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This paper presents a study of interval analysis for solving cold-standby system reliability optimization
problems with considering parameter uncertainty. Most works reported in existing literature have been
based on the assumption that the probabilistic properties and statistical parameters have a known func-
tional form, which is usually not the case. Very often the parameters are presented in form of an interval-
valued number or bounds/tolerance from the engineering design. In this paper, interval analysis is used to
incorporate this in the system optimization problems. A definition of interval order relation reflecting
decision makers’ preference is proposed for comparing interval numbers. A computational algorithm is
developed to evaluate the system reliability and expected mission cost, in which a discrete approxima-
tion approach and a technique of interval universal generating function are used. For illustration, an
application to sequencing optimization for heterogeneous cold-standby system is given; a modified
genetic algorithm is developed to solve the proposed optimization problem with interval-valued
objective. The results indicate that the interval analysis exhibits a good performance for dealing with
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1. Introduction

The development of industrial technology involves an increas-
ing amount of design of complex and interrelated systems. Relia-
bility is an important performance measure of industrial systems,
especially when it is of safety—critical concerns. Extensive research
has been carried out on system reliability optimization; survey
papers (Kuo & Prasad, 2000; Kuo & Wan, 2007; Tillman, Hwang,
& Kuo, 1977) have summarized many earlier studies on reliability
optimal problems.

In the existing literature of system reliability optimization,
most results are based on assumptions that the probabilistic prop-
erties or parameters of time-to-failure are deterministic. However,
due to observation difficulties, resource limits and system com-
plexity, uncertainties are usually unavoidable while modeling real
industrial systems. For many engineering problems, it is overly dif-
ficult or costly to collect sufficient data about the uncertainties,
especially at the very beginning of design processes. Stakeholders
and decision makers have to deal with a variety of uncertainty
issues when making decisions without sufficient information. In
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fact, many parameters are specified as intervals of some kind in
engineering design.

Bayesian approach (Howson & Urbach, 2006) could be used to
study the uncertainties associated with the estimation of parame-
ters of a probability distribution (Pasanisi, Keller, & Parent, 2012;
Srivastava & Deb, 2013; Troffaes, Walter, & Kelly, 2014). The
unknown parameters are assumed to be random variables. With
the Bayesian approach, subjective judgments are required to esti-
mate the Bayesian random variables. The estimation of the Baye-
sian random variables can be improved when more data become
available. Before receiving more data, however, the Bayesian
approach remains a subjective representation of uncertainty. Fuzzy
theory is another commonly used method for analysing uncer-
tainty issues (Dotoli, Epicoco, Falagario, & Sciancalepore, 2015;
Hanss & Turrin, 2010; Wang & Watada, 2009). In the fuzzy
approach, the imprecise parameters are represented as fuzzy num-
bers. However, the fuzzy sets and their membership functions are
required to be known. It is a formidable task for decision makers to
specify the appropriate membership functions in advance.

In order to overcome the drawbacks of probabilistic methods
and fuzzy approaches, interval analysis first developed by Moore
(1966) has recently received some attention. The interval analysis
has been used to deal with problems of uncertainty in diverse
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Nomenclature
Notations fi¢) probability density function .of T;
[a] interval-valued number V; start-up cost of component j
a the lower bound of [a] w; running cost of component j per time unit
a the upper bound of [q] Y; cumulative working time of first j components
0o level of decision maker’s preference s(j) index of component j in the predetermined order
p ratio of two interval numbers in the inclusion type T mission time of system
relation duration of each time interval
R;(t),R(t) reliability of component j and system, respectively m number of mission time intervals
Ec(t) expected cost of system [p;()] probability that component j fails in the time interval
N number of components in the system [Ai, Ali+1))
T; random variable representing the time-to-failure of G i-th realization of T;
component j u;(z) u-function representing discrete distribution of T;
Fi(-) cumulative distribution function of T; Uj(2) u-function representing discrete distribution of Y;
Table 1 uncertainty by assuming that the component reliabilities belong
Component parameters for the optimization example. to interval uncertainty sets. However, the interval numbers are
not incorporated directly. Gupta, Bhunia, and Roy (2009) and
Component % w . . . .
[111..] ['12,} Bhunia, Sahoo, and Roy (2010) dealt with optimization problems
1 (57, 62] [1.00, 1.05] 100 30 for series systems; the reliability of each component was repre-
2 [78, 82] [1.70, 1.90] 80 35 sented as an interval number. Sahoo, Bhunia, and Kapur (2012)
3 [65, 75] [1.20, 1.40] 210 12 studied the constrained multi-objective reliability optimization
4 [34, 36] [1.00, 1.10] 150 3.0 problem of systems with interval-valued component reliabilities.
5 [130, 145] [2.30, 2.50] 220 2.0 h dies deal ificall ith th .
6 177, 82] (1.75. 1.85] 50 37 However, these studies dealt specifically with the series or
7 [78, 83] [1.15, 1.25] 120 18 series—parallel systems with active redundancy and given
8 [46, 54] [1.05, 1.20] 70 2.5 interval-valued component reliability, or placed greater attention
9 [72,77] [1.15,1.25] 100 15 on optimization algorithms.
10 [69, 71] [1.35, 1.65] 180 2.0

fields, such as circuit analysis (Kolev, 1993), damage identification
(Wang, Yang, Wang, & Qiu, 2012), structure safety analysis
(Impollonia & Muscolino, 2011; Wang, Gao, Song, & Zhang, 2014;
Zhang, Dai, Beer, & Wang, 2013), electric power system (Pereira
& Da Costa, 2014), and so on. In these studies, interval variables
were used to quantitatively describe the uncertain parameters in
the face of limited information. Up to now, research on interval
uncertainty problems has concentrated mainly in the aforemen-
tioned fields, while the application of interval analysis to system
reliability optimization for complex industrial systems is relatively
new.

