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a b s t r a c t

This paper is concerned with H∞ and H2 filtering for Markovian jump linear systems with uncertain
transition probabilities. Motivated by the fact that the existing results either impose severe restrictions on
some key matrices or introduce some unnecessary matrix variables, this paper is focused on developing
a new approach to systematically relax these restrictions for filter design. By applying a novel technique
to eliminate the product terms between the Lyapunov matrices and the filter parameters, an improved
condition is first obtained for analyzing the H∞ performance of the filtering error system. Then sufficient
conditions in terms of linear matrix inequalities are presented for designing filters with a guaranteed
H∞ filtering performance level. The proposed method is further extended to H2 filtering. Theoretical
analyses followed by a few numerical examples show that the proposed filter designmethod outperforms
some existing results with respect to reduction of conservatism or variables needed for computation. The
filter design problems for both continuous-time and discrete-time Markovian jump linear systems are
addressed in a unified framework.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

As an important class of stochastic systems, Markovian jump
systems can be used to effectively model practical plants of
the multi-mode nature, that is, plants have different working
situations andmay continuously switch between them in a random
way. Due to the usefulness in describing complicated time-
varying dynamics, Markov jump systems have been extensively
investigated and the control theory for this type of systems has
undergone great development in the past decade (Boukas, 2005;
Costa, Fragoso, &Marques, 2005; Feng, Lam, & Shu, 2010; Shu, Lam,
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& Xiong, 2010). An active area in recent years regardingMarkovian
jump systems is those with uncertain transition probabilities,
which are motivated by the fact that it is sometimes difficult
to obtain the accurate information of transition probabilities of
practical plants. In de Souza, Trofino, and Barbosa (2006), Karan,
Shi, and Kaya (2006) and Xiong, Lam, Gao, and Ho (2005), the
uncertain transition probabilities are assumed to be of the norm-
bounded or polytope-bounded type which is commonly used in
robust control theory so that some robust analysis methodologies
can be applied; recent research attention is mostly focused on the
case that the transition probabilities are partly known (He,Zhang,
Wu & She, 2011; Li, Lam, Gao, & Li, 2014; Zhang & Boukas, 2009a,b;
Zhang, Boukas, & Lam, 2008; Zhang, He, Wu, & Zhang, 2011;
Zhang & Lam, 2010; Zuo, Li, Liu, & Wang, 2012), which bridges
the arbitrarily switching case and the completely known case;
a new modeling method is considered in Gonçalves, Fioravanti,
and Geromel (2011), Morais, Braga, Oliveira, and Peres (2013) and
Morais, Braga, Lacerda, Oliveira, and Peres (2014), which models
each row of the transition probability matrix as an independent
polytopic domain and covers the method in Zhang and Boukas
(2009b) and Zhang and Lam (2010) as a special case.

As a fundamental issue in systems and control theory, state
estimation or filtering is to estimate signals that are of particular
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interest but not available due to technical difficulties. On the other
hand, it is known that H∞ technique is an effective approach to
deal with non-statistic disturbances. Some recent results on H∞

technique applied to dynamic systems canbe found in, for instance,
Hernandez-Gonzaleza and Basin (2014, 2015) and You, Gao, and
Basin (2013). Parallel to H∞ robust control theory, one of the
prevailing filtering methods is H∞ filtering, which does not need
to know the statistics of noises and can lead to more robust filters.
Many results on H∞ filtering have been reported; see Basin, Shi,
and Calderon-Alvarez (2009, 2010), He, Liu, Rees, and Wu (2009),
Shi (1997, 1998), Shi, Luan, and Liu (2012) and Wang, Lam, and
Liu (2004). Design of H∞ filters for Markov jump systems also has
drawn considerable attention (de Souza et al., 2006; Gonçalves,
Fioravanti, & Geromel, 2009; Gonçalves et al., 2011; Liu, Ho, &
Sun, 2008; Morais et al., 2014; Shu, Lam, & Hu, 2009; Xiong
& Lam, 2006; Zhang & Boukas, 2009a). For Markov jump linear
systems (MJLSs) with uncertain transition probabilities, sufficient
conditions in terms of linear matrix inequalities (LMIs) for the
existence of H∞ filters were derived in de Souza et al. (2006),
Dong, Wang, and Gao (2012); Dong, Wang, Ho, and Gao (2011),
Gonçalves et al. (2009, 2011), Morais et al. (2014) and Zhang and
Boukas (2009a). Especially, the methods in de Souza et al. (2006),
Gonçalves et al. (2009, 2011), Liu et al. (2008) and Morais et al.
(2014) can be used to design partly-mode-dependent or mode-
independent H∞ filters when the mode information of MJLSs is
partly known or unknown. Besides H∞ filtering, H2 filtering also
has been extensively studied for both continuous- and discrete-
time MJLSs (Fioravanti, Gonçalves, & Geromel, 2008; Liu, Zhang, &
Chen, 2012; Morais, Braga, Lacerda, Oliveira, & Peres, 2015).

It is worth pointing out that, when dealing with uncertain
transition probabilities or designing mode-independent filters, a
crucial procedure that is frequently used in Gonçalves et al. (2011),
Liu et al. (2008), Morais et al. (2014) and Zhang and Boukas (2009a)
is, by introducing some slack variables in the bounded real lemma
for MJLSs, to eliminate the product terms between the Lyapunov
matrices and the filter parameters. Although this procedure could
relax the sufficient conditions for filter design, two important
aspects on this procedure have been overlooked in these existing
results. On one hand, the methods in Liu et al. (2008) and Zhang
and Boukas (2009a) have restricted the slackmatrices somuch that
the resulting design conditions can be further improved. On the
other hand, although the latest conditions in Morais et al. (2014,
2015) outperform the previous ones with respect to conservatism
reduction, it will be shown that there are too many unnecessary
slack variables in these conditions (see Section 3.3.2). The above
two aspects make it necessary to systematically develop new filter
design methods to mitigate the drawback of each of the existing
methods, which motivates the work in this paper.

In this paper,wewill study theH∞ andH2 filter designproblems
of MJLSs with uncertain transition probabilities and in particular
focus on dealing with the mentioned drawbacks of the existing
design methods. First, for characterizing the H∞ performance of
the filtering error system, a newversion of the bounded real lemma
for MJLSs will be obtained through applying a novel technique
to decouple the product terms between the Lyapunov matrices
and the filter parameters. Based on the new bounded real lemma,
sufficient conditions in terms of LMIs are then derived for the
existence of full-order filters that guarantee an H∞ disturbance
attenuation level for the filtering error system. In addition, we will
further extend the proposed method to the H2 filtering problem
of MJLSs. Due to the use of the new technique to eliminate the
undesired product terms, the proposed filter design method is
either less conservative or less computationally demanding than
some existing methods. The advantages of the proposed method
will be clearly shown by theoretical analyses and numerical
results. The contributions of the paper are summarized as follows:
(1) a new technique is proposed for introducing extra matrix
variables so as to decouple the product terms between Lyapunov
matrices and the filter parameters; and (2) the proposed filter
design method has systematically improved the existing results
from both conservatism reduction and variable reduction points
of view.

Notation. The superscripts ‘‘−1’’ and ‘‘T’’ stand for matrix inverse
and matrix transpose, respectively. R denotes the set of real numbers
and Rm×n is the set of all m × n real matrices. N represents the
set of nonnegative integers. |·| represents the Euclidean norm of a
vector, and L2 and l2 are the space of square Lebesgue integrable
functions and summable infinite sequences, respectively. For w ∈ L2
or l2, its 2-norm is denoted as ∥w∥2 ,


∞

0 |wk|
2 dk and ∥w∥2 ,

∞

k=0 |wk|
2, respectively. The triplet notation (Ω, F , P) refers to

a probability space, where Ω is the sample space, F the σ -algebra
of subsets of the sample space and P the probability measure on F ,
respectively. E[·] denotes the mathematical expectation. The notation
P > 0 (≥0) means that matrix P is real symmetric and positive
definite (semi-definite). I denotes an identity matrix with appropriate
dimension. diag{A1, A2, . . . , An} stands for a block diagonal matrix
with A1, A2, . . . , An on the diagonal. Throughout the paper, a symbol
with superscript ‘‘ct’’ or ‘‘dt’’ stand for the continuous- or discrete-
time case, respectively. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

2. Problem statement

On a given probability space (Ω, F , P), consider an MJLS
represented by the following differential or difference equations:

δ [xk] = A(rk)xk + B(rk)wk

yk = C(rk)xk + D(rk)wk

zk = E(rk)xk + F(rk)wk (1)
where xk ∈ Rnx is the state vector, wk ∈ Rnw is the external
disturbance, yk ∈ Rny is the measurement output and zk ∈ Rnz

is the target output to be estimated. The symbol δ [xk] denotes
ẋk (k ∈ [0, +∞)) for the continuous-time case and xk+1 (k ∈

N) for the discrete-time case, respectively. For the two cases, the
disturbance signal wk is assumed to belong to L2[0, +∞) and
l2(N), respectively. The scalar rk takes values from a finite set
M , {1, 2, . . . ,M}, which is a switching signal determining which
mode of the system is activated. For each mode rk = i ∈ M, the
real matrices A(rk), B(rk), C(rk), D(rk), E(rk) and F(rk), denoted by
Ai, Bi, Ci, Di, Ei and Fi, respectively, are known and appropriately
dimensioned.

For the continuous-time MJLS, {rk} is a continuous-time,
discrete-state homogeneousMarkov process withmode transition
rates:

Pr(rk+d = j|rk = i) =


πijd + o(d), for j ≠ i
1 + πiid + o(d), for j = i

where d > 0, limd→0
o(d)
d = 0, and πij ≥ 0 for i, j ∈ M, j ≠ i and

πii = −


j∈M,j≠i πij ≤ 0. For j ≠ i, πij denotes the switching rate
from the ith mode at time k to the jth model at time k + d. For the
discrete-timeMJLS, {rk} is a discrete-timeMarkov chainwithmode
transition probabilities:

Pr(rk+1 = j|rk = i) = πij

where πij ≥ 0 for i, j ∈ M and


j∈M πij = 1. Define πi as the ith
row of the probability matrix [πij] , Π , that is,

πi ,

πi1 πi2 · · · πiM


.

