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a b s t r a c t

This paper is concerned with discrete-time negative imaginary (DT-NI) functions. First, a new definition
of DT-NI functions is introduced. Then, by means of the relations between discrete-time positive real and
DT-NI functions, two different versions of DT-NI lemmas are established to characterize the DT-NI
properties based on state-space realizations. Also, a necessary and sufficient condition is presented to
guarantee the internal stability of positive feedback interconnected DT-NI systems. Meanwhile, some
other properties of DT-NI functions are studied. Several numerical examples are presented to illustrate
the main results of this paper. Compared to the previous results, our results remove the symmetric
assumption in rational case.
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1. Introduction

The concept of positive real (PR) functions originated in net-
work theory (Anderson & Vongpanitlerd, 1973). PR systems
have obtained great achievements both in theory and in prac-
tice (Brogliato, Lozano, Maschke & Egeland 2007). One major
limitation of PR functions is that their relative degree must be
zero or one (Brogliato et al., 2007; Xiong, Petersen & Lanzon
2010). The theory of negative imaginary (NI) systems, who allowed
a maximum relative degree of two (Lanzon & Petersen, 2008;
Mabrok, Kallapur, Petersen & Lanzon 2014; Xiong et al., 2010),
has appeared as a useful complement to PR theory. Since the
NI theory was first proposed in Lanzon and Petersen (2008), a
bunch of extensive study has arisen from the theory of NI systems
to the application of NI theory, e.g., see Cai and Hagen (2010),
Liu and Xiong (2016b), Mabrok et al. (2014), Patra and Lanzon
(2011) and Petersen and Lanzon (2010). In particular, the internal
stability results of positive feedback interconnected systems with
NI response play an important role in engineering applications,
see Lanzon and Petersen (2008), Mabrok et al. (2014) and Xiong
et al. (2010).

It is noteworthy that all the present theory and applications of
NI systems focus on the study of continuous-time (CT) systems
except Ferrante, Lanzon & Ntogramatzidis (2014). In this paper,
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we are interested in presenting a similar development for discrete-
time (DT) real-rational proper systems without the symmetric re-
striction. One should realize that this work is important in practice
for the following reasons: (1) Almost all modern control schemes
are digital signals in nature (Jiang, 1993). To analyse the closed-
loop systems stability or properties of these control schemes, one
should discretize the systems via a suitable sampling with a zero-
order hold device (Jiang, 1993). This sample procedure leads to DT
systems. (2) Although the generalized concept of DT-NI functions
via z-domain has been proposed in Ferrante et al. (2014) to allow
the DT-NI functions to be non-rational, all the transfer function
matrices in Ferrante et al. (2014) are limited to be symmetric.

As is well-known, the bilinear transformation s =
z−1
z+1 maps

the open left half plane for CT systems to the open unit disc for
DT systems (Anderson, Hitz & Diem, 1974; Ober & Montgomery-
Smith, 1990). Under this bilinear transformation, a continuous-
time positive real (CT-PR) transfer function F (s) with F (∞) < ∞

is transformed into a discrete-time positive real (DT-PR) trans-
fer function F (z) with F (−1) < ∞ and vice versa (Anderson
et al., 1974; Hitz & Anderson, 1969). Also, the DT-PR lemma
in Hitz and Anderson (1969) was derived by using this transfor-
mation. Therefore, ourmain techniques to handle the properties of
DT-NI transfer functions in this paper are based on the bilinear
transformation. Much as the continuous-time negative imaginary
(CT-NI) systems can be defined in terms of their properties on the
purely imaginary axis, the DT-NI systems can be related to their
behaviours on the unit circle.

The contributions of this paper are as follows: (1) A new def-
inition for DT-NI transfer function matrices that may be non-
symmetric is introduced; (2) Under different assumptions, the
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relations between DT-PR and DT-NI functions are studied; (3) Two
different DT-NI lemmas are derived by removing the symmetric
assumption; (4) By checking the loop gain at z = 1 of the positive
feedback system, a necessary and sufficient condition is derived for
the internal stability of interconnected DT-NI systems. Compared
to the results in Ferrante et al. (2014), ourmain contribution in this
paper is that the real-rational transfer function matrix is allowed
to be non-symmetric, that also develops the results on the real-
rational DT-NI transfer function matrices. Meanwhile, a different
version of DT-NI lemma is provided.

The rest of the paper is organized as follows. Section 2 provides
the basic concept and some useful properties for DT-NI systems.
Section 3 states the new relations between DT-PR and DT-NI func-
tions. Two DT-NI lemmas are presented in Section 4. Section 5
presents the internal stability of positive feedback interconnected
systems. Section 6 concludes the paper.

Notation:Rm×n andRm×n denote the sets ofm×n realmatrices
and real-rational proper transfer function matrices, respectively.
AT , A∗ and Ā denote the transpose, the complex conjugate trans-
pose and the complex conjugate of a complex matrix A, respec-
tively. λ̄ denotes the maximum eigenvalue for a square complex
matrix with only real eigenvalues. A > (≥)0 denotes a symmetric
positive (semi-)definite matrix. I denotes any identity matrix with
compatible dimensions.

2. Discrete-time negative imaginary transfer functions

In this section, a new definition of DT-NI transfer function
matrices is proposed, and some useful properties of such functions
are studied.

Lemma 1 (Hitz and Anderson, 1969). A square matrix F (z) whose
elements are real-rational functions analytic in |z| > 1 is DT-PR if,
and only if, it satisfies all the following conditions

(1) poles of elements of F (z) on |z| = 1 are simple;
(2) F∗(ejθ ) + F (ejθ ) ≥ 0 for all real θ at which F (ejθ ) exists;
(3) if z0 = ejθ0 , θ0 is real, is a pole of an element of F (z), and if K0

is the residue matrix of F (z) at z0, then the matrix e−jθ0K0 is a
nonnegative definite Hermitian.