In the existing literature of system reliability optimization,
Feizollahi and Modarres (2012) suggested a robust deviation
framework to deal with uncertain component reliabilities in
constrained redundancy allocation problems; they addressed

Table 2
Best obtained components sequences for p, = 1* and different 7.
Mission  Optimal initiation Expected mission  System
time T sequence cost [Ec] reliability [R]
400 9,7,58,6,2,1,10,3,4 [1551.5, 1641.6] [0.9677, 0.9839]
1,2,3,4,56,7,8,9,10° [1859.3, 1924.2] [0.9682, 0.9838]
500 9,7,3,5,8,6,2,1,10,4 [1963.8, 2075.5] [0.8451, 0.9035]
1,2,3,4,56,7,8,9,10° [2220.1,2275.1] [0.8440, 0.9045]
600 3,9,7,5,8,10,1,6,2,4  [2342.0, 2424.1] [0.5955, 0.7269]
1,2,3,4,56,7,8,9,10° [2517.7, 2540.4] [0.5955, 0.7262]

2 When p, = 1, the proposed order relation are the same with the definition in
Bhunia and Samanta (2014).
b Comparative trials with initiation sequence of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

In this paper, we present a study of interval analysis for cold-
standby system optimization problems considering uncertain
probabilistic parameters. Our study focuses on the evaluation
and optimization of system reliabilities and expected mission
costs. A discrete approximation approach based on Levitin et al.
(2013) and the interval universal generating function (IUGF) tech-
nique (Li, Chen, Yi, & Tao, 2011) are used in the evaluation proce-
dures for estimating the system reliability and the expected
mission cost. IUGF is a technique which extends the universal gen-
erating function (UGF) (Levitin, 2005) for the situations with
interval-valued parameters.

In solving the optimization problem with interval-valued objec-
tive, a set of interval values appear during the selection of the best
alternative, which leads to a question related to the comparison of
two arbitrary interval numbers. In this paper, we define a new
order relation for two arbitrary interval numbers considering dif-
ferent levels of decision maker’s preference. The level of decision
maker’s preference is measured by the ratio p,, where p, =1
stands for neutrality; p, > 1 stands for optimistic preference;
otherwise pessimistic.

For purposes of illustration, we propose the application of inter-
val analysis theory to the sequencing optimization problem for
heterogeneous cold-standby systems (Levitin et al., 2013a). In this

Table 3
Best obtained components sequences for T = 500 and different p,.
Po Optimal initiation [Ec] R]
sequence
po <03 9,7,53,8,6,2,1,10, 4 [1965.062, [0.8451,
2075.128] 0.9035]
0.31 < py <2.76 9,7,3,58,6,2,1,10,4 [1963.850,
2075.494]
po =2.77 3,9,7,5,8,6,2,1,10, 4 [1963.831,
2075.545]
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paper, we model the parameters of component time-to-failure dis-
tributions as interval-valued numbers. A genetic algorithm (GA) is
developed to solve the proposed sequencing optimization problem.
In order to avoid premature convergence and to increase computa-
tional efficiency, dual mutation (Wang, Ma, & Wang, 2008) and the
random keys technique (Bean, 1994) are introduced in the GA.

The rest of this paper is organized as follows. Section 2 provides
some basics of interval analysis, gives the definitions of interval
order relation and presents a general formulation of cold-standby
system optimization problem with interval-valued objective func-
tions. Section 3 proposes the computation procedure of the system
reliability and the expected mission cost. Section 4 shows a study
of the interval analysis for solving sequencing optimization prob-
lem for heterogeneous cold-standby systems, and a GA-based
searching approach is developed. A numerical example is given
in Section 5. Finally, conclusions are presented in Section 6.

2. Interval analysis for cold-standby system reliability
optimization - a general formulation

2.1. Interval arithmetic

Interval arithmetic was introduced by Moore in its modern
form as an extension of real arithmetic (Moore, 1979; Moore,
Kearfott, & Cloud, 2009). In interval arithmetic, an uncertain vari-
able a is represented as an interval number [a] = [a,a] with
a <a<a, where a and a are the lower and upper bounds of a,
respectively. If a = @, then a is a real number. The basic arithmeti-
cal operations of interval variables [a] = [a,a] and [b] = [b,b]
(a = 0,b > 0) are defined as

[a]+[b] = [a+b,a+b], (1)
[a] - [b] = [a—b,a—b], (2)
[a] - [b] = [ab,ab], 3)
a/l= 35 4@

It is assumed in the case of division that b # 0 and b # 0. The distri-
bution law also holds for interval numbers (a > 0, b > 0 and
¢ = 0); that is,
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Fig. 1. Three types of relation between two interval numbers.
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Fig. 2. Convergence process of the best fitness for T = 500 and p, = 1.

