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On α- and D-negative imaginary systems
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This paper is concerned with α- and D-negative imaginary systems. The definition of α-negative imaginary transfer functions
is firstly introduced. Then, the relationship between negative imaginary and α-negative imaginary transfer functions is studied.
By means of the generalised inverse, an α-negative imaginary lemma is proposed to test the α-negative imaginary property
of transfer functions. Also, a necessary and sufficient condition is provided for the α-stability of interconnection of negative
imaginary systems. A state-feedback controller design condition is established such that the resulting system is α-negative
imaginary. Moreover, the concept of α-negative imaginary transfer functions is extended to that of D-negative imaginary
transfer functions. Finally, the developed results are illustrated by numerical examples.
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1. Introduction

Positive real systems are a class of systems which dissi-
pate energy (Anderson & Vongpanitlerd, 1973; Brogliato,
Lozano, Maschke, & Egeland, 2007) and satisfy the pos-
itive real condition: F(s) + F∗(s) ≥ 0 for all ℜ[s] > 0.
A modified test for positive-realness of real-rational func-
tions was presented in Chen and Smith (2009). Positive
real systems could model many systems in practical ap-
plications. While for lightly damped or undamped flexible
structures with collocated position sensors and force actu-
ators, the obtained transfer functions often have the form
G(s) = "∞

i=0
ψ2

i

s2+2ζiωi s+ω2
i

, where ωi is the model frequency,
ζ i > 0 is the damping coefficient and ψ i corresponds to the
boundary condition. The stability results in positive real
theory (Anderson & Vongpanitlerd, 1973) are not applica-
ble to such structures. The reason is that the relative degree
of positive real systems must be zero or one (Brogliato
et al., 2007). The transfer function G(s) satisfies the neg-
ative imaginary condition: j[G(jω) − G∗(jω)] ≥ 0 for all
ω ∈ (0, ∞). Such systems are called negative imaginary
systems. For single-input singe-output negative imaginary
systems, their Nyquist plots lie underneath the real axis; in
other words, the phase of G(s) belongs to interval [ − π , 0]
for all ω ∈ (0, ∞).

In recent years, negative imaginary systems have at-
tracted the attention of many researchers. The definition of
negative imaginary transfer functions was extended by al-
lowing simple poles on the imaginary axis except at the ori-
gin (Xiong, Petersen, & Lanzon, 2010). Also, lossless and
finite frequency negative imaginary systems were studied in
Xiong, Petersen, and Lanzon (2012a, 2012b), respectively.
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A further extension was proposed by Mabrok, Kallapur,
Petersen, and Lanzon (2014) allowing poles at the origin. A
generalised definition for negative imaginary transfer func-
tion matrices was proposed in Ferrante and Ntogramatzidis
(2013), where the transfer function matrix needs to be sym-
metric. In addition, several further efforts have been de-
voted to study the properties and applications of negative
imaginary systems (see Cai & Hagen, 2010; Lanzon & Pe-
tersen, 2008; Mabrok, Lanzon, Kallapur, & Petersen, 2013;
Petersen, Lanzon, & Song, 2009; Song, Lanzon, Patra, &
Petersen, 2010, 2012a, 2012b, and references cited therein).

For the active structural systems, highly resonant dy-
namics can degrade the system performance (Petersen &
Lanzon, 2010). Moreover, the closer the poles to the imag-
inary axis are, the stronger the vibrations are. One effec-
tive way to suppress the vibration response is to place the
poles in a suitable location, such as the region ℜ[s] < −α.
In this paper, a new class of negative imaginary systems,
which satisfy both the α-stability and the negative imagi-
nary condition, will be introduced. This concept is inspired
by the concept of α-strictly positive real (α-SPR) transfer
function matrices in Lu, Ho, and Yeung (2003). Then, an
α-negative imaginary lemma is derived by means of the
generalised inverse. A necessary and sufficient condition
is proposed for the α-stability of positive feedback inter-
connected systems. Moreover, a state feedback controller
is designed such that the resulting closed-loop system sat-
isfies the α-negative imaginary property. In addition, we
extend the concept of α-negative imaginary transfer func-
tions to D-negative imaginary transfer functions, where all
the poles lie in a linear matrix inequality (LMI) region.