Remark 1. Conditions 1–3 of Lemma 1 can be replaced by (a)
F∗(ejθ ) + F (ejθ ) ≥ 0 for all θ ∈ [0, 2π ], with ejθ not a pole of any
element of F (z); (b) If z0 = ejθ0 , θ0 ∈ [0, 2π ], is a pole of an element
of F (z), then it is a simple pole (that is the poles of F (z) on the unit
circle, | z | = 1, are simple), and the corresponding residue matrix
K0 = limz→z0 (z − z0)F (z) satisfies that e−jθ0K0 is a nonnegative
definite Hermitian.

By analogy with the CT case, we now present a new definition
of DT-NI transfer function matrices.

Definition 1. A square real-rational proper transfer function ma-
trix G(z) is called DT-NI if

(1) G(z) has no poles in |z| > 1;
(2) j[G(ejθ ) − G∗(ejθ )] ≥ 0 for all θ ∈ (0, π ) except values of θ

where ejθ is a pole of G(z);
(3) if z0 = ejθ0 , θ ∈ (0, π ), is a pole of G(z), then it is a simple

pole and the corresponding residue matrix K = limz→z0 (z −

z0)jG(z) satisfies that e−jθ0K is a positive semidefinite Hermi-
tian;

(4) if z = 1 is a pole of G(z), then limz→1(z −1)2G(z) is a positive
semidefinite Hermitian, and limz→1(z − 1)mG(z) = 0 for all
m ≥ 3;

(5) if z = −1 is a pole of G(z), then limz→−1(z + 1)2G(z) is a
negative semidefinite Hermitian, and limz→−1(z+1)mG(z) =

0 for allm ≥ 3.

In order to analyse the properties of DT-NI systems, we define
the following matrices for a given DT-NI transfer function matrix
G(z):

A2 = lim
z→1

(z − 1)2G(z), A1 = lim
z→1

(z − 1)
(
G(z) −

A2

(z − 1)2

)
,

C2 = lim
z→−1

(z + 1)2G(z), C1 = lim
z→−1

(z + 1)
(
G(z) −

C2

(z + 1)2

)
.

According to Conditions 4 and 5 in Definition 1, A2 = A∗

2 ≥ 0 and
C2 = C∗

2 ≤ 0.

Remark 2. When G(z) is real-rational non-proper, it means that
G(z) has poles in |z| > 1, which does not satisfy Condition 1 of
Definition 1. So, the present definition of DT-NI functions focuses
on the proper function. For example, consider G(z) = z. G(z) has a
simple pole in |z| > 1 and j[G(ejθ )−G∗(ejθ )] = −2 sin θ ≤ 0 for all
θ ∈ (0, π ), which imply G(z) is not DT-NI.

Remark 3. The difference between Ferrante et al. (2014, Lemma
11) and Definition 1 in this paper is that the transfer function
matrices in Ferrante et al. (2014) are restricted to be symmetric,
so that it requires that A1 ≥ A2 and C1 ≥ −C2 in Ferrante et al.
(2014, Lemma 11), while Definition 1 in this paper does not have
those restrictions.

Two useful lemmas are given as follows.

Lemma 2 (Xiong et al., 2010). If A = A∗
≥ 0, then Ā = Ā∗

≥ 0.

Lemma 3 (Liu and Xiong, 2016a). A CT-NI transfer function matrix
G(s) transforms into a DT-NI transfer function matrix G(z) by the
bilinear transformation s =

z−1
z+1 . Conversely, a DT-NI transfer function

matrix G(z) transforms into a CT-NI transfer function matrix G(s) by
the bilinear transformation z =

1+s
1−s .

Then, we have the following result, which states one important
property of DT-NI systems.

Lemma 4. Given a square real-rational proper DT-NI transfer func-
tion matrix G(z). Then, A1 + AT

1 ≥ 0, and C1 + CT
1 ≥ 0 hold.

Proof. Since G(z) is DT-NI, it follows that G(z) has at most a double
pole at 1 and −1. When G(z) has no poles at 1 and −1, one has that
A1 = 0 and C1 = 0, and hence A1 + AT

1 = 0, and C1 + CT
1 = 0.

Now, consider the case when G(z) has poles at 1. Similar to the
minor decomposition theory of CT case, we can write G(z) in the
form

G(z) = G1(z) +
A1

z − 1
+

A2

(z − 1)2
, (1)

where G1(z) has no poles at 1. Bymeans of the bilinear transforma-
tion

s =
z − 1
z + 1

, z =
1 + s
1 − s

, (2)

Eq. (1) transforms into

G(s) = G1

(
1 + s
1 − s

)
+

A1
1+s
1−s − 1

+
A2

( 1+s
1−s − 1)2

= G1

(
1 + s
1 − s

)
−

A1

2
+

A2

4
+

A1 − A2

2s
+

A2

4s2
,

where G1( 1+s
1−s ) −

A1
2 +

A2
4 has no poles at s = 0. It follows from

Lemma 3 that G(s) is CT-NI. z = 1 is a pole of G(z) iff s = 0 is a pole
of G(s). According to Lemma 3 inMabrok et al. (2014) and Lemma 2
in Liu and Xiong (2016b), we have A1−A2

2 + ( A1−A2
2 )T ≥ 0. It follows

that A1 + AT
1 ≥ A2 + AT

2 ≥ 0, that is A1 + AT
1 ≥ 0.
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Next, consider the case when G(z) has poles at −1. z = −1 is a
pole of G(z) iff s = ∞ is a pole of G(s). Decompose G(z) to the form

G(z) = G1(z) +
C1

z + 1
+

C2

(z + 1)2
, (3)

where G1(z) has no poles at−1. Similarly, using the same transfor-
mation as in (2), Eq. (3) transforms into a CT-NI transfer function
matrix

G(s) = G1

(
1 + s
1 − s

)
+

C1
1+s
1−s + 1

+
C2

( 1+s
1−s + 1)2

= G1

(
1 + s
1 − s

)
+

C1

2
+

C2

4
+

−C1 − C2

2
s +

C2

4
s2,

whereG1( 1+s
1−s )+

C1
2 +

C2
4 has nopoles at s = ∞. According to Lemma

2 in Liu and Xiong (2016b), we have (− C1+C2
2 ) + (− C1+C2

2 )T ≤ 0. It
follows that C1 +CT

1 ≥ −(C2 +CT
2 ) ≥ 0, and hence C1 +CT

1 ≥ 0. □

Remark 4. When G(z) is symmetric, A1−A2
2 ≥ 0 and −C1−C2

2 ≤ 0 in
view of Conditions 4 and 5 in Ferrante et al. (2014, Lemma 3), that
is, A1 ≥ A2 and C1 ≥ −C2, which coincide with Conditions 4 and 5
in Ferrante et al. (2014, Lemma 11).