Due to the difficulty in obtaining the exact value of the transition
probabilities in practice,we assume thatπi is unknownbut belongs
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to a convex set. As in Gonçalves et al. (2011), we describe the
uncertain probability vector πi for i ∈ M in the following way:

πi(λi) ∈


Si

s=1

λisπ
(s)
i | λi ∈ Λi


(2)

where λi ,

λi1 λi2 · · · λiSi


is the uncertain parameter

vector, Λi is a unit simplex defined as

Λi ,


λi ∈ RSi |

Si
s=1

λis = 1, λis ≥ 0


with Si being the number of vertices of the polytope, and π

(s)
i ,

π
(s)
i1 π

(s)
i2 · · · π

(s)
iM


is the known value of πi(λi) at the sth

vertex of the polytope. For later use, define

λ , λ1 × λ2 × · · · × λM , Λ , Λ1 × Λ2 × · · · × ΛM ,

Si , {1, 2, . . . , Si}.

Wewill make use of themeasurement yk to estimate the output
zk for the MJLS in (1). To this end, our attention is focused on
designing a filter in the following form:

δ

x̂k


= Â(rk)x̂k + B̂(rk)yk

ẑk = Ĉ(rk)x̂k + D̂(rk)yk (3)

where x̂k ∈ Rnx is the state vector of the filter, and Â(rk), B̂(rk),
Ĉ(rk) and D̂(rk) are real matrices with compatible dimensions. For
each i ∈ M, Â(rk = i), B̂(rk = i), Ĉ(rk = i) and D̂(rk = i),
denoted by Âi, B̂i, Ĉi and D̂i, respectively, are the filter parameters
to be determined. If we restrict Âi = Â, B̂i = B̂, Ĉi = B̂ and D̂i = D̂
for all i ∈ M, the filter in (3) reduces to a mode-independent one
that does not need the information of the switching signal rk, which
also can be handled by the proposed method.

Define the augmented state vector x̄k ,

xTk x̂Tk

T and
the filtering error ek , zk − ẑk, respectively. Combining theMJLS in
(1) and the filter in (3) leads to the following filtering error system:

δ [x̄k] = Ā(rk)x̄k + B̄(rk)wk

ek = C̄(rk)x̄k + D̄(rk)wk (4)

where

Ā(rk) =


A(rk) 0

B̂(rk)C(rk) Â(rk)


, B̄(rk) =


B(rk)

B̂(rk)D(rk)


C̄(rk) =


E(rk) − D̂(rk)C(rk) −Ĉ(rk)


D̄(rk) = F(rk) − D̂(rk)D(rk).

To state the filtering objectives, the definitions of stability, H∞

performance (Boukas, 2005; Costa et al., 2005) andH2 performance
(Costa, do Val, &Geromel, 1997; de Farias, Geromel, do Val, & Costa,
2000) are introduced for the filtering error system in (4).

Definition 1. The system in (4) with wk ≡ 0 is said to be
stochastically stable if

E [∥x̄∥2 | x̄0, r0] < ∞

for every initial condition x̄0 ∈ R2nx and r0 ∈ M.

Definition 2. Assume that the system in (4) is stochastically stable.
Given a scalar γ > 0, the system in (4) is said to have an H∞

performance level γ if it satisfies

E

∥e∥2

2


< γ 2

∥w∥
2
2

for all nonzero wk ∈ L2[0, +∞) for the continuous-time case
(respectively, wk ∈ l2(N) for the discrete-time case) under zero
initial conditions x̄0 = 0.
Definition 3. Assume that the system in (4) is stochastically stable.
Given a scalar ρ > 0, the system in (4) (with D̄(rk) = 0 for the
continuous-time case) is said to have an H2 performance level ρ if
it satisfies
nw
s=1

M
i=1

µiE
gs,i22 < ρ2

whereµi = Pr(r0 = i) and gs,i(k) is the output ek under zero initial
conditions x̄0 = 0, r0 = i and the inputwk = esσk with es being the
sth column of the identitymatrix and σk being the unitary impulse.

The H∞ (respectively, H2) filtering problem for MJLSs with
uncertain transition probabilities to be considered in the paper is
stated as follows: Find a filter in (3) for the MJLS in (1) such that
the filtering error system in (4) is stochastically stable with an H∞

(respectively, H2) performance level γ (respectively, ρ) for all λ ∈ Λ.

3. H∞ filtering

In this section, we will first provide a new condition for H∞

filtering analysis and then propose a filter designmethod forMJLSs
with uncertain transition probabilities.

3.1. H∞ filtering analysis

We first introduce the following lemma that is useful for dealing
with the formulated H∞ filtering problem, which is known as
the bounded real lemma for continuous-time MJLSs (de Souza
et al., 2006) and discrete-time MJLSs (Seiler & Sengupta, 2003),
respectively.

Lemma 1. Given transition probabilities πij for i, j ∈ M and a scalar
γ , the system in (4) is stochastically stable with an H∞ performance
level γ if and only if there exist symmetric matrices Pi > 0, ∀i ∈ M
such that for the continuous-time case,ĀT

i Pi + PiĀi + Pi PiB̄i C̄T
i

∗ −γ 2I D̄T
i

∗ ∗ −I

 < 0, ∀i ∈ M (5)

and for the discrete-time case,
Āi B̄i

C̄i D̄i

T Pi 0
0 I

 
Āi B̄i

C̄i D̄i


−


Pi 0
0 γ 2I


< 0, ∀i ∈ M (6)

where Pi ,
M

j=1 πijPj.

Given the MJLS in (1) and the filter in (3), Lemma 1 provides an
LMI condition for analyzing the H∞ performance of the filtering
error system in (4). However, the conditions in (5) and (6) are
not tractable for designing filters subject to uncertain transition
probabilities, because the filter parameters are coupled with the
Lyapunov matrices Pi in multiple inequalities. To handle this
difficulty, we give the following theorem, a new condition for
analyzing theH∞ filtering performance forMJLSs. For convenience,
define a symbol Φi as

Φct
i ,


0 Pi 0 0
Pi Pi 0 C̄T

i
0 0 −γ 2I D̄T

i
0 C̄i D̄i −I



Φdt
i ,


Pi 0 0 0
0 −Pi 0 C̄T

i
0 0 −γ 2I D̄T

i
0 C̄i D̄i −I

 . (7)
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Theorem 1. Consider the system in (1) with known transition
probabilitiesπij for i, j ∈ M and the filter in (3). Given a scalar γ > 0,
the filtering error system in (4) is stochastically stable with an H∞

performance level γ if and only if there exist matrices Pi > 0 and Ki
for i ∈ M such that

Ψ T
i ΦiΨi + GT

i KiHi + HT
i K

T
i Gi < 0, ∀i ∈ M (8)

where Φi is defined in (7) and

Ψi =



0 Ai 0 Bi 0
I 0 0 0 0

0 I 0 0 0
0 0 I 0 0

0 0 0 I 0

0 0 0 0 I



Gi =


0 Ai + ε1I 0 Bi 0
I 0 ε2I 0 0


Hi =


−I B̂iCi Âi B̂iDi 0


.

In Hi, scalars ε1 and ε2 take ε1 = ε2 ≫ 0 for the continuous-time
case and take zero for the discrete-time case, respectively.

Proof. According to Lemma 1, we need to prove the equivalent
solvability of the conditions in (5) (respectively, (6)) and those in
(8). To this end, we re-write the conditions in (5) and (6) in the
following unified form:

W T
i ΦiWi < 0 (9)

where Φi is defined in (7) and

Wi =

Āi B̄i 0
I 0 0
0 I 0
0 0 I

 .

For the continuous-time case, it can be directly verified that the
conditions in (5) are those in (9). For the discrete-time case, the
conditions in (6) can be expressed asĀi B̄i

I 0
0 I

T Pi 0 0
∗ −Pi 0
∗ ∗ −γ 2I

Āi B̄i
I 0
0 I


+

0 C̄i D̄i

T 
0 C̄i D̄i


< 0.

By applying Schur Complement Equivalence, the above inequality
is equivalent to
Āi B̄i

I 0
0 I

T Pi 0 0
∗ −Pi 0
∗ ∗ −γ 2I

Āi B̄i
I 0
0 I

  0
C̄T
i

D̄T
i


0 C̄i D̄i


−I

 < 0

which is those in (9) for the discrete-time case. Now, we shall
prove that the conditions in (9) and those in (8) have equivalent
solvability (that is, the existence of Pi > 0 and Ki satisfying (8)
implies the existence of Pi > 0 satisfying (9) and vice versa).

(8) ⇒ (9): Suppose that the conditions in (8) are satisfied.
Define a symbol Ti for i ∈ M as

Ti ,


B̂iCi Âi B̂iDi 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


for which the row dimension is such that HiTi = 0 with Hi in (8).
With Āi and B̄i in Wi substituted by the expressions in (4), it can
be shown that ΨiTi = Wi. Hence, pre- and post-multiplying (8) by
T T
i and Ti, respectively, and noting that Ti has full column rank, we

have

W T
i ΦiWi = T T

i


Ψ T

i ΦiΨi + GT
i KiHi + HT

i K
T
i Gi

Ti < 0

that is, the conditions in (8) imply those in (9).
(9) ⇒ (8): Define a symbol Γi as

Γi ,


B̂iCi Âi B̂iDi 0 I
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0


which satisfies the following relations:

ΨiΓi =


Ai 0 Bi 0 0
B̂iCi Âi B̂iDi 0 I
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0

 =


Wi Vi


(10)

GiΓi =


Ai + ε1I 0 Bi 0 0
B̂iCi Âi + ε2I B̂iDi 0 I


= JT


Wi Vi


(11)

HiΓi =


0 0 0 0 −I


=


0 −I


(12)

where

Vi =


0
I
0
0
0
0

 , J =


I 0
0 I

ε1I 0
0 ε2I
0 0
0 0

 .

Combining (10)–(12), we have

Γ T
i


Ψ T

i ΦiΨi + GT
i KiHi + HT

i K
T
i Gi

Γi

=


W T

i
V T
i


Φi

Wi Vi


+


W T

i
V T
i


JKi

0 −I


+


0
−I


K T
i J

T Wi Vi


=


W T

i ΦiWi W T
i (ΦiVi − JKi)

∗ V T
i ΦiVi − V T

i JKi − K T
i J

TVi


.

SinceΓi is invertible, it follows from the previous equation that the
inequalities in (8) are satisfied if
W T

i ΦiWi W T
i (ΦiVi − JKi)

∗ V T
i ΦiVi − V T

i JKi − K T
i J

TVi


< 0. (13)

Therefore, we only need to show (9) ⇒ (13) in the sequel.
For the continuous-time case, (13) can be explicitly expressed

as
W T

i ΦiWi W T
i L

T
i

∗ −Ki2 − K T
i2


< 0 (14)

where

Li =


−K T
i1 −K T

i2 PT
i12 − ε1K T

i1 PT
i22 − ε2K T

i2 0 0


and Ki1 and Ki2 are the upper and lower nx rows of Ki, respectively,
and Pi12 and Pi22 are the upper and lower right nx × nx blocks of
Pi, respectively. Suppose that the inequalities in (9) hold for some
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Pi > 0 for all i ∈ M. Note that Pi22 > 0 is implied by Pi > 0.
Let δ1 and δ2 be two scalars such that W T

i ΦiWi < −δ1I < 0 and
W T

i N
T
i P

−1
i22NiWi < δ2I, where

Ni =

−PT

i12 −PT
i22 0 0 0 0


.

