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a b s t r a c t

Thenegative imaginary property is a property thatmanypractical systems exhibit. This paper is concerned
with the negative imaginary synthesis problem for linear time-invariant systems by output feedback
control. Sufficient conditions are developed for the design of static output feedback controllers, dynamic
output feedback controllers and observer-based feedback controllers. Based on the design conditions, a
numerical algorithm is suggested to find the desired controllers. Structural constraints can be imposed
on the controllers to reflect the practical system constraints. Also, the separation principle is shown to
be valid for the observer-based design. Finally, three numerical examples are presented to illustrate the
efficiency of the developed theory.
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1. Introduction

The study of negative imaginary systems has attracted much
attention in recent years (Cai & Hagen, 2010; Ferrante & Ntogra-
matzidis, 2013; Lanzon & Petersen, 2008; Mabrok, Kallapur, Pe-
tersen, & Lanzon, 2015, 2014; Wang, Lanzon, & Petersen, 2015a,b;
Xiong, Petersen, & Lanzon, 2012). By appropriately choosing the
system input and output, many practical dynamic systems can be
modelled as negative imaginary systems. Examples could be found
in active vibration control systems (Das, Pota, & Petersen, 2015;
Fanson & Caughey, 1990; Moheimani, Vautier, & Bhikkaji, 2006;
Petersen & Lanzon, 2010) and circuit systems (Petersen & Lan-
zon, 2010). An important class of results for negative imaginary
systems is the stability results developed in Lanzon and Petersen
(2008), Xiong, Petersen, and Lanzon (2010), Mabrok et al. (2014),
Liu and Xiong (2015). For positive-feedback interconnected neg-
ative imaginary systems, necessary and sufficient conditions are
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established to test the system stability. These results can be con-
sidered as a generalization of the positive position control results
in Moheimani et al. (2006), Fanson and Caughey (1990), and de-
pend only on the system gains at zero and infinite frequencies. In
other words, the interconnected systems might have large control
gains over other frequencies. In contrast, the small gain theorem
requires that the control gains be small over all frequencies. An
important application of the results is to robust control problems,
where system uncertainty can be modelled by a negative imagi-
nary system. Then, the closed-loop systemwill be stable as long as
the controller is negative imaginary and satisfies the gain condi-
tions. An illustrative example can be found in Xiong et al. (2010),
where the uncertainty parameter is allowed to be arbitrarily large.
Therefore, the results in Lanzon and Petersen (2008), Xiong et al.
(2010), Mabrok et al. (2014), Liu and Xiong (2015) provide an at-
tractive tool for robust control.

The underlying motivation of this study is to extend the
application areas of negative imaginary systems theory. Consider
the case that the uncertainty part in a system is negative imaginary
while the remaining part of the system is not. The stability results
in Lanzon and Petersen (2008), Xiong et al. (2010), Mabrok et al.
(2014), Liu and Xiong (2015) will not be applicable. To make them
applicable, one has to design controllers such that the remaining
part of the system is negative imaginary; see examples in Petersen
and Lanzon (2010), Song, Lanzon, Patra, and Petersen (2012),
Mabrok et al. (2015). The problem of designing controllers for
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non-negative imaginary systems such that the resulting closed-
loop systems become negative imaginary is called the negative
imaginary synthesis problem, and the designed controllers are
called negative imaginary controllers. When the full system state
is available, state feedback negative imaginary controllers can
be designed, and the corresponding design conditions have been
established in Petersen and Lanzon (2010), Song et al. (2012),
Mabrok et al. (2015) for both minimal and nonminimal state-
space realizations. However, in practice, the system state is often
not available and only measurement output can be used when
designing controllers. Also in many cases, the desired controllers
have to meet structural constraints in the system design (Lin,
Fardad, & Jovanović, 2011; Rubió-Massegú, Rossell, Karimi, &
Palacios-Quiñonero, 2013; Siljak, 1991; Zečević & Šiljak, 2008). For
example, the controllers have to be of a block diagonal structure
in the decentralized control of large-scale systems. Therefore, the
design of output feedback negative imaginary controllers with
structural constraints is an appealing practice use of the stability
results in negative imaginary systems theory. The design of output
feedback controllers has been recognized as a hard problem in
general (Abbaszadeh &Marquez, 2009; Dinh, Gumussoy, Michiels,
& Diehl, 2012; Shu, Lam, & Xiong, 2010; Syrmos, Abdallah, Dorato,
& Grigoriadis, 1997).