[a] - ([b] + [c]) = [a] - [b] + [a] - [c]. (5)
It may be noted that —[a] is not an additive inverse for [a] in the

system of intervals,

[a + (-[d) = [a.a] +[-a,—a = [a—a,a—ad] (6)

This equals [0,0] only if a = a. For more details of interval arith-
metic, one can refer Moore et al. (2009).

2.2. Interval order relations

To solve the optimization problems with parameters specified
by interval numbers, a set of interval values may appear during
the selection of the best alternative. Thus, an order relation needs
to be defined for the comparison of two arbitrary interval numbers.
There are three types of relations between any two intervals [a] and
[b]: non-overlapping (a < b), partial overlapping (a <b < a<b)
and inclusion (b < a < a < b), see Fig. 1. For purposes of simplifica-
tion, here we only represent the situation a < b for interval num-
bers [a] and [b]. For the case that @ > b, one can also use the
above three types by exchanging the positions of [a] and [b].

In the existing literature, most of the definitions of interval
order relation are either incomplete or inconvenient. Moore
(1979) and Ishibuchi and Tanaka (1990) have suggested several
order relations of intervals. However, these order relations cannot
cover all the three types of relations between two intervals. Levin
(2004) and Sevastjanov and Rég (2006) have developed a remote-
ness function and a complicated comparison technique, respec-
tively. However, the processes are very much complicated and
turn out to be inconvenient for decision makers seeking to find
out the best alternative.

Actually, for the non-overlapping type and the partial overlap-
ping type in Fig. 1, one can easily make the decision that [q] is less
than [b] when (a < b) N (@ < b). However, for the inclusion type in
Fig. 1, b < a and a < b may make one feel confused to select an
optimal alternative from [a] and [b]. Therefore, we need to consider
the preference of decision makers.

In Karmakar, Mahato, and Bhunia (2009), Sahoo et al. (2012),
and Bhunia and Samanta (2014), the decision maker’s point of view
for the maximization and minimization problems has been consid-
ered in the order relations. However, in these definitions, the pref-
erences of different decision makers were not distinguished
quantitatively.
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Accordingly, we propose two definitions of order relations
while considering the measurement of preference. Let p, denote
the level that measures the decision maker’s preference. The defi-
nitions of order relations for minimization and maximization prob-
lems are presented as follows.

Definition 2.1. The order relation <, between the intervals
[a] = [a,@] and [b] = [b, b] for minimization problems

(i) For the non-overlapping and the partial overlapping types,

[a]<min[b] if @ < b and a < b;

(i) For the inclusion type (b < a < @ < b),

S
Ql

[a]<min[b] if p = pg, Where p =

[i=]
IS

Definition 2.2. The order relation >, between the intervals
[a] = [a,@] and [b] = [b, b] for maximization problems

(i) For the non-overlapping and the partial overlapping types,

[a]Zmax[b} ifa>banda > b;
(i) For the inclusion type (b < a < @ < b),

[a] = max[b] if p = p,, Where p =%7—b.

—a
For example that an optimistic decision maker (p, = 2) is solv-
ing a minimization problem, if p =228 = 1.5 < p,, [b] is regarded as

less than [a], though the mean value of [b], (b+b)/2, is slightly
greater than the mean value of [a], (a + a)/2. It means that this
decision maker is willing to take risk for a possible minimum
objective. Notice that if p, = 1, the proposed Definitions 2.1 and
2.2 are equivalent to the definitions of interval order relations in
Bhunia and Samanta (2014).

2.3. General formulation of system optimization problem with interval
parameters

For the system optimization problems, the objective is always
to improve system reliability R(t;x) or minimize the system cost
Ec(t;x) or both while considering certain constraints, see review
papers (Kuo & Prasad, 2000; Kuo & Wan, 2007; Tillman et al.,
1977). The following formulations are widely adopted,

max R(t; X)

subject to  Ec(t;X) < Eg,
gi(t;x) < b, Viel

or

min Ec(t;%)

subject to R(t;x) > R',

=
gi(t;X%) < by, Viel

where x is the solution to the optimization problem, including the
component choices, numbers or their corresponding optimal redun-
dancy levels; g;(-) is a function of x; b; is the maximum value of the ith
resource constraints; and I is the set of all possible resource con-
straints; E; is the cost constraint; R" is the desired level of system
reliability.

In practical engineering systems, due to the observation diffi-
culties, resources limitations, and system complexity, uncertainties

are unavoidable in the system model. Using the aforementioned
interval analysis theory to deal with the uncertainty issues, the
uncertain parameters are represented as interval-valued numbers.
Based on the interval athematic, the system reliability and mission
cost are also obtained as interval values. Thus,

max [R(t; %)]
subject to [Ec(t;x)] < E,
gi(t;x) < by, Viel

or
min [Ec(t;%)]
subject to [R(t;x)] = R".

gi(t:x) < by, Viel

where the order relations in Definitions 2.1 and 2.2 are used during
the selection of the best alternative. The procedures of incorporat-
ing interval analysis in system reliability and mission cost evalua-
tion are discussed in the next section.