We now present the definition of discrete-time strictly negative
imaginary (DT-SNI) transfer functions.

Definition 2. A square real-rational proper transfer function ma-
trix G(z) is called DT-SNI if

(1) G(z) has no poles in |z| ≥ 1;
(2) j[G(ejθ ) − G∗(ejθ )] > 0 for all θ ∈ (0, π ).

The following two lemmas state two useful properties of DT-
(S)NI transfer function matrices, respectively.

Lemma5. A square real-rational proper transfer functionmatrix G(z)
with no poles at −1 is DT-(S)NI if and only if G(−1) = GT (−1) and
Ĝ(z) = G(z) − G(−1) is DT-(S)NI.

Proof. (Necessity) Suppose G(z) is DT-(S)NI (SNI is also NI). It
follows from Condition 2 in Definition 1 that limθ→π j[G(ejθ ) −

G(ejθ )] ≥ 0, that is j[G(−1) − GT (−1)] ≥ 0. According to Lemma 2,
one obtains that j[G(−1) − GT (−1)] ≥ 0, that is j[G(−1) −

GT (−1)] ≤ 0. Thus, we have G(−1) = GT (−1), and hence j[Ĝ(ejθ )−
Ĝ∗(ejθ )] = j[G(ejθ ) − G∗(ejθ )] ≥ (>)0 for all θ with ejθ not a pole of
G(z), and e−jθ0 limz→ejθ0 (z−ejθ0 )jĜ(z) = e−jθ0 limz→ejθ0 (z−ejθ0 )jG(z)
is a positive semidefinite Hermitian for all θ0 ∈ (0, π ) with ejθ0
being a pole ofG(z). Furthermore, limz→1(z−1)mĜ(z) = limz→1(z−
1)mG(z) for all m ≥ 2. Also, Ĝ(z) has no poles in |z| > (≥)1
since G(z) has no poles in |z| > (≥)1. So, according to Definition 1
(Definition 2), Ĝ(z) is DT-(S)NI.

(Sufficiency) G(z) = Ĝ(z) + G(−1), and the sufficient part
follows as a similar fashion to the necessity part. □

Lemma 6. A square real-rational proper transfer function matrix
G(z) with no poles at 1 is DT-(S)NI if and only if G(1) = GT (1) and
G(z) − G(1) is DT-(S)NI.

Proof. Suppose G(z) is DT-NI. It follows from Condition 2 of Defini-
tion 1 that limθ→0j[G(ejθ )−G∗(ejθ )] ≥ 0, that is j[G(1)−GT (1)] ≥ 0.
Then, it follows from Lemma 2 that j[G(1) − GT (1)] ≤ 0. Thus, we
have G(1) = GT (1). The rest of the proof and the Sufficiency proof
are similar to that of Lemma 5. □

The following lemma will be used to derive the DT-NI lemma.

Lemma 7. Let (A, B, C,D) be a minimal state-space realization of a
square real-rational proper DT transfer function matrix G(z). Suppose
G(z) has no poles at −1 and 1. Then

(1) F (z) =
z−1
z+1 (G(z) − G(−1))

∼
(

A B
C(A − I)(A + I)−1) C(A + I)−1B

)
is a minimal state-

space realization;
(2) F (z) =

1+z
1−z (G(z) − G(1))

∼
(

A B
C(I − A)−1(I + A)) C(I − A)−1B

)
is a minimal state-

space realization.

Proof. The proof of Part 1 can be found in the proof of Ferrante et
al. (2014, Lemma 17); details are omitted here.

The proof of Part 2: A realization of G(z) − G(1) is given
by (A, B, C, −C(I − A)−1B), and a realization of 1+z

1−z I is given
by (I, I, −2I, −I). Then, a realization of F (z) =

1+z
1−z (G(z) −

G(1)) is given by

⎛⎝ I C −C(I − A)−1B
0 A B

−2I −C C(I − A)−1B

⎞⎠. Change the

state representation via a similarity transformation, and let P =(
I C(I − A)−1

0 I

)
, we obtain the equivalent system representation

F (z) ∼

⎛⎝ I 0 0
0 A B

−2I 2C(I − A)−1
− C C(I − A)−1B

⎞⎠ , (4)

where 2C(I − A)−1
− C = C(I − A)−1(I + A). Then, the system in

(4) has a transfer function matrix F (z) = C(I − A)−1(I + A)(zI −

A)−1B + C(I − A)−1B. One obtains the following realization

F (z) ∼
(

A B
C(I − A)−1(I + A) C(I − A)−1B

)
. (5)

Because (A, B, C,D) is a minimal realization, one has that (A, B)
is controllable and (A, C) is observable. Note that A(I − A)−1

=

(A − I)−1A = (I − A)−1
− I , An(I − A)−1

= (A − I)−1An and
(I − A)−1(I + A) = [2(I − A)−1

− I]. Then, the observability of
(A, C) implies that⎛⎜⎜⎜⎝

C(I − A)−1(I + A)
C(I − A)−1(I + A)A

...

C(I − A)−1(I + A)An−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
2C(I − A)−1

− C
2CA(I − A)−1

− CA
...

2CAn−1(I − A)−1
− CAn−1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎝
C
CA
...

CAn−1

⎞⎟⎟⎠ [2(I − A)−1
− I] =

⎛⎜⎜⎝
C
CA
...