This paper studies the negative imaginary synthesis problem
when designing output feedback controllers. Firstly, the design
of static output feedback controllers is considered. A sufficient
condition is established in terms of a linear matrix inequality and
a linear matrix equality. For the established design condition, an
arbitrarily structural constraint can be readily imposed on the
controller to meet practical requirements. It deserves mentioning
that the solvability of the condition depends on the choice of the
right inverse of the measurement matrix. An iterative algorithm
is proposed to search for an approximate right inverse. When
the measurement output equals to the system state, our result
recovers the available ones in Petersen and Lanzon (2010), Song
et al. (2012). Then, the design condition is extended to design
dynamic output feedback controllers and observer-based state
feedback controllers. In particular, for observer-based control, the
separation principle is shown to hold. Finally, three numerical
examples are used to demonstrate the developed design theory.
The first example demonstrates the application of the results to
a robust stabilization problem where the uncertainty is modelled
by a strictly negative imaginary system. The conservatism of
the developed design condition is studied via the first example.
The second example validates the applicability of the results
to MIMO systems. The third example illustrates how structural
constraints are imposed on the designed controllers. The designed
controller is a decentralized reduced-order dynamic output
feedback controller. In all, the contribution of this paper is that a
systematic design theory for output feedback negative imaginary
controllers is developed and controller structural constraints can
be enforced.
Notation: Let Rm×n and Rm×n denote the set ofm× n real matrices
and real-rational proper transfer function matrices, respectively.
AT and A∗ denotes the transpose and the complex conjugate
transpose of a complex matrix A, respectively. ℜ[·] is the real part
of a complex number. The notation X > 0 or X ≥ 0, where X is a
real symmetric matrix, means that thematrix X is positive definite
or positive semidefinite, respectively.

2. Problem formulation

Consider a linear time-invariant systemẋ(t) = Ax(t)+ B1w(t)+ B2u(t),
z(t) = C1x(t),
y(t) = C2x(t),

(1)
Fig. 1. Negative imaginary synthesis using output feedback control.

where x(t) ∈ Rn is the system state, u(t) ∈ Rp is the control input,
y(t) ∈ Rq is the measurement output, w(t) ∈ Rm is the system
input, z(t) ∈ Rm is the system output. Thematrices A ∈ Rn×n, B1 ∈

Rn×m, B2 ∈ Rn×p, C1 ∈ Rm×n and C2 ∈ Rq×n are known constant
matrices. The measurement output matrix C2 is assumed to be of
full row rank without loss of generality. The system is chosen to be
strictly proper to keep the results simple and tractable.

The objective of the paper is to design output feedback
controllers, as shown in Fig. 1, such that the resulting closed-loop
system is negative imaginary. The closed-loop system is negative
imaginary if its transfer function is a negative imaginary transfer
function. The following is the definition for negative imaginary
transfer functions.

Definition 1 (Xiong et al., 2010). A transfer function matrix R(s) ∈
Rm×m is negative imaginary if

(1) R(s) has no poles at the origin and inℜ[s] > 0;
(2) j[R(jω) − R∗(jω)] ≥ 0 for all ω ∈ (0,∞) except values of ω

where jω is a pole of R(s);
(3) If jω0, ω0 ∈ (0,∞), is a pole of R(s), it is at most a simple pole,

and the residue matrix K0 , lims→jω0(s − jω0)jR(s) is positive
semidefinite Hermitian.