3. Computational procedures of incorporating interval analysis
in cold-standby system reliability and cost evaluation

3.1. Cold-standby redundancy

Consider a cold-standby system that consists of N statistically
independent components in parallel. The components can be
similar or dissimilar with equivalent functionality. Let

Fj(t; [nlj], [11”} . ) be the cumulative distribution function (cdf)
of the time-to-failure T; of component j, where the parameters
[111 J}, [172 j],... are uncertain but known as interval-valued num-
bers. The same situation suits the probability density function

(pdf f; (r; [m J} , [172 _j] . ) if applicable.

In the cold-standby system, one of the N components is put into
operation and other N — 1 components are waiting in the cold-
standby mode with a predetermined order. When one working
component fails, one of the redundant components is activated.
The components in cold-standby state are assumed to be not fail
before used. Denote Y; =T, + T + ---+ T; as the sum of the first
Jj components’ failure times. Reliability of the cold-standby system
with perfect failure detection and switching is equal to the proba-
bility of Yy > t; that is,

[R(t)} = [Pl‘{YN > t}} = [PF{T] +Ty+--+Ty> t}]

N
— Pr{Ty > 0]+ Y Pr{Y; > £n Yy < )], @

=2
Note that it is difficult to determine a closed-form version of Eq.
(7), especially when the time-to-failures Ty, T>,..., Ty follow non-
exponential distributions, and even worse non-identical distribu-
tions. Hence, a discrete approximation of time-to-failure distribu-

tions (Levitin et al., 2013) is used in this paper.

T is defined as the mission time and be divided into m equal
intervals with duration A = t/m. The probability [p;(i)] that com-
ponent j fails in the time interval [Ai, A(i + 1)] can be obtained as

p;()] = FJ(A(i+ 1); [ﬂu]» [’72.]}s~~-) _Fj(Ai? [”1,}']7 [1724']7“-)7
0<ig<m. (8)
Following Levitin et al. (2013), we consider the random discrete
time-to-failure T; of component j. We assume that the probability
mass function (pmf) of T; presented in the form of pairs
(tii = AiQ, [p;(i)] = [Pr{T; =t;;}]) for 0 <i<m approximates the
pdf of component j's time-to-failure, where ¢;; is a realization of T;
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in the time interval [Ai, A(i + 1)] and be assigned with a value of Aiin
this paper. Since no component should work longer than the
mission time 7= Am, for the first working component, the
possible maximum realization of the discrete random variable T,
is Am, thus,

[pr(m)) =1-=3_[py(D)- 9)

So T; follows a pmf of ([p;(0)],[p;(1)],...,[p;(m)]). For the cold-
standby component j which is activated at time Al the possible
maximum realization of the discrete random variable T; is
A(m — 1), thus

m-I-1

pim-D]=1-"% [p()]. (10)

i=0

According to the pmf of the discrete random variable T;, the
IUGF of component j is defined as

M;
ui(2) = [pi0)] - 2%, (1)
i—0

where M; is corresponding to the possible maximum realization of
T; with ¢, = AM;. The operator of the IUGF used in this paper is
defined as

Z)®ola(Z Z[pl E Z[I'®</)Z[p2 )] - 2%
M; M,
=35 [pi ()] - [pa ()] - 27(ritan), (12)
i=0 h=0

where @ (t1,top) = min(T, t1; + top).

Let Y, denote the random cumulative work time of the first k
components of the cold-standby system and note that Y; =Ty,
the IUGF of Y, can be obtained by using following recursive
procedure:

Uk(z) = Uk ®(,,uk Z[Pk 1(D] -2 11®¢Z[pk Ztkn
m m-I
_ Z Pk 1( )] ,Z(ﬂ(}’kfl,lvtk,h)
1=0 h=0
m
=Y [P(D)- 2%, fork=1,2,...,N, (13)

T
1)

where Uy(z) is assigned as 2°,y,, is the k-th realization of Y, and

Yiu = Al and [Py()] = [Pr{Yy =y,,}]. Thus, the IUGF of the system
can be obtained by

m
Un(z) =Y [Pn(D)] - 2. (14)

1=0

Therefore, the term of [Py(m)] in Eq. (14) with yy,, = Am =1 is
equal to the overall system reliability, that is, [R] = [Py(m)].

For the k-th component in the cold-standby system, its
exploitation cost depends on its working time, min{tis,7—y,_,}.
Thus, the expected cost of wusing component k is
Sl oS heolPect (D] ()] - (Vie+ min{ten, T—yy 1} -we), where Vi is
the start-up cost and wj is the exploitation cost per time
unit. Therefore, the expected mission cost [Ec] of the cold-
standby system obtained by adding all the costs of N components
together.