CAn−1

⎞⎟⎟⎠ [(I − A)−1(I + A)]

is of full column rank as [(I−A)−1(I+A)] is nonsingular. Therefore,
the state-space realization in (5) is minimal. □

The following lemma characterizes the DT-NI functions in z-
domain. This lemma could be considered as the DT counterpart of
Lemma 7 in Liu and Xiong (2016b).

Lemma 8. Let G(z) be a square real-rational proper DT transfer
function matrix. Then, G(z) is DT-NI and symmetric if and only if

(1) G(z) has no poles in |z| > 1;
(2) j[G(z) − G∗(z)] ≥ 0 for all |z| > 1 and Im[z] > 0.

Proof. (Necessity) It follows from Definition 9 in Ferrante et al.
(2014) that Conditions 1 and 2 are satisfied.

(Sufficiency) According to Lemma 10 in Ferrante et al. (2014), if
G(z) satisfies Conditions 1 and 2, then Conditions 3 and 4 of Defini-
tion 9 in Ferrante et al. (2014) hold. Under the assumption thatG(z)
is a real-rational transfer function matrix, Condition 3 in Ferrante
et al. (2014, Definition 9) implies that G(z) is symmetric. So G(z) is
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DT-NI and symmetric according to Definition 9 in Ferrante et al.
(2014). □

3. Relations between DT-PR and DT-NI functions

This section presents two results that establish the relations
between DT-PR and DT-NI functions under different assumptions.
The first lemma can be seen as an extension of Lemma 16 in
Ferrante et al. (2014) by removing the symmetric assumption.

Lemma 9. Given a DT transfer matrix G(z) ∈ Rm×m. Suppose G(z)
has no poles at −1. Then, G(z) is DT-NI if and only if

(1) G(−1) = G(−1)T ;
(2) F (z) =

z−1
z+1 (G(z) − G(−1)) is DT-PR.

Proof. (Necessity) Suppose G(z) is DT-NI. It follows from Lemma 5
that G(−1) = GT (−1). Note that G(z) and F (z) have the same set
of poles except at z = 1. Condition 1 of Definition 1 implies that
F (z) is analytic in |z| > 1. When ejθ , θ ∈ (0, π ), is not a pole
of G(z) and F (z), Condition 2 of Definition 1 implies that F (ejθ ) +

F∗(ejθ ) =
[ j sin θ

1+cos θ
(G(ejθ )−G(−1))

]
+
[

−j sin θ

1+cos θ
(G∗(ejθ )−GT (−1))

]
=

j sin θ
1+cos θ

[G(ejθ ) − GT (ejθ )] ≥ 0.
If G(z) has no poles at 1 (θ = 0), then F (z) has no poles at 1

and F (1) = 0. As a result, F (1) + F T (1) = 0. If G(z) has a simple
pole at 1, then F (z) has no poles at 1. Let G(z) =

A1
z−1 + G1(z),

where A1 + AT
1 ≥ 0 and G1(z) is analytic in |z| > 1 and at

z = ±1. Then, F (z) =
A1
z+1 +

z−1
z+1G1(z) −

z−1
z+1G(−1). It follows that

F (1)+F T (1) =
A1+AT1

2 ≥ 0. Therefore, F (ejθ )+F∗(ejθ ) ≥ 0 for all θ ∈

[0, π ) with ejθ not a pole of F (z). According to Lemma 2, we have
F (ejθ ) + F∗(ejθ ) ≥ 0 for all θ ∈ [0, π ). That is F (ejθ )+F∗(ejθ ) ≥ 0 for
all θ ∈ (−π, 0] with ejθ not a pole of F (z). Note that G(z) − G(−1)
has a blocking zero at−1. So F (z) has no poles at−1 (θ = ±π ), and
F (−1)+F∗(−1) ≥ 0 in view of the continuity of F (z). Furthermore,
θ ∈ [0, π] ∪ [−π, 0] is equal to θ ∈ [0, 2π ]. Hence, it follows that
F (ejθ ) + F∗(ejθ ) ≥ 0 for all θ ∈ [0, 2π ] with ejθ not a pole of F (z).

If G(z) has a double pole at 1, then F (z) has a simple pole at
1. Let G(z) =

A2
(z−1)2

+
A1
z−1 + G1(z), where A2 = A∗

2 ≥ 0,
A1 + AT

1 ≥ 0, and G1(z) is analytic in |z| > 1 and at z = ±1.
Then, F (z) =

A2
(z−1)(z+1) +

A1
z+1 +

z−1
z+1G1(z) − z−1

z+1G(−1). The residue
matrix of F (z) at 1 given by K0 = limz→1(z − 1)F (z) =

A2
2 is a

positive semidefinite Hermitian. Also, the matrix e−jθK0|θ=0 =
A2
2

is a positive semidefinite Hermitian.
If z0 = ejθ0 , θ0 ∈ (0, π ), is a pole of G(z), then e±jθ0 , θ0 ∈ (0, π ),

are simple poles of G(z) and F (z). In this case, G(z) can be factored
as G(z) =

1
(z−ejθ0 )(z−e−jθ0 )

G1(z). The residue matrix of G(z) at ejθ0

is given by K = limz→ejθ0 (z − ejθ0 )jG(z) =
1

2 sin θ0
G1(ejθ0 ). Then,

Condition 3 of Definition 1 implies that e−jθ0K =
e−jθ0
2 sin θ0

G1(ejθ0 ) is a
positive semidefinite Hermitian. This implies that e−jθ0G1(ejθ0 ) =

ejθ0G∗

1(e
jθ0 ) ≥ 0. In view of Lemma 2, we have e−jθ0G1(ejθ0 ) =

ejθ0G∗

1(ejθ0 ) ≥ 0, that is, ejθ0G1(e−jθ0 ) = e−jθ0G∗

1(e
−jθ0 ) ≥ 0. Now,

the residue matrix of F (z) at ejθ0 is given by

K0 = lim
z→ejθ0

(z − ejθ0 )
z − 1
z + 1

[
G1(z)

(z − ejθ0 )(z − e−jθ0 )
− G(−1)

]
=

sin θ0

1 + cos θ0
lim

z→ejθ0

j
(z − e−jθ0 )

G1(z) =
1

2(1 + cos θ0)
G1(ejθ0 ).