Further let ϵ be a scalar satisfying 0 ≤
ϵ
2 ≤

δ1
δ2
, then we have

W T
i ΦiWi < −δ1I ≤ −

δ1

δ2
W T

i N
T
i P

−1
i22NiWi ≤ −

ϵ

2
W T

i N
T
i P

−1
i22NiWi

which implies

W T
i ΦiWi +

1
2
ϵW T

i N
T
i P

−1
i22NiWi < 0. (15)

By applying Schur Complement Equivalence, (15) is equivalent to
W T

i ΦiWi ϵW T
i N

T
i

∗ −2ϵPi22


< 0

which are the inequalities in (14) with

Ki1 = ε−1
1 Pi12, Ki2 = ε−1

2 Pi22, ε1 = ε2 = ϵ−1.

Consequently, we have the implication (9) ⇒ (15) ⇒ (14) ⇔

(13). To complete the proof of the implication (9) ⇒ (8) for the
continuous-time case, finally note that ε1 and ε2 can be fixed as a
sufficient large positive scalar without any loss of generality.

For the discrete-time case, (14) should be re-written as
W T

i ΦiWi W T
i L

T
i

∗ Pi22 − Ki2 − K T
i2


< 0 (16)

where Li is re-defined as

Li =


PT
i12 − K T

i1 PT
i22 − K T

i2 0 0 0 0


and Pi12 and Pi22 are the upper and lower right nx × nx blocks of
Pi, respectively. Suppose that the inequalities in (9) hold for some
Pi > 0 for all i ∈ M. Since Pi22 > 0 is guaranteed by Pi > 0 for all
i ∈ M, we can augment the inequalities in (9) as
W T

i ΦiWi 0
0 −Pi22


< 0 (17)

which are the inequalities in (16) with

Ki1 = Pi12, Ki2 = Pi22.

Thus, we establish the implication (9) ⇒ (17) ⇒ (16) ⇔ (13) ⇒

(8) for the discrete-time case.
Consequently, we have proven (9) ⇔ (8) and using Lemma 1,

the proof can be completed. �

Compared with Lemma 1, the benefit of the conditions in (8)
is that no product term between the Lyapunov matrices Pi and
the filter parameters Âi, B̂i, Ĉi and D̂i exists in these conditions.
It is known that such a feature can be made use of to relax the
restrictions imposed on the Lyapunov matrices Pi in the filter
design problem with uncertain transition probabilities and/or the
mode-independent filter design problem (see de Souza et al., 2006,
Liu et al., 2008 for continuous-time MJLSs and de Souza, 2003,
Gonçalves et al., 2011, Morais et al., 2014 and Zhang & Boukas,
2009a for discrete-time MJLSs).

It should be emphasized that the method for decoupling the
mentioned product terms is different from those in the literature.
To see the differences, we specifically compare Theorem 1 in this
paper with Liu et al. (2008, Theorem 3.1) and with de Souza (2003,
Theorem 3.1):
• Besides the Lyapunov matrices, Liu et al. (2008, Theorem 3.1)
still includes 8n2

x extra scalar variables (in terms of Gi and Zi
therein) for each i ∈ M, while Theorem 1 includes only 2n2

x
extra scalar variables (in terms of Ki here), much fewer than the
former.

• Similarly, de Souza (2003, Theorem 3.1) includes 4n2
x extra

scalar variables (in terms of Gi therein) for each i ∈ M, which
is still more than the number of the extra scalar variables in
Theorem 1 in this paper.

The above differences show that, although the existing
conditions, Liu et al. (2008, Theorem 3.1) and de Souza (2003,
Theorem 3.1), and Theorem 1 in this paper all are necessary
and sufficient for H∞ filtering analysis for MJLSs with exactly
known transition probabilities, Theorem 1 in this paper has
fewer variables for H∞ filtering analysis, thanks to which, a
straightforward consequence is that our filtermethod in the sequel
is less computationally demanding than some of the existing ones in
the literature. Besides, it will be shown later that our filter design
method has an advantage with respect to conservatism reduction
when compared with some existing ones.

3.2. H∞ filter design

The following theorem presents a sufficient condition for the
existence of filters that guarantee the stochastic stability and an
H∞ filtering performance level for MJLSs with uncertain transition
probabilities. It can be obtained by further imposing a constraint
on the extra variables Ki in Theorem 1.

Theorem 2. Consider the system in (1) with uncertain transition
probabilities πij(λi) for λi ∈ Λi and i, j ∈ M. Given scalars γ > 0, ε1
and ε2, a filter in (3) exists such that the filtering error system in (4) is
stochastically stable with an H∞ performance level γ if there exist
matrices Pi(λ) > 0, Ki, Ai, Bi, Ci and Di for i ∈ M such that

Ψ T
i Φi(λ)Ψi + G T

i Hi + H T
i Gi < 0, ∀(i, λ) ∈ M × Λ (18)

whereΦi(λ) isΦi in (7)withπi, Pi, Ĉi and D̂i replaced byπi(λi), Pi(λ),
Ci and Di, respectively, Ψi is in (8) and

Gi =

I Ai + ε1I ε2I Bi 0


Hi =


−Ki BiCi Ai BiDi 0


.

Moreover, if the conditions in (18) are feasible, the filter
parameters can be given by

Âi = K −1
i Ai, B̂i = K −1

i Bi, Ĉi = Ci, D̂i = Di. (19)

Proof. Suppose that the conditions in (18) are feasible for some
matrices Pi(λ) > 0 and Ki, Ai, Bi, Ci, Di (i ∈ M). Construct a
candidate filter in (3) with the parameters given by (19), then we
have

Ψ T
i Φi(λ)Ψi + GT

i KiHi + HT
i K

T
i Gi

= Ψ T
i Φi(λ)Ψi + G T

i Hi + H T
i Gi < 0, ∀(i, λ) ∈ M × Λ (20)

where Gi and Hi are defined as in (8) and Ki is specified as

Ki =


Ki
Ki


. (21)

According to Theorem 1, the conditions in (20) guarantee that,
for the system in (1) and the filter parameters given by (19), the
filtering error system in (4) is stochastically stable with an H∞

performance level γ for all λ ∈ M. The proof is completed. �

The conditions in (18) are linear with respect to Pi(λ),Ki,Ai,Bi,
Ci and Di. Due to the dependence on the uncertain parameter λ,
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there are an infinite number of LMIs in (18) needing to be checked.
To make these conditions numerically tractable, we in the next
employ a relaxation method similar to Morais et al. (2014, 2013)
to obtain an alternative set of a finite number of LMIs such that
those in (18) are guaranteed for all λ ∈ Λ. Consider the parameter-
dependent Lyapunov matrix Pi(λ) given by

Pi(λ) =


k∈I (g)

λkPi,k (22)

where g = (g1, g2, . . . , gM) ∈ NM is the degree vector, k =

(k1, k2, . . . , kM) with ki = (ki1, ki2, . . . , kiSi) ∈ NSi is the expo-

nent vector, λk
= λ

k1
1 λ

k2
2 . . . λ

kM
M with λ

ki
i = λ

ki1
i1 λ

ki2
i2 . . . λ

kiSi
iSi

is a
homogeneous monomial in λ and Pi,k is the corresponding coeffi-
cient matrix. The set I (g) is defined as I (g) , I1(g1)×I2(g2)×

· · · × IM(gM) with Ii(gi) ⊂ NSi being the set of all possible Si-
tuple vectors such that for any k ∈ I (g),

Si
s=1 kis = gi, i ∈ M. In

other words, Pi(λ) given by (22) represents a homogeneous poly-
nomial matrix with gr as the partial degree of variable λr . For two
exponent vectors k, l ∈ I (g), operation k ≥ l or k − l ≥ 0 indi-
cates that no element of k − l is smaller than zero. For later use,
denote by 1 a vector of ones, and for a vector ki with one non-
zero element, denote by v(ki) the position of the non-zero element.
In addition, define a function φ(h) as φ(h) = h1!h2! . . . hn! for
h = (h1, h2, . . . , hn) ∈ Nn, and further define a symbol Ξi,k,l,h as

Ξ ct
i,k,l,h ,


0 Pi,k−l−h 0 0

Pi,k−l−h

M
j=1

π
(v(hi))
ij Pj,k−l−h 0 0

0 0 0 0
0 0 0 0


Ξdt

i,k,l,h , diag


M
j=1

π
(v(hi))
ij Pj,k−l−h, −Pi,k−l−h, 0, 0


.

With the above preparation, we can obtain the following
theoremwhich provides a sufficient condition consisting of a finite
number of LMIs for the existence of a filter with a guaranteed H∞

filtering performance.

Theorem 3. Consider the system in (1) with uncertain transition
probabilities πij(λi) for λi ∈ Λi and i, j ∈ M. Given scalars γ > 0, ε1,
ε2 and vectors g, d, b ∈ NM , a filter in (3) exists such that the filtering
error system in (4) is stochastically stable with an H∞ performance
level γ if there exist matrices Pi,k, k ∈ I (g), Ki, Ai, Bi, Ci and Di for
i ∈ M such that

Pi,k > 0, ∀(i, k) ∈ M × I (g + d) (23)
Qi,k < 0, ∀(i, k) ∈ M × I (g + b + 1) (24)

where

Pi,k =


l∈I (d),l≤k

φ(d)
φ(l)

Pi,k−l

Qi,k =


l∈I (b)
l≤k


h∈I (1)
h≤k−l

φ(b)
φ(l)

Ψ T
i Ξi,k,l,hΨi

+
φ(g + b + 1)

φ(k)


Ψ T

i ΥiΨi + G T
i Hi + H T

i Gi


Υi =


0 0 0 0
0 0 0 C̄T

i
0 0 −γ 2I D̄T

i
0 C̄i D̄i −I

 (25)

and Ĉi, D̂i in C̄i and D̄i are replaced by Ci and Di, respectively, and Ψi,
Gi and Hi are as in (18).
Moreover, if the conditions in (28) are feasible, the filter
parameters can be given by (19).