3.2. Improving the interval arithmetic evaluation

Due to the dependence problem that exists in the interval anal-
ysis theory (Degrauwe, Lombaert, & De Roeck, 2010), the ranges of
the obtained interval valued reliability and cost are occasionally
overestimated compared with the exact ranges. The dependence
problem occurs because the interval variables are treated as
stochastically independent rather than recognizing their possible
correlations. Actually, in the proposed evaluation processes, the
range of [p;(i)] in Eq. (8) is overestimated if we simply apply sub-
traction operator of interval arithmetic, because the term

Fj(A(i+ 1); {771.1']’ [11”],...) and Fj(Ai; [17”-], [11”],...) have the
same variables [17]_]-], [17“} ,.... In order to reduce the overestima-

tion, the evaluation of [pj(i)] can be improved as
p()] = {F(AG+1); &1, &) — Fi(AL 15 s )M <6
’711 VIZJ 62<’12]7"'}' (15)

Furthermore, in the pmf of component j, the probability of the max-
imum realization of T; in (9) and (10) can be improved by

[pj(Mj)]:{]7Fj(AMj;‘§17527~-)‘@ ¢ < flﬁﬂzjxtz@?zp }
(16)

4. A study of cold-standby sequencing optimization problem
with interval analysis

4.1. Problem formulation

In order to illustrate the proposed interval analysis method, a
cold-standby sequencing optimization problem is studied in this
section. Since the components are activated one by one in a cold-
standby system, the system reliability equals to the probability
that the sum of all components’ working time reaches mission
time. When the set of components is fixed, the system reliability
does not depend on initiation sequence of components. However,
if the system consists of dissimilar components, the mission cost
depends on the different initiation sequence of the components.
So the objective of sequencing optimization problem is to deter-
mine the optimal initiation sequence of system components with
an objective of minimizing the expected system mission cost.

Consider a cold-standby system that consists of N dissimilar
components in parallel with equivalent functionality. The sequenc-
ing optimization problem for the cold-standby system is formu-
lated as follows,

min [Ec(1;s)]
subject to s e D 17

where s = (s(1),5(2),...,5(N)), and D is the set of all permutations
of the N components, the system reliability [R(t;s)] does not depend
on the sequence of components s. This is a minimization problem,
so the order relation in Definition 2.1 is used. A recursive algorithm
for evaluating the objective value of the problem (17) and the sys-
tem reliability is given in the following.

4.2. Recursive algorithm for computing system reliability and mission
cost

Based on the considerations in Section 3, the following recur-
sive Algorithm 1 determines the expected mission cost [Ec(T;S)]
and system reliability [R(t;s)] for any given initiation sequence of
components (s(1),s(2),...,s(N)) and given pmf of T; for
ji=12,...N.
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Algorithm 1. Evaluating the system reliability and expected
mission cost

Initialization: Uy = 2°,[R] = [0, 0], [Ec] = [0, OJ;

Main loop: repeat the following steps for k =1,... N.
(i) Obtain Uy(2) = Uy_1(2)®¢Ur(2);
(ii) Add the value

S oS o lPi 1 (0] pi(h)]
- (Vs + min{tin, T —Yi_11} - Wsi)
to [Ec];
(iii) Add the value [Py(m)] to [R];
(iv) Remove the term [Pr(m)] - z* from Uy(z).

4.3. GA based approach

Searching the optimal initiation sequence of components for a
cold-standby system is a combinatorial optimization problem. It
is not realistic to enumerate all the possible solutions. Heuristic
algorithms have been widely suggested in reliability engineering
field for solving this type of optimization problems. A GA based
approach is used for the minimization problem (17). A brief
description of the algorithm is given in the following. More
detailed information about GA can be found in Gen and Cheng
(2000).

4.3.1. Solution encoding and GA operators

Here we define the solution encoding and the specific GA oper-
ators used in this paper. Each solution is a permutation of N integer
numbers, in which each number stands for a component and
should appear in the sequence only once. For each permutation,
the expected mission cost can be evaluated using the Algorithm 1.

A crossover operator that was suggested in Levitin et al. (2013)
is used in our algorithm. The offspring copies all the numbers in
the same position of first parent. Then the fragment of the off-
spring, defined as a set of adjacent numbers between two random
sites, is reallocated by following the order that the numbers of
fragment appear in the second parent. Following is an example
of crossover operator, in which the fragment is marked in bold.

Istparent: 1 2 3 4 5 6 7 8 9 10
2nd parent: 10 2 9 8 6 5 1 3 4 7
Offspring: 1 2 6 5 3 4 7 8 9 10

A technique called random keys that was first suggested in Bean
(1994) is adapted into the mutation operator of our algorithm. We
first generate a uniform (0,1) random deviate (random key) for
each number of the candidate sequence. Then the numbers whose
corresponding random key is less than the mutation probability
are sorted in ascending order of random keys. Following is an
example of mutation operator, in which the mutation probability
is 0.45.

Candidate solution: 1 2 3 4 5 6 7
Random keys : 0.24 0.97 0.75 0.48 0.80 042 0.15
New solution: 7 2 3 4 5 1 6

4.3.2. Structure of GA
The main structure of the proposed GA is as follows:

Algorithm 2. General Framework of GA used to solve the proposed
problem

1. Generate an initial population V,,, with a population size
of pop_size. Set the maximum generation as max_gen, cross-
over probability p., dual mutation probabilities p,,; and
szi

2. Calculate the fitness values of all individuals in V,, pre-
serve the best individual;

3. Perform Ranking selection on V), according to the order
relation <, put the selected individuals into V,;

4. For any two individuals (parents) in V., calculate their
Hamming distance, if the Hamming distance is greater
than a fixed threshold (0.2), perform crossover operation
and generate an offspring, put the offspring into a tempo-
rary population Vinp; Otherwise, perform local mutation
operation on the parents with probability of p,,,, and also
put the generated individuals into Viemp.