Then, the matrix e−jθ0K0 =
e−jθ0

2(1+cos θ0)
G1(ejθ0 ) is a positive semidefi-

nite Hermitian. Also, the residue of F (z) at e−jθ0 is given by

K0 = lim
z→e−jθ0

(z − e−jθ0 )
z − 1
z + 1

[
G1(z)

(z − ejθ0 )(z − e−jθ0 )
− G(−1)

]
=

− sin θ0

1 + cos θ0
lim

z→e−jθ0

j
(z − ejθ0 )

G1(z) =
1

2(1 + cos θ0)
G1(e−jθ0 ).

Then, the matrix ejθ0K0 =
ejθ0G1(e−jθ0 )
2(1+cos θ0)

is also a positive semidefinite
Hermitian. Thus, according to Lemma 1, F (z) is DT-PR.

(Sufficiency) Suppose F (z) is DT-PR and G(−1) = GT (−1). We
have G(z) =

z+1
z−1F (z) + G(−1), and Condition 1 of Definition 1

is immediate. Condition 2 of Lemma 1 implies that j[G(ejθ ) −

G∗(ejθ )] = j
[ ejθ +1
ejθ −1

F (ejθ ) + G(−1) −
e−jθ

+1
e−jθ −1

F∗(ejθ ) − GT (−1)
]

=

j
[

− sin θ j
1−cos θ

F (ejθ ) −
sin θ j

1−cos θ
F∗(ejθ )

]
=

sin θ
1−cos θ

[F (ejθ ) + F∗(ejθ )] ≥ 0 for
all θ ∈ (0, π ) with ejθ not a pole of G(z).

If z0 = ejθ0 , θ0 ∈ (0, π ), is a pole of F (z), then z0 = ejθ0
is also a pole of G(z). The residue matrix of G(z) at z0 is given
by K = limz→z0 (z − z0)jG(z) = limz→z0 (z − z0)j[ z+1

z−1F (z) +

G(−1)] = limz→z0
sin θ0

1−cos θ0
(z − z0)F (z). Then, the matrix e−jθ0K =

sin θ0
1−cos θ0

e−jθ0 limz→z0 (z−z0)F (z) is a positive semidefinite Hermitian
in view of Condition 3 in Lemma 1.

If F (z) has no poles at 1 and F (1) = 0, then G(z) has no poles
at 1. If F (z) has no poles at 1 but F (1) ̸= 0, then G(z) has a
simple pole at 1. The residue matrix of G(z) at 1 is given by A1 =

limz→1(z − 1)G(z) = 2F (1), which satisfies A1 + AT
1 ≥ 0, because

F (z) is real-rational PR. If F (z) has a simple pole at 1, then G(z)
has a double pole at 1, and the residue matrix of G(z) at 1 is given
by limz→1(z − 1)2G(z) = limz→1(z − 1)2

[ z+1
z−1F (z) + G(−1)

]
=

2limz→1(z − 1)F (z), which is a positive semidefinite Hermitian in
view of Condition 3 in Lemma 1. Thus, according to Definition 1,
G(z) is DT-NI. □

Remark 5. The differences between Lemma 9 in this paper and
Lemma 16 in Ferrante et al. (2014) are twofold: (1) G(z) in this
paper is allowed to be non-symmetric while G(z) in Ferrante
et al. (2014) is required to be symmetric; (2) the condition of
G(∞) = GT (∞) in Ferrante et al. (2014, Lemma 16) is replaced by
G(−1) = G(−1)T in this paper. When G(z) is symmetric, Condition
1 in Lemma 9 is redundant, because G(−1) = G(−1)T can be
directly derived by the symmetric assumption.

Example 1. As an illustration of Lemma 9, consider the non-

symmetric transfer function matrix G(z) =

⎛⎜⎝ (z + 1)2

2(z2 + 1)
1 − z2

2(z2 + 1)
z2 − 1

2(z2 + 1)
(z + 1)2

2(z2 + 1)

⎞⎟⎠.

j[G(ejθ ) − G∗(ejθ )] = 0 for all θ ∈ (0, π ) with ejθ not a pole
of G(z). The residue matrix of G(z) at z = ej

π
2 = j is given

by K =

( 1
2
j

1
2

−
1
2

1
2
j

)
, and the matrix e−j π2 K = −jK =

( 1
2

−
1
2
j

1
2
j

1
2

)
is a positive semidefinite Hermitian. So, according to Definition 1,
G(z) is DT-NI. Then, a calculation shows that G(−1) = GT (−1) and

F (z) =
z−1
z+1 [G(z) − G(−1)] =

⎛⎜⎝ z2 − 1
2(z2 + 1)

−(z − 1)2

2(z2 + 1)
(z − 1)2

2(z2 + 1)
z2 − 1

2(z2 + 1)

⎞⎟⎠ satisfying all

the conditions in Lemma 1. Hence, it can be seen that G(z) is DT-NI
if and only if G(−1) = GT (−1) and F (z) is DT-PR. This verifies the
results in Lemma 9.

Under the assumption that G(z) has no poles at z = 1, the
following lemma gives a different relation between DT-PR and DT-
NI transfer functions.

Lemma 10. Given a DT transfer matrix G(z) ∈ Rm×m. Suppose G(z)
has no poles at 1. Then, G(z) is DT-NI if and only if
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(1) G(1) = G(1)T ;
(2) F (z) =

1+z
1−z (G(z) − G(1)) is DT-PR.