Proof. Using the homogeneous polynomial representation of Pi(λ)
in (22) and noting the fact that

M
r=1


Sr
s=1

λrs

dr

=

 
l∈I (d)

φ(d)
φ(l)

λl


= 1

for any degree d ∈ NM , we have

Pi(λ) =

M
r=1


Sr
s=1

λrs

dr

Pi(λ)

=

 
l∈I (d)

φ(d)
φ(l)

λl

 
k∈I (g)

λkPi,k



=


k∈I (g+d)

λk

 
l∈I (d),l≤k

φ(d)
φ(l)

Pi,k−l


=


k∈I (g+d)

λkPi,k.

Thus, the inequalities in (23) guarantee Pi(λ) > 0 for all i ∈ M and
λ ∈ Λ. Similarly, for any b ∈ NM , it follows that

Pi(λ)

=

M
r=1


Sr
s=1

λrs

br+1

Pi(λ)

=


k∈I (g+b+1)

λk

 
l∈I (b+1),l≤k

φ(b + 1)
φ(l)

Pi,k−l



=


k∈I (g+b+1)

λk

 
l∈I (b)
l≤k


h∈I (1)
h≤k−l

φ(b)
φ(l)

Pi,k−l−h

 (26)

M
j=1

πij(λi)Pj(λ)

=

M
r=1


Sr
s=1

λrs

br M
t=1
t≠i


St
s=1

λts


M
j=1

πij(λi)Pj(λ)



=


k∈I (g+b+1)

λk

 
l∈I (b)
l≤k


h∈I (1)
h≤k−l

φ(b)
φ(l)

M
j=1

π
(v(hi))
ij Pj,k−l−h

 . (27)

Decompose the matrix Φi(λ) in (18) as Φi(λ) = Ξi(λ)+Υi, where
Υi is defined in (25) and Ξi(λ) consists of the remaining terms in
Φi(λ). By combining (26) and (27), it can be verified that

Ψ T
i Φi(λ)Ψi + G T

i Hi + H T
i Gi

= Ψ T
i Ξi(λ)Ψi +


Ψ T

i ΥiΨi + G T
i Hi + H T

i Gi


=


k∈I (g+b+1)

λk

 
l∈I (b)
l≤k


h∈I (1)
h≤k−l

φ(b)
φ(l)

Ψ T
i Ξi,k,l,hΨi


+

M
r=1


Sr
s=1

λrs

gr+br+1 
Ψ T

i ΥiΨi + G T
i Hi + H T

i Gi


=


k∈I (g+b+1)

λkQi,k.
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Thus the inequalities in (24) guarantee the satisfaction of those in
(18) for all i ∈ M and λ ∈ Λ. Finally, by virtue of Theorem 2, the
proof can be completed. �

The conditions in (23) and (24) include three degree vectors g ,
d and b, of which g is the degree of the Lyapunov matrices as in
(22) while d and b are the levels of Pólya’s relaxation (see Morais
et al., 2015, 2013). By increasing the degrees, Theorem 3 becomes
less conservative but requires more computational demand.

In order to highlight the contribution of this paper, we here are
also interested in the case that the Lyapunov matrices Pi(λ) are
fixed as an uncertainty-independent form, Pi, for each i ∈ M. Under
this setting, the conditions in (18) are simplified to a finite number
of LMIs as the following corollary shows.

Corollary 1. Consider the system in (1) with uncertain transition
probabilities πij(λi) for λi ∈ Λi and i, j ∈ M. Given scalars γ > 0, ε1
and ε2, a filter in (3) exists such that the filtering error system in (4) is
stochastically stable with an H∞ performance level γ if there exist
matrices Pi > 0, Ki, Ai, Bi, Ci and Di for i ∈ M such that

Ψ T
i Φ

(s)
i Ψi + G T

i Hi + H T
i Gi < 0, ∀(i, s) ∈ M × Si (28)

where Φ
(s)
i is Φi in (7) with πi, Ĉi, D̂i replaced by π

(s)
i , Ci and Di,

respectively, and Ψi, Gi and Hi are as in (18).
Moreover, if the conditions in (28) are feasible, the filter

parameters can be given by (19).

Proof. Constraining Pi(λ) as Pi(λ) = Pi for all λ ∈ Λ and notingSi
s=1 λ

(s)
i = 1, we have

Ψ T
i Φi(λ)Ψi + G T

i Hi + H T
i Gi

=

Si
s=1

λ
(s)
i


Ψ T

i Φ
(s)
i Ψi + G T

i Hi + H T
i Gi


that is, the inequalities in (18) for each i ∈ M are affinewith respect
to λi. Therefore, under the setting Pi(λ) = Pi, the conditions in
(18) are equivalent to those in (28). Then applying Theorem 2 can
complete the proof. �

The proposed method can be modified for designing partly-
mode-dependent (or mode-cluster-dependent) filters (Gonçalves
et al., 2009) or mode-independent filters (de Souza et al., 2006).
To show the two cases, suppose that the modes of the original
MJLS are grouped into N clusters and the mode indices in the
nth cluster are denoted by a set Mn that satisfies M =

N
n=1 Mn

and Mi


Mj = ∅ for i ≠ j. A mode-cluster-dependent filter is
concerned with a filter that, for the nth cluster, satisfies Âi = Ãn,
B̂i = B̃n, Ĉi = C̃n and D̂i = D̃n for i ∈ Mn, which means
that the filter has the same parameters, Ãn, B̃n, C̃n and D̃n for the
switching signal rk ∈ Mn. To apply the proposed method, for
instance, Corollary 1, we only need to replace Ki, Ai, Bi, Ci and Di
by the new matrix variables K̃n, ˜An, B̃n, C̃n and D̃n, respectively,
for all n ∈ {1, 2, . . . ,N} and i ∈ Mn. A mode-independent filter is
a special case of a mode-cluster-dependent one with N = 1 and
M1 = M. Let Ki = K , Ai = A , Bi = B, Ci = C and Di = D

for all i ∈ M, then the proposed method can be applied to design
mode-independent filters.

Remark 1. It has been shown that, for filtering performance
analysis with known transition probabilities, appropriately fixing
the scalars ε1 and ε2 in Theorem 1will not introduce conservatism.
However, this is not the case for Theorem2 and Corollary 1 because
they only give sufficient conditions for the existence of a required
filter. In otherwords, given different values of ε1 and ε2, Corollary 1
usually leads to different design results. Thus, one may tune the
scalars for Corollary 1 so as to further improve the guaranteed filter
performance, that is, reduce the H∞ filtering performance level γ .
According to the existing numerical results in the literature, the
settings ε1 = ε2 = 1 and ε1 = ε2 = 0 are usually chosen
for the continuous- and discrete-time case, respectively, which
will also be adopted for the numerical examples in this paper. A
straightforward way to achieve better results is trial and error (for
instance, check some gridding points of a given (ε1, ε2) domain);
another approach is to utilize the function fminsearch in Matlab
with (ε1, ε2) as the argument and theminimization of γ subject to
the LMIs in (23) and (24) or (28) as the objective.

3.3. Comparisons with some existing results

In this section, we theoretically compare the proposed filter
design method with some existing representatives in order to
show that ourmethod is either less conservative than or equivalent
to but less computationally demanding than them.

3.3.1. Comparison with Liu et al. (2008)
In Liu et al. (2008), the design problem of mode-independent

filters for continuous-time MJLSs was considered. Instead of
directly comparing the LMI approaches to filter design, that is,
Corollary 1 in this paper and Theorem 3.2 in the reference, we
resort to the H∞ filtering analysis conditions for the sake of
statement convenience. Keep in mind that the filter discussed in
this subsection is strictly proper, mode-independent and the MJLS
has exactly known transition probabilities.

On one hand, note that Theorem 3.2 in Liu et al. (2008)
was obtained by applying a congruence transformation to the
H∞ filtering analysis condition, Theorem 3.1 therein, and further
restricting Gi = Zi = G for all i ∈ M. Hence, it is not difficult
to show that the optimal H∞ filtering performance obtained by
Theorem 3.2 in the reference is equivalent to

γ ∗

1 = min
γ ,Pi>0,G,Â,B̂,Ĉ

γ : s.t. (29)

where

Θi =


ĀT
i G + GTĀi + Pi ĀT

i G + Pi − GT GB̄i C̄T
i

∗ −G − GT GB̄i 0
∗ ∗ −γ 2I 0
∗ ∗ ∗ −I


< 0, i ∈ M. (29)

For convenience, the above condition has been re-written with
the notation in this paper. Introduce a matrix Ui and partition the
matrix G as

Ui =


0 I 0 0 0
0 0 I 0 0
0 Ai 0 Bi 0
I 0 0 0 0
0 0 0 I 0
0 0 0 0 I

 , G =


• •

K T
1 K T

2


(30)

where K1 and K2 are nx × nx matrix blocks and ‘‘•’’ denotes
matrices that do not matter with the following derivations. Then
multiplying Θi on the left and right by UT

i and Ui, respectively, we
can show

UT
i ΘiUi = Ψ T

i ΦiΨi + GT
i KiHi + HT

i K
T
i Gi

where Âi = Â, B̂i = B̂, Ĉi = Ĉ in Φi and Hi, Ki = [K T
1 K T

2 ]
T

and ε1 = ε2 = 1 in Gi (see (8) for symbols Φi, Ψi, Gi, Hi and Ki).
The above relation implies that the solvability of the inequalities
in (29) guarantee that of those in (8) with Ki = [K T

1 K T
2 ]

T and
ε1 = ε2 = 1. However, the converse is not always true, because
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Ui is of full column rank only. In other words, we obtain γ ∗

1 ≥ γ ∗

2 ,
where

γ ∗

2 = min
γ ,Pi>0,Ki,Â,B̂,Ĉ

γ : s.t. (8) with

Ki = [K T

1 K T
2 ]

T

and ε1 = ε2 = 1. (31)

On the other hand, by way of Theorem 2, it is seen that
Corollary 1 in this paper for mode-independent filter design is
derived from Theorem 1 with Ki specified as Ki = [K T K T

]
T.

Thus, the optimal H∞ filtering performance level guaranteed by
Corollary 1 under ε1 = ε2 = 1 is equal to

γ ∗
= min

γ ,Pi>0,Ki,Â,B̂,Ĉ
γ : s.t. (8) with


Ki = [K T K T

]
T

and ε1 = ε2 = 1. (32)

We give the following result on the relation between γ ∗ and γ ∗

2 .

Proposition 1. Consider the system in (1) with known transition
probabilities πij for i, j ∈ M and define scalars γ ∗

2 and γ ∗ in (31)
and (32), respectively. Then γ ∗

= γ ∗

2 .