5. Perform global mutation operation on Vi, with global
mutation probability of p,,;;

6. Select pop_size best individuals from the set of Vs U Viemp
according to the order relation <;;,, put them into V,;

7. Use the preserved best individual in Step 2 to replace the
worst individual in the V.,;

8. Let Vyew replace Vp,, to be the new generation;

9. If the number of generations reaches max_gen, the algo-
rithm is terminated, output the final results; Otherwise,
goto Step 2.

5. Numerical example of cold-standby sequencing optimization

The example is adapted from Levitin et al. (2013), the
probabilistic parameters of the system components are known as
interval numbers. Ten components with Weibull time-to-failure
distribution (F(t) =1 — exp(—(t/%;)™),t > 0) are given in this
example, and the parameters of distribution and cost are listed in
Table 1. The GA parameters are set as: pop.size =20,
max_gen = 30,p. = 0.95,p,,; = 0.3 and p,,, = 0.45. To run the GA
by MATLAB, a computer with Intel Core i5-4590 CPU 3.3 GHz pro-
cessor and 8 GB RAM under Window 7 operating system is used.
Due to the stochastic nature of GA, the proposed Algorithm 2 is
run 10 times and the best one is selected as the final solution.

The best initiation sequences obtained by the proposed GA for
po =1 and three different mission times t =400,7 = 500, and
T =600, are presented in Table 2. A simple initiation sequence
(1,2,3,4,5,6,7,8,9,10) is given for comparison. The mission time
is divided into 1000 time intervals, that is, m = 1000. As discussed
in Levitin et al. (2013), when m = 1000, the accuracy of obtained
results is acceptable. Compared with the comparative trials, the
expected mission cost is significantly reduced by achieving the
optimal initiation sequence of components.

It can also be observed from Table 2 that the evaluated
system reliabilities for T = 400,500 and 600 are not exactly equal
to that of the comparative trials. This is due to the lack of addi-
tive inverses in interval arithmetic. A component in different
initiation sequence may has different sequencing index and
activating time, then the component’s working time T; may has
different maximum realization of ¢y, = AM; with the probability

of [p;(M))] =1-F (AM;‘; [7]1.1-]7 [’hj]),but Z?/:'fo [p;(i)] is not exactly
equal to 1. The tiny difference between the obtained values of sys-
tem reliability for different initiation sequences can be regarded as
the calculation error generating from the approximation approach.
And it does not affect the solution of the sequencing optimization.
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To demonstrate the influence of decision makers’ preferences on
the optimal initiation sequence and expected mission cost, different
values of p, are considered in the selection of the best alternative.
Table 3 contains results obtained for mission time 7 = 500 with dif-
ferent p,. It can be seen that with the increase of p, the decision
makers become more optimistic and adventurous, the obtained
mission cost reaches a smaller lower bound while suffering a higher
upper bound. As p, ranging from 0.1 to 10, there are three different
obtained optimal initiation sequences, which roughly correspond
to pessimistic, neutral and optimistic decision makers.

Fig. 2 shows the convergence of the best fitness value in each
generation for T = 500 and p, = 1. The minimum expected mission
cost is achieved after about 9 generations. The results show that
the proposed GA consistently converged to the optimal solution.
This also means our proposed GA is stable with the parameters
of pop_size = 20, max_gen = 30,p. = 0.95,p,,; = 0.3 and p,,, = 0.45.

6. Conclusions

A study of interval analysis has been carried out in this paper to
better deal with parameter uncertainties of cold-standby system
optimization problems. An order relation considering the decision
makers’ preference was defined for comparing interval numbers. A
general formulation was presented for cold-standby system opti-
mization problems with considering uncertain-but-bounded proba-
bilistic parameters by using interval arithmetic. Based on a discrete
approximation approach of time-to-failure distributions of system
components, a technique of IUGF was introduced to evaluate the
system reliability and the expected mission cost. Then, a sequencing
optimization problem for a heterogeneous cold-standby system was
studied for the purposes of illustration. Then a GA based approach
was developed to solve the optimization problem. The results have
shown that the interval analysis is a useful tool to deal with cold-
standby system optimization problems with parameter uncertainty.

Our future work includes incorporating interval analysis into
many other redundancy optimization problems, such as k-out-of-
n cold-standby redundancy optimization (Levitin et al., 2013b),
warm-standby redundancy optimization (Levitin, Xing, & Dai,
2013c), and mixed redundancy strategy optimization (Ardakan &
Hamadani, 2014; Levitin, Xing, & Dai, 2014). Since the uncertain
issues can appear in many contexts in diverse system optimization
problems, there are quite a few open problems and challenging
topics emanating from the work we have presented in this paper
for future researchers. For example, the interval approach can be
applied to optimal backup problem (Levitin, Xing, & Dai, 2015a),
optimal loading problem (Levitin, Xing, & Dai, 2015b), optimal test-
ing resources problem (Levitin, 2002; Wang, Tang, & Yao, 2010),
etc. With the rapidly upgrading of technologies and equipment in
industrial engineering, incorporating interval analysis into system
reliability problems, especially in the early procedures of system
design and optimization, will have a significant promoting effect
on shortening research and development cycle of products.