C⃝ 2015 Taylor & Francis
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In general, pole placement in negative imaginary sys-
tems is useful. The transient response of a negative imagi-
nary system is related to the location of its poles (Chilali &
Gahinet, 1996; Chilali, Gahinet, & Apkarian, 1999; Faria,
Assunção, Teixeira, Cardim, & Da Silva, 2009). Take a
second-order negative imaginary system with poles λ =
−ζωn ± jωm as an example. The step response is fully
characterised by the undamped natural frequency ωn, the
damping coefficient ζ and the damped natural frequency ωm

(Chilali & Gahinet, 1996; Golnaraghi & Kuo, 2009). The
study of α- and D-negative imaginary systems is also in-
spired by the fact that pole-placement constrains are useful
to avoid fast dynamics and high-frequency gain in practical
systems (Scherer, Gahinet, & Chilali, 1997).

The organisation of the paper is as follows: prelimi-
nary results and the notion of α-negative imaginary transfer
functions are introduced in Section 2. In Section 3, an α-
negative imaginary lemma is established. The α-stability of
positive feedback interconnected systems is studied. Sec-
tion 4 presents a design of state-feedback controller such
that the closed-loop system is α-negative imaginary. Sec-
tion 5 studies D-negative imaginary systems. Illustrative
examples are presented in Section 6. Section 7 gives a con-
clusion of this paper.

Notation: Rm×n, Rm × n and Cm×n denote the sets of
m × n real-rational proper transfer function matrices, real
and complex matrices, respectively. ℜ[·] denotes the real
part of complex numbers. λmax(A) is the maximum eigen-
value of a square complex matrix A that only has real eigen-
values. AT and A∗ denote the transpose and complex con-
jugate transpose of a complex matrix A, respectively. A−

is the generalised inverse satisfying AA−A = A. A ⊗ B is
the Kronecker product of A and B. A > 0 ( ≥ 0) denotes
symmetric positive (semi-)definite matrix.

2. Preliminaries and α-negative imaginary functions

In this section, we first recall the definitions of α-stability,
α-SPR and negative imaginary transfer functions, then
introduce the concept of α-negative imaginary transfer
functions.

Definition 1 (Bourlès, 1987): Given a real constant α ≥ 0.
A linear time-invariant system with a real-rational proper
transfer function G(s) is said to be asymptotically α-stable,
if every pole of G(s) satisfies ℜ[λj] < −α.

Definition 2 (Lu et al., 2003): Given a real constant α ≥
0. A real-rational proper transfer function matrix F (s) ∈
Rm×m is said to be strictly positive real with an α-stability
(α-SPR) if

(1) F(s) has no poles in ℜ[s] ≥ −α.
(2) F(jω) + F∗(jω) > 0 for ω ∈ ( − ∞, ∞).

Remark 1: When α = 0, F(s) is SPR. Condition 1 in
Definition 2 implies that F(s) is asymptotically α-stable.

Definition 3 (Xiong et al., 2010): A real-rational proper
transfer function matrix G(s) ∈ Rm×m is said to be negative
imaginary if

(1) G(s) has no poles at the origin and in ℜ[s] > 0.
(2) j[G(jω) − G∗(jω)] ≥ 0 for all ω ∈ (0, ∞) except

values of ω where jω is a pole of G(s).
(3) If s = jω0, ω0 ∈ (0, ∞), is a pole of G(s), it is at

most a simple pole, and the residual matrix K0 =
lims→jω0 (s − jω0)jG(s) is positive semi-definite
Hermitian.

Definition 3 has been generalised by allowing poles at
the origin in Mabrok et al. (2014). We now present the
definition of α-negative imaginary transfer functions.

Definition 4: Given a real constant α ≥ 0. A real-rational
proper transfer function matrix G(s) ∈ Rm×m is said to be
α-negative imaginary if

(1) G(s) is asymptotically α-stable.
(2) j[G(jω) − G∗(jω)] ≥ 0 for all ω ∈ (0, ∞).

Remark 2: When α = 0, G(s) in Definition 4 is stable
negative imaginary (Petersen et al., 2009). Systems with
poles on the imaginary axis are excluded in the definition
of α-negative imaginary transfer functions.

A useful lemma is as follows.

Lemma 1 (Wang, Wei, Qiao, Lin, & Chen, 2004): Let
A ∈ Cm×n, B ∈ Cp×q,D ∈ Cm×q . Then the matrix equation
AXB = D is consistent if and only if for some A− and B−,

AA−DB−B = D.