To determine whether a transfer function is negative imaginary
or not, the negative imaginary lemma provides a necessary and
sufficient condition in terms of theminimal state-space realization
of the transfer function.

Lemma 1 (Negative Imaginary Lemma (Xiong et al., 2010)). Let
(A, B, C,D) be aminimal state-space realization of a transfer function
matrix R(s) ∈ Rm×m, where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n,
D ∈ Rm×m. Then R(s) is negative imaginary if and only if

(1) det(A) ≠ 0, D = DT;
(2) there exists a matrix Y ∈ Rn×n, Y = Y T > 0, such that

AY + YAT
≤ 0 and B+ AYCT

= 0.

When the realization (A, B, C,D) is not minimal, the conditions in
Lemma 1 are only sufficient to test the negative imaginariness of
R(s); see Corollary 1 of Song et al. (2012).

Remark 1. The notation of negative imaginary systems has been
extended to the cases where zero or infinite poles are allowed in
the system (Ferrante, Lanzon, & Ntogramatzidis, 2016; Ferrante &
Ntogramatzidis, 2013; Liu, J, & Xiong, 2016; Mabrok et al., 2014).
New versions of negative imaginary lemmas have been reported
in Mabrok et al. (2015). However, the results in Mabrok et al.
(2015) cannot be considered as a generalization of Lemma 1.
Lemma 1 is used in this paper to help the controller design, and
the requirement of the closed-loop system having no poles at the
origin is not a strong condition.

Before presenting the main results, some notation is defined to
simplify the presentation. Let C⊥2 ∈ R(n−q)×n such that C2C⊥T2 = 0
and C⊥2 C⊥T2 = I; in other words, the rows of C⊥2 consist of the basis
of the orthogonal complement subspace of the subspace spanned
by the rows of C2. One has that [CT

2 C⊥T2 ] is invertible. Let C
+

2 ∈ Rn×q
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be the Moore–Penrose inverse of C2; that is, C+2 = CT
2 (C2CT

2 )−1. Let
CR
2 ∈ Rn×q be a right inverse of C2; in other words, CR

2 satisfies
C2CR

2 = I and is of full column rank. All the right inverses of C2 are
given by CR

2 = C+2 + (QC⊥2 )T where Q ∈ Rq×(n−q) is an arbitrary
matrix.

3. Static output feedback control design

A static output feedback controller is of the form

u(t) = Fy(t), (2)

where F ∈ Rp×q is the control gain to be determined. The resulting
closed-loop system is
ẋ(t) = (A+ B2FC2)x(t)+ B1w(t),
z(t) = C1x(t).

(3)

The transfer function of the system (3) is given by

R(s) = C1(sI − A− B2FC2)
−1B1. (4)

According to Lemma 1, R(s) is negative imaginary if and only if the
matrix A+ B2FC2 is invertible, and there exists a matrix Y ∈ Rn×n,
Y = Y T > 0, such that

(A+ B2FC2)Y + Y (A+ B2FC2)
T
≤ 0 (5)

B1 + (A+ B2FC2)YCT
1 = 0. (6)

The following result gives a necessary and sufficient condition for
the solvability of the conditions in (5)–(6). This result will be used
to derive our main results.

Lemma 2. There exist matrices F ∈ Rp×q, Y ∈ Rn×n, Y = Y T > 0,
such that (5) and (6) hold, if and only if, there exist matrices Q ∈
Rq×(n−q), Y1 ∈ Rq×q, Y1 = Y T

1 > 0, Y2 ∈ R(n−q)×(n−q), Y2 = Y T
2 > 0,

M ∈ Rp×q such that

AY + YAT
+ B2M +M

T
BT
2 ≤ 0 (7)

B1 + (AY + B2M)CT
1 = 0 (8)

hold, where Y = CR
2 Y1(CR

2 )T + C⊥T2 Y2C⊥2 , M = M(CR
2 )T, and CR

2 =

C+2 + (QC⊥2 )T.