Acknowledgements

The authors are grateful for the valuable comments and sugges-
tions provided by the editor and anonymous referees. This research
was partially supported by the National Natural Science Founda-
tion of China (No. 61374026, No. 71371163) and a grant from
University Grants Council of Hong Kong (No. GRF 9042183).

References

Ardakan, M. A., & Hamadani, A. Z. (2014). Reliability optimization of series-parallel
systems with mixed redundancy strategy in subsystems. Reliability Engineering
& System Safety, 130, 132-139.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and
optimization. ORSA Journal on Computing, 6(2), 154-160.

Bhunia, A. K., & Samanta, S. S. (2014). A study of interval metric and its application
in multi-objective optimization with interval objectives. Computers & Industrial
Engineering, 74, 169-178.

Bhunia, A. K., Sahoo, L., & Roy, D. (2010). Reliability stochastic optimization for a
series system with interval component reliability via genetic algorithm. Applied
Mathematics and Computation, 216(3), 929-939.

Degrauwe, D., Lombaert, G., & De Roeck, G. (2010). Improving interval analysis in
finite element calculations by means of affine arithmetic. Computers &
Structures, 88(3), 247-254.

Dotoli, M., Epicoco, N., Falagario, M., & Sciancalepore, F. (2015). A cross-efficiency fuzzy
data envelopment analysis technique for performance evaluation of decision
making units under uncertainty. Computers & Industrial Engineering, 79, 103-114.

Feizollahi, M. J., & Modarres, M. (2012). The robust deviation redundancy allocation
problem with interval component reliabilities. IEEE Transactions on Reliability,
61(4), 957-965.

Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization (Vol. 7).
John Wiley & Sons.

Gupta, R. K., Bhunia, A. K., & Roy, D. (2009). A GA based penalty function technique
for solving constrained redundancy allocation problem of series system with
interval valued reliability of components. Journal of Computational and Applied
Mathematics, 232(2), 275-284.

Hanss, M., & Turrin, S. (2010). A fuzzy-based approach to comprehensive modeling
and analysis of systems with epistemic uncertainties. Structural Safety, 32(6),
433-441.

Howson, C., & Urbach, P. (2006). Scientific reasoning: The Bayesian approach. Open
Court Publishing.

Impollonia, N., & Muscolino, G. (2011). Interval analysis of structures with
uncertain-but-bounded axial stiffness. Computer Methods in Applied Mechanics
and Engineering, 200(21), 1945-1962.

Ishibuchi, H., & Tanaka, H. (1990). Multiobjective programming in optimization of
the interval objective function. European Journal of Operational Research, 48(2),
219-225.

Karmakar, S., Mahato, S. K., & Bhunia, A. K. (2009). Interval oriented multi-section
techniques for global optimization. Journal of Computational and Applied
Mathematics, 224(2), 476-491.

Kolev, L. V. (1993). Interval methods for circuit analysis (Vol. 1). World Scientific.

Kuo, W., & Prasad, V. R. (2000). An annotated overview of system-reliability
optimization. IEEE Transactions on Reliability, 49(2), 176-187.

Kuo, W., & Wan, R. (2007). Recent advances in optimal reliability allocation. In G.
Levitin (Ed.), Computational intelligence in reliability engineering (pp. 1-36).
Berlin, Heidelberg: Springer-Verlag.

Levin, V. L. (2004). Ordering of intervals and optimization problems with interval
parameters. Cybernetics and Systems Analysis, 40(3), 316-324.

Levitin, G. (2002). Allocation of test times in multi-state systems for reliability
growth testing. IIE Transactions, 34(6), 551-558.

Levitin, G. (2005). The universal generating function in reliability analysis and
optimization.London: Springer-Verlag.

Levitin, G., Xing, L., & Dai, Y. (2013a). Cold-standby sequencing optimization
considering mission cost. Reliability Engineering & System Safety, 118, 28-34.

Levitin, G., Xing, L., & Dai, Y. (2013b). Sequencing optimization in k-out-of-n cold-
standby systems considering mission cost. International Journal of General
Systems, 42(8), 870-882.

Levitin, G., Xing, L., & Dai, Y. (2013c). Optimal sequencing of warm standby
elements. Computers & Industrial Engineering, 65(4), 570-576.

Levitin, G., Xing, L., & Dai, Y. (2014). Cold vs. hot standby mission operation cost
minimization for 1-out-of-N systems. European Journal of Operational Research,
234(1), 155-162.

Levitin, G., Xing, L., & Dai, Y. (2015a). Optimal backup distribution in 1-out-of-N cold
standby systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45
(4), 636-646.

Levitin, G., Xing, L., & Dai, Y. (2015b). Optimal completed work dependent loading of
components in cold standby systems. International Journal of General Systems, 44
(4), 471-484.

Li, C. Y., Chen, X,, Yi, X. S., & Tao, J. Y. (2011). Interval-valued reliability analysis of
multi-state systems. IEEE Transactions on Reliability, 60(1), 323-330.