If AXB = D is consistent, the general solution is given by

X = A−DB− + Y − A−AYBB−

for arbitrary Y ∈ Cn×p.

The following lemma provides a new form of the neg-
ative imaginary lemma in terms of the generalised inverse.

Lemma 2: Let (A, B, C, D) be a minimal state-space re-
alisation of a real-rational proper transfer function matrix
G(s) ∈ Rm×m, where A ∈ Rn × n, B ∈ Rn × m, C ∈ Rm × n,
D ∈ Rm × m. Then G(s) is negative imaginary if and only
if

(1) det(A) ̸= 0,D = DT .
(2) There exists a (CT)− such that B(CT)−CT = B holds.
(3) There exists a matrix Y ∈ Rn × n satisfying
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A−1B(CT )− + YCT (CT )− − Y

= [A−1B(CT )− + YCT (CT )− − Y ]T < 0 (1)

Z = ZT ≤ 0, (2)

where (CT)− is the matrix in Condition 2, Z = AY
+ YAT − B(CT)− − A−1B(CT)−AT − AYCT(CT)−

− YCT(CT)−AT.

Proof: The proof is completed via the following sequence
of equivalent reformulations:

G(s) is negative imaginary.
⇔ det(A) ̸= 0,D = DT , and there exists a matrix X >

0 such that

B = −AXCT (3)

AX + XAT ≤ 0. (4)

This equivalence is via Lemma 7 in Xiong et al. (2010).
⇔ det(A) ̸= 0,D = DT , and it follows from Lemma 1

that there exists some (CT)− satisfying

AA−1(−B)(CT )−CT = −B.

In this case, a symmetric positive definite solution of (3) is
given by

X = Y − A−1B(CT )− − YCT (CT )− (5)

for some Y ∈ Rn × n. Substituting (5) into (4) results in

AY + YAT − A−1B(CT )−AT − B(CT )−

−AYCT (CT )− − YCT (CT )−AT ≤ 0.

⇔ det(A) ̸= 0,D = DT , and there exists some Y ∈ Rn × n

satisfying

A−1B(CT )− + YCT (CT )− − Y

= [A−1B(CT )− + YCT (CT )− − Y ]T < 0

AY + YAT − A−1B(CT )−AT − B(CT )−

−AYCT (CT )− − YCT (CT )−AT

= [AY + YAT − A−1B(CT )−AT − B(CT )−

−AYCT (CT )− − YCT (CT )−AT ]T ≤ 0,

where (CT)− is the matrix which satisfies B(CT)−CT = B.
!

Remark 3: When CT is full column rank, one has that
(CT)−CT = Im, and that B(CT)−CT = B. When CT is not full
column rank, the equality B(CT)−CT = B might not be true.
Therefore, Condition 2 in Lemma 2 is necessary.

Remark 4: When (A, B, C, D) is a non-minimality re-
alisation of G(s), Conditions 1–3 in Lemma 2 become a
sufficient condition to determine whether G(s) is negative
imaginary. The proof follows along similar lines to those in
the proof of Corollary 1 in Song et al. (2012a).

Consider the following system

{
ẋ(t) = Ax(t) + B1u(t) + B2w(t)
z(t) = Cx(t) + D1u(t) + D2w(t),

(6)

where x(t) ∈ Rn, w(t) ∈ Rk, z(t) ∈ Rm and u(t) ∈ Rm are
the state, disturbance input, output and control input, re-
spectively. A, Bi, Ci, i ∈ {1, 2}, are known real constant
matrices with appropriate dimensions. The transfer func-
tion from u(t) to z(t) of system (6) with w(t) ≡ 0 is given
by

G(s) = C(sI − A)−1B1 + D1.

Let y(t) = eαtx(t), where α ≥ 0 is the decay rate de-
fined as the maximum value of the real constant satisfying
limt → ∞eαt∥x(t)∥ = 0 (see Boyd, EI Ghaoui, Feron, & Bal-
akrishnan, 1994). Then system (6) with w(t) ≡ 0 can be
transformed to

{
ẏ(t) = (A + αI )y(t) + B1e

αt u(t)
z(t) = Ce−αt y(t) + D1u(t).

(7)

The transfer function from u(t) to z(t) of system (7) is given
by

R(s) = C[sI − (A + αI )]−1B1 + D1 = G(s − α).