Proof. Define C2 = [C+2 C⊥T2 ] ∈ Rn×n, which is an invertible
matrix.
(⇒) Firstly, Y > 0 implies that

C
−1
2 YC

−T
2 =

Y1 Y3Y T
3

Y2


> 0, (9)

whereY1 ∈ Rq×q,Y2 ∈ R(n−q)×(n−q) andY3 ∈ Rq×(n−q).
Next, we will verify that Q = Y−11

Y3, Y1 = Y1 > 0, Y2 =Y2 −Y T
3
Y−11

Y3 > 0,M = FY1 are a set of solutions to (7) and (8).
Note that Y can be rewritten as

Y = C2


I 0
Q T I

 
Y1 0
0 Y2

 
I Q
0 I


C

T
2

= C2


Y1 Y1Q

Q TY1 Q TY1Q + Y2


C

T
2

= C2

Y1 Y3Y T
3

Y2


C

T
2 = Y ,

and that

FC2Y = FC2Y

= FC2C2


Y1 Y1Q

Q TY1 Q TY1Q + Y2


C

T
2

= F

I 0

 
Y1 Y1Q

Q TY1 Q TY1Q + Y2


C

T
2

= FY1(CR
2 )T = M(CR

2 )T = M.

Therefore, the Eqs. in (5) and (6) can be written as the Eqs. in (7)
and (8), respectively.
(⇐) We will verify that Y = Y > 0 and F = MY−11 are a set
of solutions to (5) and (6). Due to the particular structure of Y , it
can be verified that FC2Y = M , as shown in the necessity part,
still holds. Therefore, (7) and (8) can be written as (5) and (6),
respectively. �

The conditions in (7) and (8) are still hard to solve. Fortunately, by
fixing Q , (7) reduces to a linear matrix inequality and (8) a linear
matrix equality, and hence can be solved efficiently. The proof of
Lemma 2 also shows that once a set of solutions to (7) and (8) is
found, the static output feedback controller gain can be designed
as F = MY−11 . Hence the following result is obtained.

Theorem 1. Consider plant (1) and static output feedback con-
troller (2). For any given matrix Q ∈ Rq×(n−q), if there exist matri-
ces Y1 ∈ Rq×q, Y1 = Y T

1 > 0, Y2 ∈ R(n−q)×(n−q), Y2 = Y T
2 > 0,

M ∈ Rp×q such that linear matrix inequality (7) and the linear matrix
equality (8) hold, then the controller gain in (2) is given by F = MY−11 ,
and the closed-loop system (3) is negative imaginary provided that
det(A+ B2FC2) ≠ 0.

According to Lemma 2, the existence of the negative imaginary
controller (2) guarantees the existence of Q in Theorem 1 such
that (7) and (8) are feasible. On the other hand, it is observed from
the proof of Lemma 2 that fixing the value of Q in Theorem 1 is
essentially equivalent to fixing the value ofY3 in (9). Based on this
observation, the following algorithm is suggested to search for an
appropriate Q .

Algorithm 1. (1) Choose any starting value Q (0), two relatively
large feasibility multipliers γ (0) > 0 and ϵ(0) > 0. Pick up
two reduction factors 1 > βγ > 0, 1 > βϵ > 0 and stopping
tolerance δ > 0. Initialize iteration counter k← 0.

(2) Check the feasibility of (7) and (8) in Theorem 1. If a feasible
solution to (7) and (8) is found, then a controller gain is given
by F = MY−11 . STOP.

(3) If either γ (k) < δ or ϵ(k) < δ is true, then the controller (2)
cannot be designed. STOP.