Proof. The case γ ∗
≥ γ ∗

2 is obviously true. We show γ ∗
≤ γ ∗

2
in the next. To this end, suppose that there exist γ , Pi > 0, Ki =

[K T
1 K T

2 ]
T, Â, B̂ and Ĉ such that (8) under ε1 = ε2 = 1 holds.

Define a matrix

X = diag{K −T
2 K T

1 , I, K −T
2 K T

1 , I, I}. (33)

Then performing a congruence transformation to the inequalities
in (8) by X , we have

XT Ψ T
i ΦiΨi + GT

i KiHi + HT
i K

T
i Gi

X < 0.

Note that the above inequality can be re-formulated as (8) with the
following change of variables:

K −T
1 K T

2 ÂK −T
2 K T

1 → Â, K −T
1 K T

2 B̂ → B̂, ĈK −T
2 K T

1 → Ĉ
K1K

−T
2 K T

1

K1K
−T
2 K T

1


→


K

K


= Ki

diag{I, K1K
−1
2 }Pidiag{I, K −T

2 K T
1 } → Pi.

Therefore, there must exist Pi > 0, Ki = [K T K T
]
T, Â, B̂ and Ĉ

and the same γ such that (8) also holds, implying that γ ∗
≤ γ ∗

2 .
The proof is completed. �

According to the above discussions, one sees that γ ∗
= γ ∗

2 ≤

γ ∗

1 , showing that for mode-independent filter design, our method,
Corollary 1, is less conservative than the one in Liu et al. (2008).
Moreover, as aforementioned, Corollary 1 is also computationally
advantageous over the one in Liu et al. (2008) because fewer
variables are needed by our method for computing the filter
parameters.

Remark 2. Specifically, the system considered in Liu et al. (2008)
has no transition probability uncertainty. However, the method
therein can also be extended to the casewith transition probability
uncertainty described by (2). In a general setting, this can be
achieved by relaxing matricesW11i,W21i andW22i in the reference
to be λ-dependent, which is the same treatment used in deriving
Theorem 2 in this paper. It is worth pointing out that, even
compared with this adaptation, Theorem 2 in this paper still has
advantages in both conservatism reduction and variable reduction.
To see this, it is needed to relax the matrix Pi in (8) and (29) as
Pi(λ) and to note that all the derivations in this subsection still
hold because the transformation matrices Ui in (30) and X in (33)
are independent of the uncertain parameter λ. In Section 5, the
simplest adaptation, Pi(λ) = Pi, for the uncertain probability case
is specifically used for numerical illustration, which follows the
same treatment of Corollary 1. As can be seen from Table 1, the
advantages of Corollary 1 are obvious.
Table 1
γ ∗ and NoV for different methods in Example 1 (H∞ filtering).

Method Strictly proper Proper
γ ∗ NoV γ ∗ NoV

(Known Π :)
de Souza et al. (2006) 0.7404 85 Inapplicable
Liu et al. (2008) 0.3028 85 Inapplicable
Morais et al. (2015) 0.2019 151 0.1880 152
Corollary 1 0.2019 67 0.1880 68

(Uncertain Π :)
de Souza et al. (2006) 0.9264 85 Inapplicable
Liu et al. (2008) 0.3111a 85 Inapplicable
Morais et al. (2015) (g = 0, h = 0) 0.2076 151 0.1925 152
Theorem 3 (g = 0) 0.2076 67 0.1925 68
Morais et al. (2015) (g = 1, h = 0) 0.2059 277 0.1914 278
Morais et al. (2015) (g = 1, h = 1) 0.2059 529 0.1914 530
Theorem 3 (g = 1) 0.2059 193 0.1914 194
a The reference Liu et al. (2008) does not address this case directly, and the result

is obtained from an adaptation according to Remark 2.

3.3.2. Comparison with Morais et al. (2014)
In Morais et al. (2014), the discrete-time case of a similar

problem to the one in the paperwas considered based on themulti-
simplex representation method. As we mentioned, Theorem 2
in this paper combined with the multi-simplex representation
method can produce a series of LMI conditions for filter design,
leading to Theorem3. Regardless of the degrees of the polynomials,
the general formulation of the condition in Morais et al. (2014)
used for computing the filtering performance level and the filter
parameters is given by (15) therein, whichwith the notation in this
paper is re-written as (34) which is given in Box I, where

Qi(λ) =


• Ki
• Ki


, Xi(λ) =


• ε1Ki
• ε2Ki


Yi(λ) =


• 0


, Zi(λ) =


• 0


(35)

with ‘‘•’’ denoting matrices that do not matter with the following
discussion.MultiplyingΣi(λ) on the left and right byUT

i andUi (see
(30)), respectively, we have

UT
i Σi(λ)Ui = Ψ T

i Φi(λ)Ψi + GT
i KiHi + HT

i K
T
i Gi (36)

where Ki = [K T
i K T

i ]
T (see (8) for other symbols). The above

relation implies that the solvability of the inequalities in (34) for
Pi(λ), Qi(λ), Xi(λ), Yi(λ), Zi(λ), Âi, B̂i, Ĉi and D̂i guarantees that
of those in (8) for some Pi(λ), Ki, Âi, B̂i, Ĉi and D̂i with Ki =

[K T
i K T

i ]
T.

On one hand, according to the proof of Theorem 2, one sees
that the best filtering performance level achieved by Theorem 2 is
equivalent to minimizing γ subject to (8) for Pi(λ), Ki, Âi, B̂i, Ĉi and
D̂i with Ki = [K T

i K T
i ]

T, which together with (36) shows that
the best H∞ filtering performance level achieved by Theorem 2
is not worse than that by the method in Morais et al. (2014). On
the other hand, noting that the columns of Ui form the nullspace
of

Ai 0 −I 0 Bi 0


and using Finsler’s Lemma (Boyd, El

Ghaoui, Feron, & Balakrishnan, 1994), one can introduce extra slack
matrix variables (that is, those denoted by ‘‘•’’) so as to recover (34)
from (8) with Ki = [K T

i K T
i ]

T. These discussions show that for
the discrete-time case, Theorem 2 and the method in Morais et al.
(2014) can attain the same bestH∞ filtering performance level, but
obviously the former involves much fewer variables for computing
the filter parameters.

For the polynomial relaxation conditions of a specific degree,
that is, Theorem 1 in Morais et al. (2014) and Theorem 3 in this
paper, a similar argument also follows. Actually, multiplying (8)
of Morais et al. (2014) by UT

i on the left and Ui on the right,
respectively, one sees that the resulting term UT

i ΨkUi can be
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4)
Σi(λ) =


ĀT
i X

T
i (λ) + Xi(λ)Āi − Pi(λ) ĀT

i Q
T
i (λ) − Xi(λ) Σ31i(λ) = Xi(λ)B̄i + ĀT

i Y
T
i (λ) ĀT

i Z
T
i (λ) + C̄T

i
∗ Pi(λ) − Qi(λ) − Q T

i (λ) Σ32i(λ) = Qi(λ)B̄i − Y T
i (λ) −ZT

i (λ)

∗ ∗ Σ33i(λ) = B̄T
i Y

T
i (λ) + Yi(λ)B̄i − γ 2I B̄T

i Z
T
i (λ) + D̄T

i
∗ ∗ ∗ −I

 < 0 (3

Box I.
eliminated and the remaining two additive terms UT
i (Θk + Φk)Ui

are finally reduced to (24) in this paper with the relaxation level
b = w − g − 1.2 Furthermore, the continuous-time case of a
similar problem has been studied in Morais et al. (2015) most
recently. However, when system matrices are known, it is found
that the slack matrices G1ik

, G2ik
, K1ik

, K2ik
, Q1ik

and F1ik in the
reference correspond to those in (35) denoted by ‘‘•’’ and thus can
be eliminated using the same method. Consequently, Theorem 3
is less computationally demanding than the conditions in Morais
et al. (2014, 2015) for filter design of MJLSs with known system
matrices at each mode.

Remark 3. It should be clarified that the presented comparisons
in this subsection are valid only when the matrix Ui in (30) are
invariant for all λ ∈ Λ, which implies that system matrices Ai
and Bi are exactly known, as is previously assumed. If system
matrices also contain uncertainty, it is known that introducing
extra slackmatrices are useful to reduce conservatism (de Oliveira,
Bernussou, & Geromel, 1999). In this paper, we focus on coping
with uncertainties in the transition matrix only, and aim to exploit
more efficient conditions for filter design for this specific case. If
the systemmatrices at eachmode in (1) are also uncertain, it is still
suggested to apply the results, for instance, in Morais et al. (2015)
to solve the corresponding filter design problem.

4. H2 filtering

In this section, we consider the H2 filtering counterpart for
MJLSs with uncertain transition probabilities. New LMI conditions
will be presented for H2 filtering performance analysis and filter
design, respectively.

4.1. H2 filtering analysis

To deal with the H2 performance of the filtering error system,
we first introduce the following lemma, which for the continuous-
and discrete-time cases can be found in, e.g., Costa et al. (1997) and
de Farias et al. (2000), respectively.

Lemma 2. Given initialmode probabilitiesµi, transition probabilities
πij for i, j ∈ M and a scalar ρ , the system in (4) (suppose D̄(rk) =

0 for the continuous-time case) is stochastically stable with an H2
performance level ρ if and only if there exist symmetric matrices
Pi > 0, ∀i ∈ M such that for the continuous-time case,

M
i=1

µiTr

B̄T
i PiB̄i


< ρ2,

ĀT
i Pi + PiĀi + Pi + C̄T

i C̄i < 0, ∀i ∈ M

(37)

and for the discrete-time case,

M
i=1

µiTr

B̄T
i PiB̄i + D̄T

i D̄i


< ρ2,

ĀT
i PiĀi − Pi + C̄T

i C̄i < 0, ∀i ∈ M

(38)

2 The meaning of Ψk , Φk , Θk and w is the same as those in Morais et al. (2014).
where Pi ,
M

j=1 πijPj.