Moore, R. E. (1966). Interval analysis (Vol. 4)Englewood Cliffs: Prentice-Hall.

Moore, R. E. (1979). Methods and applications of interval analysis (Vol. 2)
Philadelphia: SIAM.

Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to interval analysis.
Philadelphia: SIAM.

Pasanisi, A., Keller, M., & Parent, E. (2012). Estimation of a quantity of interest in
uncertainty analysis: Some help from Bayesian decision theory. Reliability
Engineering & System Safety, 100, 93-101.

Pereira, L. E. S., & Da Costa, V. M. (2014). Interval analysis applied to the maximum
loading point of electric power systems considering load data uncertainties.
International Journal of Electrical Power & Energy Systems, 54, 334-340.

Sahoo, L., Bhunia, A. K., & Kapur, P. K. (2012). Genetic algorithm based multi-
objective reliability optimization in interval environment. Computers &
Industrial Engineering, 62(1), 152-160.

Sevastjanov, P., & Rég, P. (2006). Two-objective method for crisp and fuzzy interval
comparison in optimization. Computers & Operations Research, 33(1), 115-131.

Srivastava, R., & Deb, K. (2013). An evolutionary based Bayesian design optimization
approach under incomplete information. Engineering Optimization, 45(2),
141-165.


http://refhub.elsevier.com/S0360-8352(16)30120-6/h0005
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0005
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0005
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0010
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0010
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0015
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0015
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0015
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0020
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0020
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0020
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0025
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0025
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0025
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0030
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0030
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0030
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0035
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0035
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0035
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0040
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0040
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0045
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0045
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0045
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0045
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0050
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0050
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0050
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0055
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0055
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0060
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0060
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0060
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0065
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0065
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0065
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0070
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0070
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0070
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0075
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0080
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0080
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0085
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0085
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0085
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0090
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0090
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0095
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0095
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0100
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0100
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0105
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0105
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0110
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0110
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0110
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0115
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0115
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0120
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0120
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0120
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0125
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0125
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0125
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0130
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0130
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0130
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0135
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0135
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0140
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0145
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0145
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0150
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0150
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0155
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0155
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0155
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0160
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0160
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0160
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0165
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0165
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0165
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0170
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0170
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0175
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0175
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0175

100 W. Wang et al./Computers & Industrial Engineering 97 (2016) 93-100

Tillman, F. A, Hwang, C. L., & Kuo, W. (1977). Optimization techniques for system
reliability with redundancy - A review. IEEE Transactions on Reliability, 26(3),
148-155.

Troffaes, M., Walter, G., & Kelly, D. (2014). A robust Bayesian approach to modeling
epistemic uncertainty in common-cause failure models. Reliability Engineering &
System Safety, 125, 13-21.

Wang, C, Gao, W.,, Song, C., & Zhang, N. (2014). Stochastic interval analysis of
natural frequency and mode shape of structures with uncertainties. Journal of
Sound and Vibration, 333(9), 2483-2503.

Wang, J., Ma, Y., & Wang, F. (2008). Study of improved genetic algorithm based on
dual mutation and its simulation. Computer Engineering & Applications, 44(3),
57-59, 9.

Wang, S., & Watada, J. (2009). Modelling redundancy allocation for a fuzzy random
parallel-series system. Journal of Computational and Applied Mathematics, 232
(2), 539-557.

Wang, X., Yang, H., Wang, L., & Qiu, Z. (2012). Interval analysis method for structural
damage identification based on multiple load cases. Journal of Applied
Mechanics, 79(5), 051010.

Wang, Z., Tang, K., & Yao, X. (2010). Multi-objective approaches to optimal testing
resource allocation in modular software systems. [EEE Transactions on
Reliability, 59(3), 563-575.

Zhang, H., Dai, H., Beer, M., & Wang, W. (2013). Structural reliability analysis on the
basis of small samples: An interval quasi-Monte Carlo method. Mechanical
Systems and Signal Processing, 37(1), 137-151.


http://refhub.elsevier.com/S0360-8352(16)30120-6/h0180
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0180
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0180
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0185
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0185
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0185
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0190
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0190
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0190
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0195
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0195
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0195
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0200
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0200
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0200
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0205
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0205
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0205
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0210
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0210
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0210
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0215
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0215
http://refhub.elsevier.com/S0360-8352(16)30120-6/h0215

	A study of interval analysis for cold-standby system reliability optimization under parameter uncertainty
	1 Introduction
	2 Interval analysis for cold-standby system reliability optimization – a general formulation
	2.1 Interval arithmetic
	2.2 Interval order relations
	2.3 General formulation of system optimization problem with interval parameters

	3 Computational procedures of incorporating interval analysis in cold-standby system reliability and cost evaluation
	3.1 Cold-standby redundancy
	3.2 Improving the interval arithmetic evaluation

	4 A study of cold-standby sequencing optimization problem with interval analysis
	4.1 Problem formulation
	4.2 Recursive algorithm for computing system reliability and mission cost
	4.3 GA based approach
	4.3.1 Solution encoding and GA operators
	4.3.2 Structure of GA


	5 Numerical example of cold-standby sequencing optimization
	6 Conclusions
	Acknowledgements
	References