(4) Solve the following feasible problem

Y (k)
= Y (k)T > 0

Γ
(k)
1 + Γ

(k)T
1 ≤ γ (k)I

− ϵ(k)I Γ
(k)
2

Γ
(k)T
2 −I


≤ 0

where

Γ
(k)
1 = AY

(k)
+ B2M

(k)

Γ
(k)
2 = B1 + Γ

(k)
1 CT

1

Y (k)
=


Y1 Y3

Y T
3 Q (k)TY1Q (k)

+ Y2


Y

(k)
= C2Y (k)C

T
2

M
(k)
= M


I Q (k)


C

T
2

C2 =

C+2 C⊥T2


for matrix variables Y1, Y2, Y3 and M .
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(5) Set Q (k+1)
← Y−11 Y3 and decrease the feasibility multipliers as

γ (k+1)
← βγ γ (k) and ϵ(k+1)

← βϵϵ
(k). Then advance k← k+1

and return to (2).

Algorithm 1 is designed by considering Q in Theorem 1 as a matrix
variable again. Let Y3 = Y1Q , then Y is rewritten as

Y = C2


Y1 Y3
Y T
3 Q TY1Q + Y2


C

T
2.

In each iteration of Algorithm1,Q is firstly fixed so that the feasible
problem in Step (4) is convex and then updated according to Q =
Y−11 Y3 in Step (5).

The multipliers γ (k) and ϵ(k) are initially chosen relatively large
so that the feasible problem in Step (4) is feasible and then reduced
in Step (5) to help find solutions to (7) and (8).

Remark 2. The equality condition (8) in Theorem 1 is inherited
from Lemma 1. In contrast, the equality conditions in Corollary
2 of Abbaszadeh and Marquez (2009) stems from the need to
tackle the static output feedback controller design. It is worth
emphasizing that the solution set of (7) and (8) in Theorem 1 is
a convex set. Free toolboxes such as YALMIP can be used to solve
such conditions directly.

Remark 3. When C2 = I , the static output feedback controller in
(2) reduces to the state feedback controller u(t) = Fx(t). In this
case, the matrices Y and M in Lemma 2 and Theorem 1 become
Y = Y1 and M = M , respectively; the state feedback control gain
is given by F = MY

−1
. Then, Theorem 1 coincides with the results

in Petersen and Lanzon (2010); Song et al. (2012).

Remark 4. Due to the simple form for the design of the static out-
put feedback control gain F = MY−11 in Theorem 1, an arbitrarily
structural constraint (Rubió-Massegú et al., 2013; Zečević & Šiljak,
2008) can be imposed on the gain by specifying the same structure
on M and a block diagonal structure on Y1. For example, suppose
the output feedback control gain F in distributed control be of the
form

F =


• • 0 0
0 • • 0
0 0 • •


,

where the zero blocks indicate the places where the entries of F
must be zeros (representing the structural constraints), the bullet
blocks represent the entries of F that are to be designed. To force
the designed controller gain having the above form, the matrix
variablesM and Y1 in Theorem 1 need to have the following form

M =


• • 0 0
0 • • 0
0 0 • •


,

Y1 =

 • 0 0 0
0 • 0 0
0 0 • 0
0 0 0 •

 .

In addition, a decentralized controller design example is given in
Section 6.

Remark 5. If the system input w(t) is available for the controller
design, then a static output feedback controller of the form

u(t) = Fy(t)+ Fww(t)

can be constructed such that the resulting closed-loop system is
negative imaginary. In this case, the result in Theorem 1 remains
true after the matrix B1 in (8) is replaced with B1 + B2Fw . Here, Fw

is an additionalmatrix variable to be constructed. The introduction
of Fw provides us more freedom to search for negative imaginary
controllers.
4. Dynamic output feedback control design

In this section, instead of designing the static feedback
controller (2), we are interested in the design of dynamic output
feedback controllers. A dynamic output feedback controller is of
the form
ẋF (t) = AFxF (t)+ BFy(t),
u(t) = CFxF (t)+ DFy(t),

(10)

where xF (t) ∈ RnF is the state of the controller. The matrices
AF ∈ RnF×nF , BF ∈ RnF×q, CF ∈ Rp×nF and DF ∈ Rp×q are to be
designed.

