

ẋ(t) = �x(t) + �u(t), t ∈ [0, +∞)

with A = e�Ts and B = ∫ Ts

0 e�� d, where Ts is the sampling
period, then given the upper bound s, a simple bisection method
may be used to find out the maximal sampling period Ts max.

5. Network-induced delay

Network-induced time delay is another important issue to be
dealt with, and can be modeled as an input delay. So we amend
system (1) to

x(k + 1) = Ax(k) + Bu(k − ), (11)

where  is a constant time delay. The trajectory of (11) on
time instants I, under the control of (3), is generally a func-
tion of the previous ones. Specifically, x(ik+1) is a function
of x(ik), x(ik−1), . . . , x(ik−). In contrast, x(ik+1) is a func-
tion of x(ik) when  = 0 as shown in (6). To simplify the
analysis and synthesis, we consider only the simplest case
with  = 1. However, the principle used here remains valid
for  > 1.

Let us consider system (11) with =1, the closed-loop system
is

x(l + 1) = Ax(l) + BKx(ik) (12)
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for ik + 1� l� ik+1, ik ∈ I. So we have

x(ik+1) =
⎡
⎣A�(ik) +

�(ik)−2∑
r=0

ArBK

⎤
⎦ x(ik)

+ A�(ik)−1BKx(ik−1), ik ∈ I. (13)

The following theorem provides us a stability result.

Theorem 16. NCS (12) with arbitrary packet-loss process (2)
is asymptotically stable if there exist matrices Pi ∈ S+, i ∈ S,
Q ∈ S+, Z ∈ S+, N1 ∈ Rn×n and N2 ∈ Rn×n such that⎡
⎣�ij1 �ij2 N1

�T
ij2 �ij3 N2

NT
1 NT

2 −Z

⎤
⎦ < 0 (14)

hold for all i, j ∈ S, where

�ij1 = RT
j PjRj − Pi + Q + (RT

j − I )Z(Rj − I )

+ N1 + NT
1 ,

�ij2 = RT
j PjA

j−1BK + (RT
j − I )ZAj−1BK − N1 + NT

2 ,

�ij3 = KTBT(Aj−1)T(Pj + Z)Aj−1BK − Q − N2 − NT
2 ,

Rj = Aj +
j−2∑
r=0

ArBK .

Proof. Consider system (13), we define

�(ik)�x(ik+1) − x(ik),

�(ik)�[xT(ik) xT(ik−1)]T

and let i�ik − ik−1 and j�ik+1 − ik , so

x(ik+1) = [Rj Aj−1BK]�(ik).

�(ik) = [Rj − I Aj−1BK]�(ik),

�(ik−1) = [I − I ]�(ik).

Take the Lyapunov functional as

V (l)�xT(l)P(l−ik)x(l) + xT(ik)Qx(ik) + �T(ik)Z�(ik)

for ik + 1� l� ik+1, ik ∈ I. Then

V (ik+1) − V (ik)

= xT(ik+1)Pjx(ik+1) − xT(ik)Pix(ik) + xT(ik)Qx(ik)

− xT(ik−1)Qx(ik−1) + �T(ik)Z�(ik)

− �T(ik−1)Z�(ik−1).

Note that for any Z > 0 and N =
[

N1
N2

]
∈ R2n×n, we have

−�T(ik−1)Z�(ik−1)��T(ik)NZ−1NT�(ik)+2�T(ik)N�(ik−1).
Therefore,

V (ik+1) − V (ik)��T(ik)(�ij + NZ−1NT)�(ik) < 0

for all x(ik) �= 0 if �ij + NZ−1NT < 0, where �ij =[
�ij1

�T
ij2

�ij2
�ij3

]
. In view of Schur complement equivalence, this

inequality is equivalent to (14). The rest of the proof can be
carried out by following similar lines as in the proof of Theo-
rem 6, and hence omitted. �

Theorem 17. Consider discrete-time system (11) with time de-
lay  = 1, there exists a state-feedback controller (3), over net-
work with arbitrary packet-loss process (2), such that NCS (12)
is asymptotically stable if there exist matrices Xi ∈ S+, i ∈ S,
Q̄ ∈ S+, W ∈ S+, G ∈ Rn×n, N̄1 ∈ Rn×n, N̄2 ∈ Rn×n, and
Y ∈ Rm×n, satisfying the coupled LMIs

⎡
⎢⎢⎢⎣

Υ1i ∗ ∗ ∗ ∗
−N̄T

1 + N̄2 Υ2i ∗ ∗ ∗
N̄T

1 N̄T
2 Υ3 ∗ ∗

�j − G Aj−1BY 0 −W ∗
�j Aj−1BY 0 0 −Xj

⎤
⎥⎥⎥⎦ < 0 (15)

for all i, j ∈ S, where

Υ1i = Xi − G − GT + Q̄ + N̄1 + N̄T
1 ,

Υ2i = −Q̄ − N̄2 − N̄T
2 ,

Υ3 = W − G − GT,

�j = AjG +
j−2∑
r=0

ArBY .

In this case, the controller is given by K = YG−1.