Proof. (Necessity) Suppose G(z) is DT-NI. It follows from Lemma 6
that G(1) = GT (1). Note that G(z) and F (z) have the same set of
poles except at z = −1. So, F (z) is analytic in |z| > 1 according
to Condition 1 of Definition 1. When ejθ , θ ∈ (0, π ), is not a pole
of G(z) and F (z), Condition 2 of Definition 1 implies that F (ejθ ) +

F∗(ejθ ) =
[ j sin θ

1−cos θ
(G(ejθ ) − G(1))

]
+
[

−j sin θ

1−cos θ
(G∗(ejθ ) − GT (1))

]
=

j sin θ
1−cos θ

[G(ejθ ) − G∗(ejθ )] ≥ 0.
If G(z) has no poles at −1 (θ = π ), then F (z) has no poles at

−1 and F (−1) + F T (−1) = 0. If G(z) has a simple pole at −1,
then F (z) has also no poles at −1. Let G(z) =

C1
z+1 + G1(z), where

C1 + CT
1 ≥ 0 and G1(z) is analytic in |z| > 1 and at z = ±1. Then,

F (z) =
C1
1−z +

1+z
1−zG1(z)− 1+z

1−zG(1). It follows that F (−1)+F T (−1) =

C1+CT
1

2 ≥ 0. Therefore, F (ejθ )+ F∗(ejθ ) ≥ 0 for all θ ∈ (0, π]with ejθ

not a pole of F (z). It follows from Lemma 2 that F (ejθ )+F∗(ejθ ) ≥ 0
for all θ ∈ [−π, 0) with ejθ not a pole of F (z). Note that G(z)−G(1)
has a blocking zero at 1. So F (z) has no poles at 1 (θ = 0), and
F (1) + F∗(1) ≥ 0 in view of the continuity of F (z). Furthermore,
θ ∈ [0, π] ∪ [−π, 0] is equal to θ ∈ [0, 2π ]. Hence, we have that
F (ejθ ) + F∗(ejθ ) ≥ 0 for all θ ∈ [0, 2π ] with ejθ not a pole of F (z).

IfG(z) has a double pole at−1, then F (z) has a simple pole at−1.
Let G(z) =

C2
(z+1)2

+
C1
z+1 + G1(z), where C2 = C∗

2 ≤ 0, C1 + CT
1 ≥ 0,

and G1(z) is analytic in |z| > 1 and at z = ±1. Then, F (z) =
C2

(1−z)(z+1) +
C1
1−z +

1+z
1−zG1(z)− 1+z

1−zG(1). The residuematrix of F (z) at
−1 is given by K0 = limz→−1(z + 1)F (z) =

C2
2 , which is a negative

semidefinite Hermitian. Then, the matrix e−jθK0|θ=π = −
C2
2 is a

positive semidefinite Hermitian.
If z0 = ejθ0 , θ0 ∈ (0, π ), is a pole of G(z) and F (z), then e−jθ0 ,

θ0 ∈ (0, π ), is also a pole of F (z) and G(z). Let K be the residue
matrix of G(z) at z0. Then, the residue matrix of F (z) at z0 is given
by

K0 = lim
z→z0

(z − z0)F (z) = lim
z→z0

(z − z0)
1 + z
1 − z

(G(z) − G(1))

=
sin θ0

1 − cos θ0
lim
z→z0

(z − z0)jG(z) =
sin θ0

1 − cos θ0
K .

This implies that the matrix e−jθ0K0 =
sin θ0

1−cos θ0
e−jθ0K is a positive

semidefinite Hermitian in view of Condition 3 in Definition 1.
Using the similar argument as in the proof of Lemma 9, it can
be shown that the residue matrix of F (z) at e−jθ0 , θ0 ∈ (0, π ),
is the complex conjugate of the residue matrix of F (z) at z0. The
matrix ejθ0 limz→e−jθ0 (z − e−jθ0 )F (z) is also a positive semidefinite
Hermitian. Thus, according to Lemma 1, F (z) is DT-PR.

(Sufficiency) Suppose F (z) is DT-PR and G(1) = GT (1). We have
G(z) =

1−z
1+z F (z) + G(1), and Condition 1 of Definition 1 is imme-

diate. Condition 2 of Lemma 1 implies that j[G(ejθ ) − G∗(ejθ )] =

j
[

− sin θ j
1+cos θ

F (ejθ ) −
sin θ j

1+cos θ
F∗(ejθ )

]
=

sin θ
1+cos θ

[F (ejθ ) + F∗(ejθ )] ≥ 0 for
all θ ∈ (0, π ) with ejθ not a pole of G(z).

If z0 = ejθ0 , θ0 ∈ (0, π ), is a pole of F (z) and G(z), then the
residue matrix of G(z) at z0 is given by K = limz→z0 (z − z0)jG(z) =

limz→z0 (z − z0)j[ 1−z
1+z F (z)+G(−1)] = limz→z0

sin θ0
1+cos θ0

(z − z0)F (z) =

sin θ0
1+cos θ0

K0, where K0 is the residue matrix of F (z) at z0. Hence, the
matrix e−jθ0K =

sin θ0
1+cos θ0

e−jθ0K0 is a positive semidefiniteHermitian
in view of Condition 3 of Lemma 1.

If F (z) has no poles at−1 and F (−1) = 0, then G(z) has no poles
at −1. If F (z) has no poles at −1 but F (−1) ̸= 0, then G(z) has
a simple pole at −1. The residue matrix of G(z) at −1 is given by
C1 = limz→−1(z + 1)G(z) = 2F (−1). Since F (z) is a real-rational
DT-PR, it follows that C1+CT

1 = 2[F (−1)+F T (−1)] ≥ 0. If F (z) has
a simple pole at −1, then G(z) has a double pole at −1. The residue
matrix of G(z) at −1 is given by limz→−1(z + 1)2G(z) = limz→−1

(z+1)2
[ 1−z
1+z F (z)+G(1)

]
= 2limz→−1(z+1)F (z), which is a negative

semidefinite Hermitian in view of Condition 3 in Lemma 1. Thus,
according to Definition 1, G(z) is DT-NI. □

Remark 6. The difference between Lemmas 10 and 9 is that G(z)
in Lemma 10 is allowed to have poles at −1 but no poles at 1,
while G(z) in Lemma 9 is allowed to have poles at 1 but no poles
at −1. Similar to Remark 5, when G(z) is symmetric, Condition 1 in
Lemma 10 is redundant as G(1) = GT (1) can be directly derived via
the symmetric assumption.

Example 2. As an application of Lemma 10, consider G(z) =
1+z
1+3z .