The resulting closed-loop system of plant (1) controlled by (10)
is given by
ẋ(t) = Ax(t)+B1w(t),
z(t) =C1x(t),

(11)

where x(t) ,


x(t)
xF (t)


is the state, and the systemmatrices are given

by

A =

A+ B2DFC2 B2CF

BFC2 AF


, B1 =


B1
0


, C1 =


C1 0


.

To design the dynamic output feedback controller (10) in a unified
way as in designing (2), we rewrite the system matrix A as

A =A+B2FC2,

where

A = 
A 0
0 0


, B2 =


0 B2
I 0


,

F = 
AF BF
CF DF


, C2 =


0 I
C2 0


.

As a result, the closed-loop system (11) can be rewritten as
ẋ(t) = (A+B2FC2)x(t)+B1w(t),
z(t) = C1x(t),

(12)

which is of the same form as in (3). Therefore, Theorem 1 is
applicable to the dynamic output feedback control design, and the
following result is readily obtained.

Corollary 1. Consider plant (1) and dynamic output feedback
controller (10). For any given matrix Q ∈ R(nF+q)×(n−q), if there exist
matrices Y1 ∈ R(nF+q)×(nF+q), Y1 = Y T

1 > 0, Y2 ∈ R(n−q)×(n−q),
Y2 = Y T

2 > 0 and M ∈ R(nF+p)×(nF+q) such thatAY + YAT
+B2M +M

TBT
2 ≤ 0 (13)B1 + (AY +B2M)CT
1 = 0 (14)

hold, where Y = CR
2 Y1(CR

2 )T + C⊥T2 Y2C⊥2 , M = M(CR
2 )T, andCR

2 =
C+2 + (QC⊥2 )T. Then the system matrices of the dynamic con-

troller (10) are given byF = MY−11 , and the closed-loop system (12) is
negative imaginary provided that det(A+B2FC2) ≠ 0.

Remark 6. When the system input w(t) is available for the
controller, it can be used to help design negative imaginary
controllers. In this case, the dynamic output feedback controller
can be of the form
ẋF (t) = AFxF (t)+ BFy(t)+ Bww(t),
u(t) = CFxF (t)+ DFy(t)+ Dww(t),

and the resulting closed-loop system is the same as the one in (12)
except that the matrixB1 is given by


B1 + B2Dw

Bw


. Fortunately, the
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introduction of Bw and Dw intoB1 does not increase computation
complexity of the solvability of the conditions in (13) and (14), but
gives more freedom to find a negative imaginary controller.

Remark 7. By the virtue of the similarity of the design methods
for the static output feedback control gain F in Theorem 1 and
the dynamic output feedback control matricesF in Corollary 1, an
arbitrarily structural constraint can be imposed on the dynamic
controller (10) as well (see the example section for an illustration).

5. Observer-based state feedback control design

In this section, observer-based state feedback controllers are to
be designed for the output feedback negative imaginary synthe-
sis problem. Consider a typical observer-based state feedback con-
troller of the forṁx(t) = Ax(t)+ B2u(t)+ L(y(t)− C2x(t)),
u(t) = Kx(t), (15)

where L ∈ Rn×q and K ∈ Rp×n are the observer gain matrix and
the state feedback gain matrix, respectively. The matrices L and K
are to be determined.

Let x(t) =

x(t)x(t)


. The closed-loop system of plant (1) under

control of (15) is given by
ẋ(t) = (A+B2FC2)x(t)+B1w(t),
z(t) =C1x(t),

(16)

which has the same form as in (12), except that the component
matrices are different. Here,

A = 
A 0
0 A


, B2 =


B2 0
B2 I


, F = 

K 0
0 L


,

C2 =


0 I
C2 −C2


, B1 =


B1
0


, C1 =


C1 0


.

By Theorem 1, the following result can be obtained for the design
of the matrices L and K .