Proof. Inequality (14) is equivalent to⎡
⎢⎢⎢⎢⎣

T2i ∗ ∗ ∗ ∗
−NT

1 + N2 T3 ∗ ∗ ∗
NT

1 NT
2 −Z ∗ ∗

Rj − I Aj−1BK 0 −Z−1 ∗
Rj Aj−1BK 0 0 −P −1

j

⎤
⎥⎥⎥⎥⎦ < 0,

where T2i = −Pi + Q + N1 + NT
1 and T3 = −Q − N2 −

NT
2 . Note that (G−1 − Pi)

TP −1
i (G−1 − Pi)�0 implies that

−Pi �G−TP −1
i G−1 − G−1 − G−T�T4i for any nonsingular

matrix G ∈ Rn×n. Similarly, −Z�G−TZ−1G−1 − G−1 −
G−T�T5. Hence the above inequality holds if⎡
⎢⎢⎢⎢⎣

T4i + Q + N1 + NT
1 ∗ ∗ ∗ ∗

−NT
1 + N2 T3 ∗ ∗ ∗
NT

1 NT
2 T5 ∗ ∗

Rj − I Aj−1BK 0 −Z−1 ∗
Rj Aj−1BK 0 0 −P −1

j

⎤
⎥⎥⎥⎥⎦ < 0.

Pre- and post-multiply this inequality by diag(GT, GT, GT, I, I )

and its transpose, and define Xi�P −1
i , W�Z−1, Q̄�GTQG,

N̄1�GTN1G, N̄2�GTN2G, Y�KG, we have inequality
(15). �

Remark 18. The above arguments are applicable to the case
when packet-loss process (2) is Markovian as well.
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6. Numerical examples

In this section, a numerical example and simulations are used
to illustrate the usefulness of the developed synthesis methods.
Let us consider the nominal continuous-time system borrowed
from Yue et al. (2005) with no disturbance input:

ẋ(t) =
[−1 0 −0.5

1 −0.5 0
0 0 0.5

]
x(t) +

[0
0
1

]
u(t).

When the plant is sampled with a sampling period Ts = 0.5 s,
the discretized system is system (1) with

A =
[0.6065 0 −0.2258

0.3445 0.7788 −0.0536
0 0 1.2840

]
,

B =
[−0.0582

−0.0093
0.5681

]
. (16)

Both the continuous-time system and the discretized sys-
tem are unstable because of eig(�) = −0.5, −1, 0.5 and
eig(A)=0.7788, 0.6065, 1.2840. Furthermore, we assume that
the packet-loss upper bound s = 5, which means that up to
80% of the packets can be lost during the network transmis-
sions. Applying Theorem 11, we obtain a networked controller
u = [0.0399 0.0217 − 0.8172]x.

Our simulations are based on the framework in Fig. 1, that is,
the designed controller is used to control the continuous-time
system over the network, not the discretized correspondence.
To simulate, we take the initial state as x0 =[−5 0 5]T. Fig. 2
depicts the trajectory of the system state when the packet-loss
process is arbitrary. The time instants when the zero-order hold
updates its state are indicated with circles on the time axes. We
can see that only 18 control inputs arrived at the zero-order hold
during the first 25 s, which means that 64% of the packets were
lost. Fig. 3 shows an extreme case when no packet loss occurs.
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Fig. 2. State response (arbitrary packet losses).
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Fig. 3. State response (no packet losses).
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Fig. 4. State response (Markovian packet losses).

In addition, from Remark 10, this controller will also able to
stabilize the system when the packet-loss process is governed
by a Markov chain. Fig. 4 illustrates this point with the transi-
tion probability matrix given by

� =

⎡
⎢⎢⎢⎣

0.5 0.2 0.1 0.1 0.1
0.2 0.5 0.3 0 0
0 0.2 0.5 0.3 0
0 0 0.2 0.5 0.3

0.1 0.1 0.1 0.2 0.5

⎤
⎥⎥⎥⎦ .

Such a � exhibits the bursty nature of packet losses. The bursty
nature is modeled with �ii > �ij , for all i, j ∈ S, j �= i,
which says that the likelihood of losing a packet after a lost
packet transmission is higher than after a successful packet
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Fig. 5. State response (Ts = 0.2 s).
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Fig. 6. State response (Ts = 0.2 s and new controller).

transmission (Ploplys, Kawka, & Alleyne, 2004; Seiler & Sen-
gupta, 2005).

It should be noticed that our sampling period is larger than
the choice in Yue et al. (2005), where Ts = 0.2 s. Fig. 5 shows
the system state trajectory when the sampling period is Ts =
0.2 s where the plant is controlled by the controller above. Of
course, we could apply Theorem 11 again to get a new controller
u = [0.2701 0.1427 − 1.6422]x. The state trajectory of the
plant controlled by this new controller is plotted in Fig. 6. In
fact, even with Ts = 1.5 s, Theorem 11 still gives us a feasible
solution. This demonstrates that larger sampling periods are
allowable if both the communication channel and the sampling
characteristics are considered in the controller design stage.
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Fig. 7. State response (unit time delay).

Finally, if we consider system (11) with  = 1 and the coef-
ficient matrices in (16), and suppose s = 2, Theorem 17 suc-
cessfully provides us a controller u = [−0.0109 − 0.0074 −
0.7176]x. Fig. 7 is a simulation of the closed-loop system with
unit time delay.

7. Conclusions

The stabilization problem of NCSs with bounded packet
losses was studied in this paper. Two types of networked con-
troller design methods were proposed. One ensures the net-
worked control system is asymptotically stable in the presence
of the arbitrary packet losses. The other ensures the mean square
stability in the presence of the Markovian packet losses. The
powerful potential of the developed theory was illustrated by a
numerical example and simulations.
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