We can say that G(z) is DT-NI if and only if F (z) =
1+z
1−z [G(z) −

G(1)] =
1+z

2(1+3z) is DT-PR. A calculation shows that F (z) and G(z)
satisfy all the conditions in Lemma 1 and Definition 1, respectively.

4. Discrete-time negative imaginary lemma

In this section, two DT-NI lemmas are developed to give an
algebraic characterization of linear DT-NI transfer functions.

Lemma 11. Let (A, B, C,D) be a minimal state-space realization of a
transfer matrix G(z) ∈ Rm×m, where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n,
D ∈ Rm×m, and m ≤ n. Suppose det(I + A) ̸= 0 and det(I − A) ̸= 0.
Then, G(z) is DT-NI if and only if

(1) C(I + A)−1B − D = BT (I + AT )−1CT
− DT ;

(2) There exists a matrix Y = Y T > 0, Y ∈ Rn×n, such that

Y − ATYA ≥ 0 and C = BT (I − AT )−1Y (I + A). (6)

Proof. The proof follows along the following equivalences.
G(z) ∼ (A, B, C,D) is DT-NI.
⇔ G(−1) = GT (−1), and F (z) =

z−1
z+1 (G(z) − G(−1)) is DT-PR

(see Lemma 9).
⇔ C(I + A)−1B − D = BT (I + AT )−1CT

− DT , and

F (z) ∽

(
A B

C(A − I)(A + I)−1) C(A + I)−1B

)
is DT-PR (via

Lemma 7).
⇔ C(I + A)−1B − D = BT (I + AT )−1CT

− DT , and there exist
matrices Y = Y T > 0, Q , W such that

Y − ATYA = Q TQ

(AT
+ I)−1(AT

− I)CT
− ATYB = Q TW

C(A + I)−1B + BT (I + AT )−1CT
− BTYB = W TW .

This equivalence is according to the DT-PR lemma in Hitz and
Anderson (1969). The rest of the proof follows along similar lines
of the proof of Ferrante et al. (2014, Theor.7). □

For DT-SNI transfer function matrices, we have the following
property.

Corollary 1. Let (A, B, C,D) be a minimal state-space realization of
a DT-SNI transfer matrix G(z) ∈ Rm×m, where A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rm×n, D ∈ Rm×m, and m ≤ n. Then, rank(B) = rank(C) = m.

Proof. Weknow that rank(B) ≤ m asm ≤ n. Suppose rank(B) < m.
Then, there exists a nonzero vector x ∈ Rm such that Bx = 0.
Therefore, x∗j[G(ejθ )−G∗(jθ )]x = jxTC(ejθ − A)−1Bx− jxTBT (e−jθ

−

AT )−1CT x = 0, for any θ ∈ (0, π ). This contradicts condition
2 of Definition 2. Thus, it can be concluded that the only case is
rank(B) = m. Similarly, we have rank(C) = m. □

The following corollary relates the gain at z = 1 and the gain at
z = −1 for DT-NI and DT-SNI transfer function matrices.
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Corollary 2.

(1) Given a DT-NI transfer function matrix G(z). Then, G(1) −

G(−1) ≥ 0.
(2) Given a DT-SNI transfer function matrix G(z). Then, G(1) −

G(−1) > 0.

Proof. The proof of Part one is the same as the proof of Lemma 18
in Ferrante et al. (2014).

The proof of Part two: According to Lemma 5, if G(z) is DT-
SNI, then Ĝ(z) = G(z) − G(−1) is DT-SNI. Let (A, B, C,D) be a
minimal realization of G(z). Applying Lemma 11 and Lemma 18
in Ferrante et al. (2014), we obtain that Ĝ(1) = G(1) − G(−1) =

2BT (I − A)−TY (I − A)−1B ≥ 0. Suppose there exists an x ∈ Rn×n

such that 2BT (I−A)−TY (I−A)−1Bx = 0, which implies that Bx = 0
as (I − A)−TY (I − A)−1 > 0. It follows from Corollary 1 that B is
of full column rank. Thus, the only case such that Bx = 0 is x = 0,
which implies that BT (I−A)−TY (I−A)−1B is nonsingular. Therefore,
G(1) − G(−1) > 0. □

The following lemma gives a new version of DT-NI lemma
according to Lemma 10.

Lemma 12. Let (A, B, C,D) be a minimal state-space realization of a
transfer matrix G(z) ∈ Rm×m, where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n,
D ∈ Rm×m, and m ≤ n. Suppose det(I + A) ̸= 0 and det(I − A) ̸= 0.
Then, G(z) is DT-NI if and only if

(1) C(I − A)−1B + D = BT (I − AT )−1CT
+ DT ;

(2) There exists a matrix Y = Y T > 0, Y ∈ Rn×n, such that

Y − ATYA ≥ 0 and C = BT (I + AT )−1Y (I − A). (7)

Proof. The equivalence follows along the following sequence of
equivalent reformulations.

G(z) ∼ (A, B, C,D) is DT-NI.
⇔ G(1) = GT (1), and F (z) =

1+z
1−z (G(z) − G(1)) is DT-PR (see

Lemma 10).
⇔ C(I − A)−1B + D = BT (I − AT )−1CT

+ DT , and F (z) ∽(
A B

C(I − A)−1(I + A)) C(I − A)−1B

)
is DT-PR (see Lemma 7).

⇔ C(I − A)−1B + D = BT (I − AT )−1CT
+ DT , and there exist

matrices Y = Y T > 0, Q ,W such that

Y − ATYA = Q TQ

(AT
+ I)(I − AT )−1CT

− ATYB = Q TW

C(I − A)−1B + BT (I − AT )−1CT
− BTYB = W TW .

This equivalence is via the DT-PR lemma in Hitz and Anderson
(1969).