Corollary 2. Consider plant (1) and observer-based controller (15).
For any given matrix Q ∈ R(n+q)×(n−q), if there exist matrices Y1 ,
Y11 0
0 Y12


∈ R(n+q)×(n+q), Y11 ∈ Rn×n, Y12 ∈ Rq×q, Y1 = Y T

1 > 0,

Y2 ∈ R(n−q)×(n−q), Y2 = Y T
2 > 0 and M ,


M1 0
0 M2


∈ R(p+n)×(n+q),

M1 ∈ Rp×n, M2 ∈ Rn×q, such thatAY + YAT
+B2M +M

TBT
2 ≤ 0 (17)B1 + (AY +B2M)CT
1 = 0 (18)

hold, where Y = CR
2 Y1(CR

2 )T + C⊥T2 Y2C⊥2 , M = M(CR
2 )T, andCR

2 =
C+2 + (QC⊥2 )T. Then with the observer gain matrix given by

L = M2Y−112 and the state feedback gain given by K = M1Y−111 , the
closed-loop system (16) is negative imaginary provided that det(A+B2FC2) ≠ 0.

When the system input w(t) is available for the observer
design, it can significantly simplify the negative imaginary
synthesis problem.Nowconsider an observer-based state feedback
controller of the forṁx(t) = Ax(t)+ B1w(t)+ B2u(t)+ L(y(t)− C2x(t)),
u(t) = Kx(t). (19)

Let e(t) = x(t)−x(t). The resulting closed-loop system is given
by
ẋ(t) = Ax(t)+B1w(t),
z(t) = C1x(t),

(20)
where

x(t) =

x(t)
e(t)


, A =


A+ B2K −B2K

0 A− LC2


,

B1 =


B1
0


, C1 =


C1 0


.

The transfer function of the closed-loop system (20) is given by

R(s) =C1(sI − A)−1B1 = C1(sI − A− B2K)−1B1.

As a result, a version of separation principle holds for the negative
imaginary synthesis problem, and the result is summarized in the
following theorem.

Theorem 2. Consider plant (1) and observer-based controller (19).
If the observer gain is designed such that A − LC2 is stable, the state
feedback gain is designed such that (A + B2K , B1, C1) is negative
imaginary, then the closed-loop system (20) is negative imaginary.

6. Illustrative examples

Three examples are provided in this section. The first example
demonstrates the application of the developed theory to a robust
stabilization problem. The conservatism of the results in the paper
is studied in the first example. The second example validates the
applicability of the results to MIMO systems. The third example
illustrates the design of structured controllers.

Example 1 (Robust Stabilization). Consider the uncertain system
in Petersen and Lanzon (2010); Song et al. (2012). A state-space
realization of the uncertain system is given by

ẋ(t) =


−1 0 0
1 −1 1
0 1 −1


x(t)+

0
0
1


w(t)+


−2
1
0


u(t),

z(t) =

0 1 0


x(t),

ŵ(s) = ∆(s)ẑ(s).

The system uncertainty is modelled by ∆(s) as an unknown
transfer function, which satisfies the strictly negative imaginary
property (Xiong et al., 2010). Furthermore, the uncertainty is
assumed to satisfy ∆(0) ≤ 1 and ∆(∞) ≥ 0. The readers are
referred to Petersen and Lanzon (2010); Song et al. (2012) for
further details about the example.

According to the stability result in negative imaginary systems
theory (that is, Theorem 1 in Xiong et al. (2010)), if the transfer
function (4) is negative imaginary and satisfies R(0) < 1 and
R(∞) = 0, then the uncertain closed-loop system in this example
is internally stable. In Petersen and Lanzon (2010); Song et al.
(2012), static state feedback controllers have been successfully
found to achieve robust stability of the uncertain system. Here, we
are interested in the design of static output feedback controllers to
achieve the same goal.

Suppose the measurement output of the system is given by

y(t) =

0 1 0
0 0 1


x(t).