According to Lemma 2, the task of computing the H2
performance level of the filtering error system in (4) is cast into
the solvability of the inequalities in (37) or (38) for some matrices
Pi > 0. By introducing an auxiliary matrix Ri such that B̄T

i PiB̄i < Ri
and applying Schur Complement Equivalence, the inequalities in
(37) can be re-written as

M
i=1 µiTr (Ri) − ρ2 < 0 and

B̄T
i PiB̄i − Ri < 0,


ĀT
i Pi + PiĀi + Pi C̄T

i
C̄i −I


< 0. (39)

Similarly, by introducing thematrix Ri such that B̄T
i PiB̄i+D̄T

i D̄i < Ri,
the inequalities in (37) are converted into

M
i=1 µiTr (Ri)−ρ2 < 0

and
B̄T
i PiB̄i − Ri D̄T

i
D̄i −I


< 0,


ĀT
i PiĀi − Pi C̄T

i
C̄i −I


< 0. (40)

Define symbols Φ̃i and Φ̆i as

Φ̃ct
i ,


Pi 0
0 −Ri


, Φ̃dt

i ,

Pi 0 0
0 −Ri D̄T

i
0 D̄i −I


Φ̆ct

i ,

0 Pi 0
Pi Pi C̄T

i
0 C̄i −I

 , Φ̆dt
i ,

Pi 0 0
0 −Pi C̄T

i
0 C̄i −I

 . (41)

Note that the inequalities in (39) and (40) are not easy-to-handle
if the transition probabilities are uncertain. To cope with this
difficulty, following a similar technique that is used to derive
Theorem 1, we can obtain the following new condition for
analyzing the H2 performance of the filtering error system in (4).

Theorem 4. Consider the system in (1) and the filter in (3) with
known initial mode probabilitiesµi and transition probabilities πij for
i, j ∈ M. Given a scalar ρ > 0, the filtering error system in (4) (sup-
pose D̄(rk) = 0 for the continuous-time case) is stochastically stable
with an H2 performance level ρ if and only if there exist symmetric
matrices Pi > 0, Ri and matrices Ki for i ∈ M such that

M
i=1

µiTr (Ri) − ρ2 < 0 (42)

Ψ̃ T
i Φ̃iΨ̃i + G̃T

i KiH̃i + H̃T
i K

T
i G̃i < 0, ∀i ∈ M (43)

Ψ̆ T
i Φ̆iΨ̆i + ĞT

i KiH̆i + H̆T
i K

T
i Ği < 0, ∀i ∈ M (44)

where Φ̃i and Φ̆i are defined in (41) and

Ψ̆i =


0 Ai 0 0
I 0 0 0

0 I 0 0
0 0 I 0

0 0 0 I



Ψ̃ ct
i =

 0 Bi
I 0

0 I

 , Ψ̃ dt
i =


0 Bi 0
I 0 0

0 I 0

0 0 I


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G̃ct
i =


0 ε3Bi

ε4I 0


, G̃dt

i =


0 ε3Bi 0

ε4I 0 0


H̃ct

i =

−I B̂iDi


, H̃dt

i =

−I B̂iDi 0


Ği =


0 Ai + ε1I 0 0
I 0 ε2I 0


H̆i =


−I B̂iCi Âi 0


(45)

with ε1 = ε2 = ε3 = ε4 > 0 sufficiently large for the continuous-
time case and ε1 = ε2 = 0, ε3 = ε4 = 1 for the discrete-time case,
respectively.

Proof. We can re-write the conditions in (39) or (40) in the
following unified form:

W̃ T
i Φ̃iW̃i < 0, W̆ T

i Φ̆iW̆i < 0 (46)

where Φ̃i and Φ̆i are defined in (41) and

W̃ ct
i =


B̄i
I


, W̃ dt

i =

B̄i 0
I 0
0 I

 , W̆i =

Āi 0
I 0
0 I

 .

(43) and (44) ⇒ (46): Suppose that the conditions in (43) and
(44) are satisfied. Define two symbols T̃i and T̆i for i ∈ M as

T̃ ct
i ,


B̂iDi
I


, T̃ dt

i ,

 B̂iDi 0
I 0
0 I

 , T̆i ,

 B̂iCi Âi 0
I 0 0
0 I 0
0 0 I


for which the row dimensions are such that H̃iT̃i = 0 and H̆iT̆i = 0
with H̃i and H̆i in (45). With Āi and B̄i in W̆i substituted by the
expressions in (4), it can be shown that Ψ̃iT̃i = W̃i and Ψ̆iT̆i = W̆i.
Noting that T̃i and T̆i have full column rank, we have

W̃ T
i Φ̃iW̃i = T̃ T

i


Ψ̃ T

i Φ̃iΨ̃i + G̃T
i KiH̃i + H̃T

i K
T
i G̃i


T̃i < 0

W̆ T
i Φ̆iW̆i = T̆ T

i


Ψ̆ T

i Φ̆iΨ̆i + ĞT
i KiH̆i + H̆T

i K
T
i Ği


T̆i < 0

that is, the conditions in (43) and (44) imply those in (46).
(46) ⇒ (43) and (44): Define symbols Γ̃i and Γ̆i, respectively, as

Γ̃ ct
i ,


B̂iDi I
I 0


, Γ̃ dt

i ,

 B̂iDi 0 I
I 0 0
0 I 0



Γ̆i ,

 B̂iCi Âi 0 I
I 0 0 0
0 I 0 0
0 0 I 0


which satisfy the following relations:

Ψ̃iΓ̃i =

W̃i Ṽi


, G̃iΓ̃i = J̃T


W̃i Ṽi


, H̃iΓ̃i =


0 −I


Ψ̆iΓ̆i =


W̆i V̆i


, ĞiΓ̆i = J̆T


W̆i V̆i


, H̆iΓ̆i =


0 −I


(47)

where

Ṽ ct
i =

 0
I
0


, Ṽ dt

i =

 0
I
0
0

 , J̃ct =


ε3I 0
0 ε4I
0 0



J̃dt =

 ε3I 0
0 ε4I
0 0
0 0

 , V̆i =


0
I
0
0
0

 , J̆ =


I 0
0 I

ε1I 0
0 ε2I
0 0

 .
Combining these relations, we have

Γ̃ T
i


Ψ̃ T

i Φ̃iΨ̃i + G̃T
i KiH̃i + H̃T

i K
T
i G̃i


Γ̃i

=


W̃ T

i Φ̃iW̃i W̃ T
i (Φ̃iṼi − J̃Ki)

∗ Ṽ T
i Φ̃iṼi − Ṽ T

i J̃Ki − K T
i J̃

TṼi


Γ̆ T
i


Ψ̆ T

i Φ̆iΨ̆i + ĞT
i KiH̆i + H̆T

i K
T
i Ği


Γ̆i

=


W̆ T

i Φ̆iW̆i W̆ T
i (Φ̆iV̆i − J̆Ki)

∗ V̆ T
i Φ̆iV̆i − V̆ T

i J̆Ki − K T
i J̆

TV̆i


.

Since Γ̃i and Γ̆i are invertible, it follows from the above equations
that the inequalities in (43) and (44) are satisfied if
W̃ T

i Φ̃iW̃i W̃ T
i (Φ̃iṼi − J̃Ki)

∗ Ṽ T
i Φ̃iṼi − Ṽ T

i J̃Ki − K T
i J̃

TṼi


< 0 (48)

W̆ T
i Φ̆iW̆i W̆ T

i (Φ̆iV̆i − J̆Ki)

∗ V̆ T
i Φ̆iV̆i − V̆ T

i J̆Ki − K T
i J̆

TV̆i


< 0. (49)

For the continuous-time case, (48) and (49) can be explicitly
expressed, respectively, as
W̃ T

i Φ̃iW̃i W̃ T
i L̃

T
i

∗ Pi22 − ε4Ki2 − ε4K T
i2


< 0 (50)

W̆ T
i Φ̆iW̆i W̆ T

i L̆
T
i

∗ −Ki2 − K T
i2


< 0 (51)

where

L̃i =


PT
i12 − ε3K T

i1 PT
i22 − ε4K T

i2 0


L̆i =


−K T
i1 −K T

i2 PT
i12 − ε1K T

i1 PT
i22 − ε2K T

i2 0


and Ki1 and Ki2 are the upper and lower nx rows of Ki, respectively,
and Pi12 and Pi22 are the upper and lower right nx × nx blocks of Pi,
respectively. Using similar arguments as in the proof of Theorem 1,
it can be verified that if the two inequalities in (46) hold for some
Pi > 0, those in (50) and (51) are also satisfied for the following
assignment:

Ki1 = ε−1
1 Pi12, Ki2 = ε−1

2 Pi22, ε1 = ε2 = ε3 = ε4 = ϵ−1

where ϵ > 0 is a sufficiently small scalar. Consequently, the
inequalities in (43) and (44) can be obtained.

For the discrete-time case where ε1 = ε2 = 0 and ε3 = ε4 = 1,
(48) and (49) can be explicitly expressed, respectively, as
W̃ T

i Φ̃iW̃i W̃ T
i L̃

T
i

∗ Pi22 − Ki2 − K T
i2


< 0

W̆ T
i Φ̆iW̆i W̆ T

i L̆
T
i

∗ Pi22 − Ki2 − K T
i2


< 0

where

L̃i =


PT
i12 − K T

i1 PT
i22 − K T

i2 0 0


L̆i =


PT
i12 − K T

i1 PT
i22 − K T

i2 0 0 0


and Pi12 and Pi22 are the upper and lower right nx × nx blocks of Pi,
respectively. The above two inequalities can be directly obtained
from those in (46) with Ki1 = Pi12, Ki2 = Pi22.

We have established the equivalence between the inequalities
in (46) and those in (43) and (44), and further applying Lemma 2,
can conclude the proof. �
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4.2. H2 filter design

Based on Theorem 4, we can obtain the following result
which provides a new parameter-dependent LMI condition for the
existence of a filter with a guaranteed H2 filtering performance for
all transition uncertainties. The theorem can be proved by applying
Theorem 4 and specifying Ki as in (21). The proof follows similar
lines as that of Theorem 3 and is thus omitted for saving space.

Theorem 5. Consider the system in (1) with known initial mode
probabilities µi and uncertain transition probabilities πij(λi) for λi ∈

Λi and i, j ∈ M. Given scalars ρ > 0, ε1, ε2, ε3 and ε4, a filter
in (3) exists such that the filtering error system in (4) (suppose D̄(rk) =

0 for the continuous-time case) is stochastically stable with an H2
performance level ρ if there exist symmetric matrices Pi(λ) > 0, Ri(λ)
and matrices Ki, Ai, Bi, Ci, Di for i ∈ M such that

M
i=1

µiTr (Ri(λ)) − ρ2 < 0, ∀λ ∈ Λ (52)

Ψ̃ T
i Φ̃i(λ)Ψ̃i + G̃ T

i H̃i + H̃ T
i G̃i < 0, ∀(i, λ) ∈ M × Λ (53)

Ψ̆ T
i Φ̆i(λ)Ψ̆i + Ğ T

i H̆i + H̆ T
i Ği < 0, ∀(i, λ) ∈ M × Λ (54)

where Φ̃i(λ) and Φ̆i(λ) are Φ̃i and Φ̆i in (41) with πi, Pi, Ri, Ĉi and D̂i
replaced by πi(λi), Pi(λ), Ri(λ), Ci and Di, respectively, Ψ̃i and Ψ̆i are
defined in (45) and

G̃ ct
i =


ε4I ε3Bi


, H̃ ct

i =

−Ki BiDi


G̃ dt
i =


ε4I ε3Bi 0


, H̃ dt

i =

−Ki BiDi 0


Ği =


I Ai + ε1I ε2I 0


, H̆i =


−Ki BiCi Ai 0


.