Then the asymptotic α-stability of ẋ(t) = Ax(t) is equiva-
lent to the asymptotic stability of ẏ(t) = (A + αI )y(t). The
goal in the next section is to develop a sufficient condition
to determine whether G(s) is α-negative imaginary based
on G(s − α).

3. α-negative imaginary lemma

The main results of this paper are presented in this sec-
tion. The α-negative imaginary lemma extends the negative
imaginary lemma in Lanzon and Petersen (2008) and Xiong
et al. (2010) to the case where the transfer function matrices
have all the poles lying in the set {s ∈ C : ℜ[s] < −α}.

The following lemma provides a relationship between
negative imaginary transfer function matrices and α-
negative imaginary transfer function matrices.

Lemma 3: For a given constant α ≥ 0, let G(s) be a
square real-rational proper transfer function matrix. If G(s
− α) is stable negative imaginary, then G(s) is α-negative
imaginary.
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Proof: Let (A + αI, B, C, D) be a state-space realisation
of the real-rational proper transfer function matrix G(s −
α). Then A + αI is stable if and only if G(s) is α-stable.

Let s′ = s − α. G(s′) is stable negative imaginary. So
G(s′) has no poles on the imaginary axis and satisfies G(∞)
= GT(∞). It follows from Lemma 3 in Xiong et al. (2010)
that s′[G(s′) − G(∞)] is positive real. That is, F(s) = (s −
α)[G(s − α) − G(∞)] is positive real. Let s = α + jω,
ω > 0. We have that F(s) + F∗(s) = jω[G(jω) − G∗(jω)]
≥ 0 for all ω ∈ (0, ∞). Then Condition 2 of Definition 4
is satisfied. Hence, according to Definition 4, G(s) is α-
negative imaginary. !
Remark 5: When α = 0, G(s) is stable negative
imaginary.

The following corollary is a matrix inequality restate-
ment of Lemma 3, which is analogous to the negative imag-
inary lemma in Lanzon and Petersen (2008) and Xiong et al.
(2010).

Corollary 1 (α-negative imaginary lemma): For a given
real constant α ≥ 0, let (A, B, C, D) be a state-space
realisation of a real-rational proper transfer function matrix
G(s) ∈ Rm×m, where A ∈ Rn × n, B ∈ Rn × m, C ∈ Rm × n, D ∈
Rm × m. Then G(s) is α-negative imaginary if the following
conditions hold:

(1) A + αI is nonsingular, D = DT.
(2) There exists a (CT)− such that B(CT)−CT = B holds.
(3) There exists a matrix Y ∈ Rn × n such that

(A + αI )−1B(CT )− + YCT (CT )− − Y

= [(A+αI )−1B(CT )−+YCT (CT )−−Y ]T <0 (8)

Ẑ = ẐT < 0, (9)

where (CT)− is the matrix in Condition 2,
Ẑ = (A + αI )Y + Y (A + αI )T − B(CT )−

− (A + αI )−1B(CT )−(A + αI )T − (A + αI )
YCT (CT )− − YCT (CT )−(A + αI )T .

Proof: Let (A + αI, B, C, D) be a state-space realisation
of G(s − α). According to Lemma 2, Conditions 1–3 imply
G(s − α) is negative imaginary. Furthermore, Condition 3
implies that X := Y − (A + αI)−1B(CT)− − YCT(CT)− >

0, and (A + αI)X + X(A + αI)T < 0. Hence, G(s − α)
is stable negative imaginary. It follows from Lemma 3 that
G(s) is α-negative imaginary. !

In addition, there is another method to test whether G(s)
is α-negative imaginary. If D = DT and there exists a matrix
Y > 0 such that AY + YAT + 2αY < 0 and B =−AYCT, then
G(s) is α-negative imaginary. A similar form as in Lemma 2
can be obtained by substituting the general solution of B =
−AYCT into AY + YAT + 2αY < 0. This method is clearly
different from the one in Lemma 3 and Corollary 1. This

++
( )M s

( )N s
+
+

z ω

Figure 1. Positive feedback interconnection.

method depends on the properties of G(s), while the one in
Lemma 3 and Corollary 1 depends on G(s − α).