Algorithm 1 is used to find the desired controller. To start
Algorithm 1, chooseQ (0)

= 0, γ (0)
= 100, ϵ(0)

= 100, βγ = 0.618,
βϵ = 0.618 and δ = 0.0001. After fifteen iterations, the algorithm
successfully found a set of feasible solutions to (7) and (8), which
was given by

Q =

−0.3909
−0.8451


, Y1 =


0.9345 1.9345
1.9345 6.0240


,

Y2 = 0.8451, M =

1.0000 2.7572


.
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Fig. 2. Nyquist plot of closed-loop system R(s).

The designed controller was given by

u(t) = MY−11 y(t) =

0.3658 0.3402


y(t).

With this controller, it can be verified that the transfer function
R(s) in (4) is negative imaginary, R(0) = 0.9345, and R(∞) = 0.
Therefore, the designed static output feedback controller robustly
stabilizes the uncertain plant. The Nyquist plot of R(s) is shown in
Fig. 2.

To gain insight into the conservatism of the design conditions
in Theorem 1, we firstly calculated out the exact region for the
controller parameters such that the transfer function R(s) in (4)
is both negative imaginary and R(0) < 1. Then we searched the
region around the Q given by Algorithm 1 to find as many control
gains as possible that satisfy the conditions in (7) and (8) and
R(0) < 1. The result is depicted in Fig. 3. The grey area is the
exact region found in theory, the dotted points are the control gains
found using Theorem 1. We might conclude from the figure that
the conservatism in Theorem 1 is not significant, at least for this
particular example.

Example 2 (MIMO Systems). Consider an MIMO system given by

ẋ(t) =


−1 0 0
1 −1 1
0 1 −1


x(t)+


−1 0
0 1
0 1


w(t)+

0
0
1


u(t),

z(t) =

−1 0 0
0 1 1


x(t),

y(t) =

1 −1 0
0 1 1


x(t).

Starting Algorithm 1 with the same setup as in Example 1, a set of
solutions was successfully found after one iteration. The designed
static output feedback controller is given by

u(t) =

−2.0000 −1.0809


y(t).

The resulting closed-loop system is negative imaginary, which can
be verified by Lemma 1.

Example 3 (Decentralized Control). Consider a system of the
form (1). The system data are borrowed from Rubió-Massegú et al.
(2013) and given by

A =


−4 0 −2 0 0
0 −2 0 2 0
0 0 −2 0 −1
0 −2 0 −1 0
3 0 −2 0 −1

 , B1 =


1
1
1
1
1

 ,
Fig. 3. Exact region of robust controller (grey area) and feasible points based on
Theorem 1.

B2 =


1 0 0
1 0 0
0 0 0
0 1 0
0 0 1

 ,

C1 =

0 1 0 0 0


, C2 =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1


.

Here, the system output equation (that is, C1) has been changed to
suit our model (1). In Rubió-Massegú et al. (2013), a decentralized
static output feedback controller was designed such that the
closed-loop system is stable and has a specified H∞ performance.
Here, we want to design a decentralized reduced-order dynamic
output feedback controller such that the closed-loop system is
negative imaginary. Applying Algorithm 1 with the same setup as
in Example 1, a desired controller of the form (10) was found after
two iterations. The controller matrices are given by

AF =


−0.5007 0 0

0 −0.9975 0
0 0 −0.5001


,

BF =

0.1062 0 0
0 −2.2445 0
0 0 0.0506


,

CF =


−0.0263 0 0

0 −0.3837 0
0 0 −0.0288


,

DF =

0.3570 0 0
0 2.0114 0
0 0 −2.9114


.

7. Conclusions

This paper studied the output feedback negative imaginary
synthesis problem. Sufficient conditions have been established for
static output feedback control design, dynamic output feedback
control design and observer-based control design, respectively.
For the design conditions, arbitrarily structural constraints can
be readily imposed on the designed controllers. The efficiency of
these conditions has been illustrated by three numerical examples.
The conservatism of the conditions has also been discussed. The
questions of how to extend the results of this paper to deal
with either systems with zero or infinite poles or systems with
parameter uncertainties are interesting areas for future research.
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