Moreover, if the conditions in (52)–(54) are feasible, the filter
parameters can be given by (18).

To ensure the conditions in (52)–(54) by a finite number of LMIs,
consider the parameter-dependent matrices Pi(λ) and Ri(λ) in the
following homogeneous polynomial form:

Pi(λ) =


k∈I (g)

λkPi,k, Ri(λ) =


k∈I (g)

λkRi,k.

Themeaning of the symbolI (g) is the same as that in the previous
section. Define some symbols as follows:

Ξ̃ ct
i,k,l , diag


Pi,k−l, −Ri,k−l


Ξ̃dt

i,k,l,h , diag


M
j=1

π
(v(hi))
ij Pj,k−l−h, −Ri,k−l−h, 0



Ξ̆ ct
i,k,l,h ,


0 Pi,k−l−h 0

Pi,k−l−h

M
j=1

π
(v(hi))
ij Pj,k−l−h 0

0 0 0


Ξ̆dt

i,k,l,h , diag


M
j=1

π
(v(hi))
ij Pj,k−l−h, −Pi,k−l−h, 0


.

Using the same polynomial relaxation method in deriving the
previousH∞ filtering condition, we can obtain the following result
forH2 filter design. Theproof canbe completedby following similar
lines as that of Theorem 3.

Theorem 6. Consider the system in (1) with known initial mode
probabilities µi and uncertain transition probabilities πij(λi) for λi ∈

Λi and i, j ∈ M. Given scalars ρ > 0, ε1, ε2, ε3, ε4 and vectors
g, d, b ∈ NM , a filter in (3) exists such that the filtering error
system in (4) (suppose D̄(rk) = 0 for the continuous-time case) is
stochastically stable with an H2 performance level ρ if there exist
symmetric matrices Pi,k, Ri,k, k ∈ I (g) and matrices Ki, Ai, Bi, Ci
and Di for i ∈ M such that the LMIs in (23) and (55)–(57) hold,

Q̂k < 0, ∀k ∈ I (g + d) (55)

Q̃ct
i,k < 0, ∀(i, k) ∈ M × I (g + b) (56-ct)

Q̃dt
i,k < 0, ∀(i, k) ∈ M × I (g + b + 1) (56-dt)

Q̆i,k < 0, ∀(i, k) ∈ M × I (g + b + 1) (57)

where

Q̂k =


l∈I (d),l≤k

φ(d)
φ(l)

M
i=1

µiTr

Ri,k−l


−

φ(g + d)
φ(k)

ρ2

Q̃ct
i,k =


l∈I (b),l≤k

φ(b)
φ(l)


Ψ̃ ct

i

T
Ξ̃ ct

i,k,lΨ̃
ct
i

+
φ(g + b)

φ(k)


G̃ ct
i

T
H̃ ct

i +

H̃ ct

i

T
G̃ ct
i


Q̃dt

i,k =


l∈I (b)
l≤k


h∈I (1)
h≤k−l

φ(b)
φ(l)


Ψ̃ dt

i

T
Ξ̃dt

i,k,l,hΨ̃
dt
i +

φ(g + b + 1)
φ(k)

×


Ψ̃ dt

i

T
Υ̃ dt

i Ψ̃ dt
i +


G̃ dt
i

T
H̃ dt

i +

H̃ dt

i

T
G̃ dt
i


Q̆i,k =


l∈I (b)
l≤k


h∈I (1)
h≤k−l

φ(b)
φ(l)

Ψ̆ T
i Ξ̆i,k,l,hΨ̆i

+
φ(g + b + 1)

φ(k)


Ψ̆ T

i ῨiΨ̆i + Ğ T
i H̆i + H̆ T

i Ği


Υ̃ dt
i =

0 0 0
0 0 D̄T

i
0 D̄i −I

 , Ῠi =

0 0 0
0 0 C̄T

i
0 C̄i −I


and Ĉi, D̂i in C̄i and D̄i are replaced by Ci and Di, respectively, and Ψ̃i,
Ψ̆i, G̃i, Ği, H̃i and H̆i are as in (53) and (54).

Moreover, if the conditions in (23) and (55)–(57) are feasible, the
filter parameters can be given by (19).

Parallel to Corollary 1 for H∞ filter design, when the matrices
Pi(λ) and Ri(λ) are parameter-independent, we also obtain the
following corollary for H2 filter design.

Corollary 2. Consider the system in (1) with known initial mode
probabilities µi and uncertain transition probabilities πij(λi) for λi ∈

Λi and i, j ∈ M. Given scalars ρ > 0, ε1, ε2, ε3 and ε4, a filter
in (3) exists such that the filtering error system in (4) (suppose D̄(rk) =

0 for the continuous-time case) is stochastically stable with an H2
performance level ρ if there exist symmetric matrices Pi > 0, Ri and
matrices Ki, Ai, Bi, Ci and Di for i ∈ M such that

M
i=1

µiTr (Ri) − ρ2 < 0 (58)

Ψ̃ T
i Φ̃

(s)
i Ψ̃i + G̃ T

i H̃i + H̃ T
i G̃i < 0, ∀(i, s) ∈ M × Si (59)

Ψ̆ T
i Φ̆

(s)
i Ψ̆i + Ğ T

i H̆i + H̆ T
i Ği < 0, ∀(i, s) ∈ M × Si (60)

where Φ̃
(s)
i and Φ̆

(s)
i are Φ̃i and Φ̆i in (41) with πi, Ĉi and D̂i replaced

by π
(s)
i , Ci and Di, respectively, and Ψ̃i, Ψ̆i, G̃i, Ği, H̃i and H̆i are as

in (53) and (54).
Moreover, if the conditions in (58)–(60) are feasible, the filter

parameters can be given by (19).

Remark 4. For the continuous-time case, when Pi and Ri are
parameter-independent, the LMIs in (53) are also parameter-
independent. Hence, the index ‘‘(s)’’ of the LMIs in (59) can be
removed for the continuous-time case.
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Remark 5. For H2 filtering in the continuous-time case, the
auxiliary matrix Ri in (39) stems from the relation B̄T

i PiB̄i < Ri,
which is introduced to linearize the synthesis condition. Instead,
we can employ an alternative relation µiB̄T

i PiB̄i < Ri for the same
purpose. In particular, Theorem1 inMorais et al. (2015) is based on
this choice. Furthermore, we have the following two comments.
First, the filter design conditions resulting from the two relations
are not equivalent to each other. This is because the obtained
design conditions are sufficient only. Consequently, we cannot
specifically relate Theorem 6 in this paper with Theorem 1 in
Morais et al. (2015). Second, both conditions can be easily modified
such that the modified ones are based on the same relation. For
instance, under the relation B̄T

i PiB̄i < Ri, the matrix ΘTk in (15) of
Morais et al. (2015) will not bemultiplied by the coefficientµi, but
thematrixWjk−k′

in (14) therein should bemultiplied byµj instead.
Note that thesemodificationswill not change the sufficiency of the
design conditions. Then, as in Section 3.3.2 for H∞ filtering, we can
exactly compare the modified design conditions and draw similar
conclusions in principle. For numerical results onH2 filtering in the
sequel, themethod inMorais et al. (2015) specifically indicates the
modified version of Theorem 1 therein.

Remark 6. For H2 filtering in the discrete-time case, the methods
in Fioravanti et al. (2008) and Liu et al. (2012) do not address
the uncertain situation described by (2). However, following the
technique to obtain Corollary 2, it is easy to adapt the methods
in Fioravanti et al. (2008) and Liu et al. (2012) to the situation
considered in this paper. Moreover, using similar arguments as in
Section 3.3.1 for H∞ filtering, one can see that, compared with the
method in Liu et al. (2012), Corollary 2 in the paper is not only less
conservative but also includes fewer variables.

5. Numerical examples

In the section, we present three numerical examples to show
the merits of the proposed filter design method.

Example 1. Consider a two-mode continuous-time example in (1)
with state-space matrices from de Souza et al. (2006) and also
given as follows:

A1 =


−3 1 0
0.3 −2.5 1

−0.1 0.3 −3.8


, A2 =


−2.5 0.5 −0.1
0.1 −3.5 0.3

−0.1 1 −2



B1 =

1
0
1


, B2 =


−0.6
0.5
0


, D1 = 0.2,D2 = 0.5

C1 =

0.8 0.3 0


, C2 =


−0.5 0.2 0.3


E1 =


0.5 −0.1 1


, E2 =


0 1 0.6


, F1 = F2 = 0.

For the case that the transition rates are exactly known, the matrix
Π is given by

Π =


−0.5 0.5
0.3 −0.3


.

For the case that the transition rates are uncertain, the verticesπ
(s)
i

of the rows of the matrix Π is given by

π
(1)
1 =


−0.35 0.35


, π

(2)
1 =


−0.65 0.65


,

π
(1)
2 =


0.2 −0.2


, π

(2)
2 =


0.4 −0.4


.

H∞ filtering. Since the methods in de Souza et al. (2006) and
Liu et al. (2008) can design mode-independent filters only, we
consider the design of mode-independent filters for this example.
Using Corollary 1 and Theorem 3 in this paper and the design
Table 2
ρ∗ and NoV for different methods in Example 1 (H2 filtering).