⇔ C(I − A)−1B + D = BT (I − AT )−1CT
+ DT , and there exist

matrices Y = Y T > 0, Q ,W such that

Y − ATYA = Q TQ (8)

C = (W TQ + BTYA)(I + A)−1(I − A) (9)

BTYB − BTY (A + I)−1B − BT (AT
+ I)−1YB

+ BT (I + AT )−1Q TQ (I + A)−1B

= [W − Q (I + A)−1B]T [W − Q (I + A)−1B]. (10)

⇔ C(I−A)−1B+D = BT (I−AT )−1CT
+DT , and there exist matrices

Y = Y T > 0, Q , W such that (8)–(9) hold and W = Q (I + A)−1B
(the left of equality (10) is equal to zero).

⇔ C(I − A)−1B + D = BT (I − AT )−1CT
+ DT , and there exist

matrices Y = Y T > 0, Q such that Y − ATYA = Q TQ and
C = [BT (I + AT )−1Q TQ + BTYA](I + A)−1(I − A).

⇔ C(I − A)−1B + D = BT (I − AT )−1CT
+ DT , and there exists

matrix Y = Y T > 0 such that Y − ATYA ≥ 0 and C = BT (I +

AT )−1Y (I − A). □

Remark 7. WhenG(z) is symmetric, Condition 1 of Lemmas 11 and
12 are redundant as pointed out in Remarks 5 and 6. In addition,
there is another method to prove Lemma 11 by using the bilinear
transformation, see Liu and Xiong (2016a, Lemma 6).

5. Stability of interconnected DT-NI systems

This section presents the internal stability results of a posi-
tive feedback interconnection of two DT-NI systems, denoted by
[M(z),N(z)]. The following theorem provides a necessary and suf-
ficient condition for the stability of the interconnected systems
[M(z),N(z)] in terms of the loop gain at z = 1.

Theorem 1. Given a square real-rational proper DT-NI transfer func-
tion matrix M(z), and a square real-rational proper DT-SNI transfer
function matrix N(z). Suppose M(z) and N(z) have no poles at −1
and 1, and that also satisfy M(−1)N(−1) = 0 and N(−1) ≥ 0. Then,
[M(z),N(z)] is internally stable if and only if λ̄(M(1)N(1)) < 1.

Proof. The proof is the same as the proof of Ferrante et al. (2014,
Theor. 8). □

Remark 8. Theorem 1 could be considered as the DT version of
Theorem 5 in Lanzon and Petersen (2008) and Theorem 1 in Xiong
et al. (2010). Also, the result in Theorem 1 is simply ‘‘restatement’’
of Theorem 8 in Ferrante et al. (2014) with the new definitions in
this paper. Moreover, all the results in the paper allow the transfer
function matrix to be non-symmetric.

The following two corollaries are restatements of Theorem 1,
written in the same form as the small gain theorem.

Corollary 3. Given γ > 0 and a DT-SNI transfer function matrix
N(z) with N(−1) ≥ 0. Then, [M(z),N(z)] is internally stable for all
DT-NI transfer function matrix M(z) satisfying M(−1)N(−1) = 0,
and λ̄(M(1)) < γ (respectively ≤ γ ) if and only if λ̄(N(1)) ≤

1
γ

(respectively < 1
γ
).

Proof. Without loss of generality, assume γ = 1.
(Necessity) Suppose λ̄(N(1)) > 1. We will show that there

exists a M(z) with M(−1)N(−1) = 0 and λ̄(M(1)) < 1 such
that [M(z),N(z)] is unstable. M(z) can be chosen as M(z) =

1
λ̄(N(1))( z−1

z+1 +1)
I =

z+1
λ̄(N(1))2z

I such that λ̄(N(1)) > 1, λ̄(M(1)) < 1 and

M(−1)N(−1) = 0. Then, it follows that M(1)N(1) =
N(1)

λ̄(N(1))
I , and

λ̄(M(1)N(1)) = 1, which contradicts λ̄(M(1)N(1)) < 1, and hence
[M(z),N(z)] is unstable. So, λ̄(N(1)) ≤ 1.

(Sufficiency) It follows by noting that λ̄(M(1))λ̄(N(1)) < 1
implies that λ̄(M(1)N(1)) < 1. □

Corollary 4. Given γ > 0 and a DT-NI transfer function matrix
N(z). Then, [M(z),N(z)] is internally stable for all DT-SNI transfer
function matrix M(z) satisfying M(−1) ≥ 0, M(−1)N(−1) = 0,
and λ̄(M(1)) < γ (respectively ≤ γ ) if and only if λ̄(N(1)) ≤

1
γ

(respectively < γ ).

Proof. The proof is the same as the proof of Corollary 3. □

Example 3. To illustrate the stability result in Theorem 1, consider
an uncertain plantM(z) asM(z) =

2k
2z+1 , where k > 0 is uncertain.

A calculation shows that j[M(ejθ ) − M∗(ejθ )] =
8k sin θ

(2 cos θ+1)2+4sin2θ
.

According to Definition 1, M(z) is DT-NI for all k > 0. Now, let
a controller N(z) be chosen as N(z) =

2z+2
2z−1 . It can be checked

that N(z) is DT-SNI transfer function satisfying M(−1)N(−1) = 0
and N(−1) ≥ 0. Application of Theorem 1 shows that [M(z),N(z)]
is internally stable if and only if λ̄(M(1)N(1)) < 1, that is, 0 <
k < 3

8 . This can be verified by directly using the stability criterion
for DT systems. The transfer function of [M(z),N(z)] is given by
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F (z) =
M(z)

1−M(z)N(z) =
2k(2z−1)

4z2−4kz−4k−1
. Using the bilinear transforma-

tion z =
1+s
1−s and the Routh stability criterion, it can be found that

[M(z),N(z)] is internally stable if and only if 0 < k < 3
8 .

6. Conclusions

This paper has studied the DT-NI properties of square real-
rational proper transfer function matrices. Two different relations
between DT-PR and DT-NI transfer function matrices were es-
tablished, and two versions of DT-NI lemmas were developed to
test DT-NI properties. Then, a necessary and sufficient condition,
expressed as the loop gain at z = 1 being less than unity, was
established for the internal stability of positive feedback intercon-
nection of two DT-NI systems. Also, the developed results were
illustrated by several numerical examples.
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