Remark 6: α-negative imaginary systems are actually neg-
ative imaginary systems with poles lying in the region ℜ[s]
< −α. So all the properties about negative imaginary trans-
fer functions in Lanzon and Petersen (2008) and Xiong et al.
(2010) are also valid for α-negative imaginary transfer func-
tions, including the sum computation property of Lemma 6
in Xiong et al. (2010) and the relationship between negative
imaginary and positive real transfer functions of Lemma 3
in Xiong et al. (2010).

In the following, we consider the internal α-stability
of positive feedback interconnection of two negative imag-
inary systems as shown in Figure 1, denoted by [M(s), N(s)].

Theorem 1: Given a real constant α ≥ 0. Suppose that
M(s − α) is negative imaginary, N(s − α) is strictly neg-
ative imaginary, and that M(∞)N(∞) = 0, N(∞) ≥ 0.
Then [M(s), N(s)] is internally α-stable if and only if λmax

(M(− α)N(− α)) < 1.

Proof: Let M(s) ∼
[

A B
C D

]
, N (s) ∼

[
Ā B̄
C̄ D̄

]
, M(s − α) ∼

[
A + αI B

C D

]
and N (s − α) ∼

[
Ā + αI B̄

C̄ D̄

]
be minimal re-

alisations. Then, D = DT, D̄ = D̄T ≥ 0,DD̄ = 0, and the
realisation is stabilisable and detectable.

[M(s), N(s)] is internally α-stable.

⇔
[

A + αI 0
0 Ā + αI

]
+

[
B 0
0 B̄

][
I −D̄

−D I

]−1[
0 C̄
C 0

]
is

Hurwitz.
⇔ [M(s − α), N(s − α)] is internally stable (according

to Lemma 5.2 in Zhou, Doyle, & Glover, 1996).
⇔ λmax(M( − α)N( − α)) < 1 (according to Theorem 5

in Lanzon & Petersen, 2008). !
Remark 7: When α = 0, it follows that [M(s), N(s)] is
internally stable if and only if λmax(M(0)N(0)) < 1, which
recovers the result in Lanzon and Petersen (2008).

4. State-feedback controller synthesis

In this section, Lemma 3 is applied to design a state-
feedback controller such that the resulting closed-loop
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system is α-negative imaginary. Consider system (6). As-
sume D1 = 0 to simplify discussion.

Theorem 2: Suppose D2 = DT
2 and there exist matrices Y

∈ Rn × n, Y > 0, M ∈ Rm × n and a scalar ε > 0 satisfying

(A + αI )Y + Y (A + αI )T + B1M + MT BT
1 + εI ≤ 0

(10)

B2 + (A + αI )YCT + B1MCT = 0. (11)

Then the resulting closed-loop system of (6) with the state-
feedback control law u(t) = MY−1x(t) is α-negative imagi-
nary.

Proof: Applying the state-feedback control law u(t) =
MY−1x(t) to system (6) yields the following closed-loop
system

{
ẋ(t) = (A + B1MY−1)x(t) + B2w(t)
z(t) = Cx(t) + D2w(t).

(12)

The closed-loop transfer function from w(t) to z(t) is given
by

T (s) = C(sI − A − B1MY−1)−1B2 + D2. (13)

Because the LMI (10) and equality (11) are satisfied, we
have

(A + αI + B1MY−1)Y + Y (A + αI + B1MY−1)T

+ εI ≤ 0 (14)

B2 + (A + αI + B1MY−1)YCT = 0. (15)

According to Lemma 7 in Xiong et al. (2010), the
closed-loop transfer function T(s − α) is stable negative
imaginary. Furthermore, according to Lemma 3, we have
that T(s) is α-negative imaginary. !

The conditions in Theorem 2 consist of both an
LMI (10) and one equality (11). One way to handle the
equality constraint is to use the generalised inverse as has
been illustrated in Lemma 2. Another way is to solve an
optimisation problem as follows.

Consider the following condition for β ≥ 0

(B2 + (A + αI )YCT + B1MCT )T (B2 + (A + αI )YCT

+B1MCT ) ≤ βI. (16)

Applying Schur complement equivalence, the inequality
(16) is equivalent to

[
−βI BT

2 + CY (A + αI )T + CMT BT
1

B2 + (A + αI )YCT + B1MCT −I

]
≤ 0.