Method ρ∗ NoV

(Known Π :) Morais et al. (2015)a 0.1054 243
Corollary 1 0.1054 93

(Uncertain Π :) Morais et al. (2015) (g = 0, h = 0) 0.1152 243
Theorem 3 (g = 0) 0.1152 93
Morais et al. (2015) (g = 1, h = 0) 0.1151 375
Morais et al. (2015) (g = 1, h = 1) 0.1151 825
Theorem 3 (g = 1) 0.1151 225

a Theorem 1 in Morais et al. (2015) is modified as pointed out in Remark 5.

methods in de Souza et al. (2006), Liu et al. (2008) and Morais
et al. (2015), the results on theminimumH∞ filtering performance
level γ ∗ achieved by these methods are listed in Table 1, which
also includes the information on the number of variables (NoV) of
the LMI conditions for each method. The parameters in Corollary 1
and Theorem 3 are set as ε1 = ε2 = 1, d = b = 0, while those
in the method in Morais et al. (2015) are set as λ1 = λ2 = 1,
d = 0. It is seen from the table that, compared with de Souza
et al. (2006) and Liu et al. (2008), Corollary 1 or Theorem 3 with
g = 0 not only gives rise to better results on the minimum H∞

disturbance attenuation level, but also involves fewer variables for
computation. ComparedwithMorais et al. (2015), the conditions in
this paper are still less computationally demanding. For the case of
the uncertain Π , the parameters of the mode-independent proper
filter designed by Corollary 1 are given by


Â B̂
Ĉ D̂


=

 −4.2382 −2.3638 3.7667 −0.4365
−0.0305 −2.6680 0.3480 −0.6369
−1.2147 −2.5653 −0.4671 −0.9001
0.0921 −1.0228 −0.3247 0.2122

 .

For the design case of mode-independent and strictly proper
filters, Theorem 3 (d = b = 0, g = 1) gives rise to γ ∗

= 0.1918
for parameters (ε1, ε2) = (4.001, 7.1570) (obtained by directly
applying the fminsearch function in Matlab). This H∞ filtering
performance level is smaller than γ ∗

= 0.2059 for ε1 = ε2 = 1
(see Table 1), showing that it is possible to improve a filter by
adjusting the two scalars ε1, ε2.

H2 filtering. Let the initial probabilitiesµ =

0.9 0.1


and via

this example, we compare Corollary 2 and Theorem 6 in this paper
with Theorem 1 in Morais et al. (2015). Since matrices D1 and D2
are non-zero, filters to be computed should be strictly proper. The
parameters of these methods, besides ε3 = ε4 = 1 and others to
be indicated, are set the same as those forH∞ filtering. Table 2 lists
the calculated results. It is clear that, under the same degree g , the
methods in this paper andMorais et al. (2015) give rise to the same
H2 filtering performance level ρ∗ but those in this paper consist of
much fewer variables.

Example 2. Consider a four-mode discrete-time example in (1)
from Zhang and Boukas (2009a) with matrices given by

A1 =


0 −0.405

0.81 0.81


, A2 =


0 −0.2673

0.81 1.134


A3 =


0 −0.81

0.81 0.972


, A4 =


0 −0.1863

0.81 0.891


Bi =


0.5 0
0 0


, Ci =


1 0


, Di = Ei =


0 1


Fi =


0 0


, i ∈ {1, 2, 3, 4}.
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Table 3
γ ∗ and NoV for different methods in Example 2 (H∞ filtering).

Method Case Π1 Case Π2

γ ∗ NoV γ ∗ NoV

(Mode-dependent filters:)
Zhang and Boukas (2009a) 3.8215 125 4.2793 125
Morais et al. (2014) 1.6422 181 1.6436 181
Corollary 1 1.6422 93 1.6436 93

(Mode-independent filters:)
Morais et al. (2014) (g = 0, h = 0) 1.7361 142 1.7625 142
Theorem 3 (g = 0) 1.7361 54 1.7625 54
Morais et al. (2014) (g = 1, h = 0) 1.7336 342 1.7425 582
Morais et al. (2014) (g = 1, h = 1) 1.7336 782 1.7425 1550
Theorem 3 (g = 1) 1.7336 254 1.7425 494

The following two cases are considered for the uncertain transition
probabilities:

Π1 =

0.3 0.2 0.1 0.4
? ? 0.3 0.2
0.1 0.1 0.5 0.3
0.2 ? ? ?

 , Π2 =

0.3 0.2 0.1 0.4
? ? 0.3 0.2
? 0.1 ? 0.3
0.2 ? ? ?


where ‘‘?’’ denotes the unknown transition probabilities. The two
cases correspond to Case I and Case II of the example in Zhang and
Boukas (2009a).

H∞ filtering. For this example,we first designmode-dependent
filters by Corollary 1 in this paper, and compare the achieved
minimumH∞ filtering performance levelwith that obtained by the
methods inMorais et al. (2014) and Zhang and Boukas (2009a). Set
ε1 = ε2 = 0 for Corollary 1 and set λ1 = λ2 = 0, d = g = h = 0
for the method in Morais et al. (2014). The first part of Table 3
summarizes the results on the achieved minimum H∞ filtering
performance level as well as the data on NoV of each method. On
one hand, it is shown that with fewer variables to be optimized,
Corollary 1 still obtains betterH∞ filtering performance levels than
those by Zhang and Boukas (2009a). On the other hand, although
Corollary 1 and the method in Morais et al. (2014) give rise to
the same H∞ filtering performance level, Corollary 1 merits an
obvious computational advantage, because the NoV for Corollary 1
is almost only a half of that for the method in Morais et al. (2014).
This fact well verifies the discussions in Section 3.3.2 regarding the
theoretical comparison between the two methods.

We further consider the design case of mode-independent fil-
ters. Set ε1 = ε2 = 0, d = b = 0 for Theorem 3 and λ1 = λ2 = 0,
d = 0 for the method in Morais et al. (2014). The calculated re-
sults by different methods are presented in the second part of
Table 3, which show that, using the same degree of polynomi-
ally parameter-dependent Lyapunov matrices, Theorem 3 and the
method in Morais et al. (2014) can produce filters with the same
guaranteed H∞ filtering performance level, but obviously the for-
mer needs much fewer variables.

H2 filtering. Suppose that the initial probabilities µ =
0.22 0.18 0.22 0.38


. We compute the minimum H2 filter-

ing performance level by Corollary 2 and Theorem 6 in this paper
and the methods in Fioravanti et al. (2008); Liu et al. (2012). For
Theorem 6, parameters εi, i = 1, . . . , 4, d and b are set as ε1 =

ε2 = 0, ε3 = ε4 = 1 and d = b = 0. Table 4 shows the computed
results. It is easy to see that Corollary 2 gives smaller H2 perfor-
mance levels than those by the methods in Fioravanti et al. (2008)
and Liu et al. (2012).Moreover, increasing the degree of polynomial
Lyapunov matrices can further reduce the H2 filtering error level.
Table 4
ρ∗ and NoV for different methods in Example 2 (H2 filtering).

Method Case Π1 Case Π2

ρ∗ NoV ρ∗ NoV

(Mode-dependent filters:)
Fioravanti et al. (2008)a 0.7092 73 0.7112 73
Corollary 2 or Theorem 6 (g = 0) 0.6876 105 0.6893 105
Theorem 6 (g = 1) 0.6726 365 0.6734 677

(Mode-independent filters:)
Fioravanti et al. (2008) 0.7410 37 0.7410 37
Liu et al. (2012) 0.7271 74 0.7315 74
Corollary 2 or Theorem 6 (g = 0) 0.7134 66 0.7199 66
Theorem 6 (g = 1) 0.6982 326 0.7004 638
a The methods in Fioravanti et al. (2008) and Liu et al. (2012) are adapted

according to Remark 6.

Example 3. This two-mode discrete-time example is borrowed
from de Souza and Fragoso (2003) with matrices given by

A1 =


1 5.2529 × 10−2

1.5146 × 10−3 1.1022


, Bi =


0.5 0
0 0


A2 =


0.9955 4.9660 × 10−2

−0.2669 0.8075


, Ci =


−1 1


Di = Ei =


0 1


, Fi =


0 0


, i ∈ {1, 2}.

The transition probabilities are uncertain with the vertices π
(s)
i of

the rows of the matrix Π given by

π
(1)
1 =


0.6 0.4


, π

(2)
1 =


0.5 0.5


,

π
(1)
2 =


0.2 0.8


, π

(2)
2 =


0.3 0.7


.

Mode-independent filters for this example are designed by
Corollary 1 in this paper and themethod in Gonçalves et al. (2011).
The scalars ε1 and ε2 for Corollary 1 are specified as ε1 = ε2 = 0.
The design results are shown in Table 5, where the results for
both strictly proper and proper filters are calculated. Apparently
the proposed method, Corollary 1, generates filters with improved
guaranteed H∞ filtering performance bounds than that obtained
by the method in Gonçalves et al. (2011), although the former
needs to solve an optimization problem with more variables. The
proper filter obtained by Corollary 1 has the following state-space
realization:

Â B̂
Ĉ D̂


=

 0.1710 1.0022 0.9204
0.2544 0.4892 −0.4422

−0.3744 −0.6256 0.3744


.

To further show the effectiveness of the obtained filter, we do
some time-domain simulations under the following disturbance

w(k) =


e−0.5k sin(0.1k)
e−0.7k sin(0.3k)


.

The initial states of the system are set as x0 =

0.2 0.4

T
and that of the filter are set to zero. The system output z(k)
and its estimation ẑ(k) are plotted in Fig. 1, where the switching
signals r(k) are randomly generated according to the transition
probabilities at the four vertices of the uncertain transition
probability domain. It is shown that the filter output can effectively
track the target signal z(k) for all the four cases of the transition
probabilities.

6. Conclusion

The H∞ and H2 filtering problems of MJLSs with uncertain
transition probabilities have been investigated in the paper and
new approaches have been systematically proposed for designing
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a b

dc

Fig. 1. Time-domain response of the system and filter in Example 3. (a): Π = [0.6, 0.4; 0.2, 0.8]; (b): Π = [0.5, 0.5; 0.2, 0.8]; (c): Π = [0.6, 0.4; 0.3, 0.7];
(d) Π = [0.5, 0.5; 0.3, 0.7].
Table 5
γ ∗ and NoV for different methods in Example 3.

Method Strictly proper Proper
γ ∗ NoV γ ∗ NoV

Gonçalves et al. (2011) 9.8077 25 9.7234 26
Corollary 1 7.7995 33 7.7946 34

H∞ or H2 filters for both continuous- and discrete-time MJLSs. To
overcome the drawbacks of the existing results, a new technique
has been applied to decouple the product terms between the
Lyapunov matrices and the filter parameters, leading to improved
conditions for H∞ and H2 filtering analysis. LMI conditions have
been proposed for checking the existence of filters that satisfy a
guaranteedH∞ orH2 filtering performance, so that the filter design
problems are cast into convex optimization problems that can be
effectively solved. Theoretical comparisons between the proposed
method and some existing ones have been presented, showing
that the proposed one has advantages in conservatism reduction
or variables reduction. Finally, numerical examples have been
provided to further illustrate the effectiveness and improvements
of the proposedmethod. In the future, themethod developed in the
paper may be used to study control of networked control systems
(Wang, Gao, & Qiu, 2015) or control of switching electrical devices
(Napoles et al., 2013).
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