(17)

Thus, the problem of solving (10), (11) can be changed into
the problem of finding a global solution of the minimisation
problem:

minβ

subject to (10), (17), Y > 0 and β ≥ 0.
(18)

A similar computational algorithm has been used in Chen,
Niu, and Zou (2013) and more detailed computational pro-
cedure can be found in Niu, Ho, and Lam (2005). If the
global infimum β is zero, the corresponding solution of the
minimisation problem (18) will satisfy the LMI (10) and
the equality (11). If the global infimum β is sufficiently
small but not equal to zero, then B2 + (A + αI)YCT +
B1MCT ≈ 0. A sufficiently small β is enough to ensure the
equality condition in practical applications.

5. D-negative imaginary systems

In this section, we generalise the concept of α-negative
imaginary transfer functions to negative imaginary transfer
functions with pole placement in an LMI region.

Definition 5 (Chilali & Gahinet, 1996): A subset D of the
complex plane is said to be an LMI region if there exist a
symmetric matrix P ∈ Rr × r and a matrix Q ∈ Rr × r such
that

D = {s ∈ C : P + sQ + s̄QT < 0}.

Definition 6: Given an LMI region D. A real-rational
proper transfer function matrix G(s) ∈ Rm×m is said to
be D-negative imaginary if

(1) G(s) is negative imaginary.
(2) All the poles of G(s) lie in the LMI region D.

Some typical LMI regions could be found in Chilali and
Gahinet (1996), Chilali et al. (1999), Henrion, Bachelier,
and Šebek (2001) and Faria et al. (2009). When r ∈ {1, 2},
we have the following results.

Lemma 4: For a given region D = {s ∈ C : p + qs +
qs̄ < 0, p ∈ R, q ∈ R}, let (A, B, C, D) be a state-space
realisation of a real-rational proper transfer function ma-
trix G(s) ∈ Rm×m, where A ∈ Rn × n, B ∈ Rn × m, C ∈ Rm × n,
D ∈ Rm × m. Then G(s) is D-negative imaginary if the fol-
lowing conditions hold:

(1) pq > 0, D = DT.
(2) There exists a matrix Y ∈ Rn × n, Y > 0, such that[

I

A

]T [
pY qY

qY 0

][
I

A

]
< 0 and B = −AYCT.

Proof: Condition 2 implies that there exists a matrix Y >

0 such that pY + qATY + qYA < 0 and B = −AYCT.
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Because pq > 0, we obtain that ATY + YA < 0 and B =
−AYCT. According to Lemma 7 in Xiong et al. (2010), G(s)
is negative imaginary. In view of Theorem 1 in Henrion and
Meinsma (2001), Condition 2 also implies that all the poles
of G(s) lie in the regionD. Hence, according to Definition 6,
G(s) is D-negative imaginary. !
Lemma 5: For a given region D, assume P ∈ R2 × 2, Q
∈ R2 × 2, P > 0 and Q > 0. Let (A, B, C, D) be a state-
space realisation of a real-rational proper transfer function
matrix G(s) ∈ Rm×m, where A ∈ Rn × n, B ∈ Rn × m, C ∈
Rm × n, D ∈ Rm × m. If D = DT and there exists a matrix Y ∈
Rn × n, Y > 0, such that

MD(A, Y ) < 0, andB = −AYCT ,

where MD(A, Y ) = P ⊗ Y + Q ⊗ AY + QT ⊗ (AY )T ,
then G(s) is D-negative imaginary.

Proof: Because P > 0, Q > 0, one has that P + 2ℜ[s]Q
< 0 for ℜ[s] < 0. Therefore, the LMI region D lies in
the open left-half plane. In view of Theorem 2.2 in Chilali
and Gahinet (1996), if there exists a matrix Y > 0 such
that MD(A, Y ) < 0, then all the poles of A lie in the re-
gion D. Furthermore, we have AY + YAT < 0. It follows
from Lemma 7 in Xiong et al. (2010) that G(s) is nega-
tive imaginary. Therefore, according to Definition 6, G(s)
is D-negative imaginary. !
Example 1: Consider G(s) = 1

s+2 . A state-space realisa-
tion is given by ( − 2, 1, 1, 0). Given an LMI region
D = {s ∈ C : 1 + s + s̄ < 0}. Then a solution P = 1

2 sat-
isfies the conditions in Lemma 4. It follows that G(s)
is negative imaginary and all the poles lie in the region
ℜ[s] < − 1

2 .

Lemma 6: Let (A, B, C, D) be a state-space realisation of a
real-rational proper transfer function matrixG(s) ∈ Rm×m,
where A ∈ Rn × n, B ∈ Rn × m, C ∈ Rm × n, D ∈ Rm × m. Suppose
θ ∈ (0, π

2 ). If D = DT and there exists a matrix Y ∈ Rn × n,
Y > 0, satisfying

[
sin θ (AY + YAT ) cos θ (AY − YAT )
cos θ (YAT − AY ) sin θ (AY + YAT )

]
< 0 (19)

B = −AYCT , (20)

then G(s) is negative imaginary and all the poles of
G(s) lie in the conic sector S(0, 0, θ ) as shown in
Figure 2.

Proof: The (1, 1) block of inequality (19) implies that
sin θ (AY + YAT) < 0. Because θ ∈ (0, π

2 ), we obtain AY +
YAT < 0. According to Lemma 7 in Xiong et al. (2010), G(s)
is negative imaginary. In view of Theorem 2.2 in Chilali and
Gahinet (1996), the inequality (19) implies that all the poles
of G(s) lie in the conic sector S(0, 0, θ ). !

θ

Re[ ]s

Im[ ]s

Figure 2. Conic sector S(0, 0, θ ).

When r = 1, the LMI regions correspond to verti-
cal half-planes. When r = 2, the LMI regions may cor-
respond to discs, ellipses, sectors and strips (Henrion &
Meinsma, 2001; Henrion et al., 2001). Those two classes
of LMI regions could cover most needs for control purpose
in practice. For more complex LMI regions, we may find
a common Y > 0 such that B = −AYCT, AY + YAT <

0 and MDi
(A, Y ) < 0, i ∈ {1, . . ., l}, where Di are dif-

ferent LMI regions. An illustrative example is shown in
Figure 3. This polygon region is the intersection of the left-
half plane, two conic sectors and two horizontal strips. More
details about the intersection of LMI regions can be found
in Arzelier, Henrion, and Peaucelle (2002) and Chilali and
Gahinet (1996). It is worth pointing out that all the results in
Lemmas 4–6 hold without minimality assumption.

Take the conic sector S(0, 0, θ ) case as an example.
Lemma 6 can be used to design a state-feedback controller
such that the resulting closed-loop system is D-negative
imaginary.

Corollary 2: Suppose D1 = 0. If D2 = DT
2 and there exist

matrices Y ∈ Rn × n, Y > 0, M ∈ Rm × n and a scalar ε > 0
satisfying

Re[ ]s

Im[ ]s

Figure 3. Convex polygon as an intersection of LMI regions.
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[
sin θ (AY + YAT + B1M + MT BT

1 ) cos θ (AY − YAT + B1M − MT BT
1 )

cos θ (YAT − AY + MT BT
1 − B1M) sin θ (AY + YAT + B1M + MT BT

1 )

]
+ εI ≤ 0 (21)

B2 + AYCT + B1MCT = 0, (22)

then the resulting closed-loop system of (6) with the state-
feedback control law u(t) = MY−1x(t) is D-negative imagi-
nary, where the region D is the conic sector S(0, 0, θ ).

Proof: The result follows from the proofs of Theorem 2
and Lemma 6. !

A numerical method to solve the LMI (21) and the
equality (22) is the same as the one suggested in Section 4.
The problem of solving (21), (22) can be transformed into
an optimisation problem as follows:

min β

subject to (21), Y > 0, β ≥ 0 and[
−βI BT

2 +CYAT +CMT BT
1

B2+AYCT +B1MCT −I

]
≤ 0.

(23)

Remark 8: For the other types of LMI regions, Lemmas
4 and 5 can also be applied to design a state-feedback
controller such that the resulting closed-loop system is D-
negative imaginary. The design condition can be found sim-
ilarly as in the conic sector case.

6. Illustrative examples

In this section, two examples are used to illustrate the main
results of this paper.

Example 2: Consider the system (6) with coefficient ma-
trices given by

A =

⎡

⎣
−4 1 0
1 −4 1
0 1 −4

⎤

⎦, B1 =

⎡

⎣
−3
−5
3

⎤

⎦, B2 =

⎡

⎣
0

−1
0

⎤

⎦,

C =
[
−1 0 3

]
,D1 = D2 = 0. (24)

To illustrate Corollary 1, suppose α = 1 and w(t) = 0.
YALMIP (Lofbërg, 2004) and SeDuMi were used to find a
solution of LMIs (8), (9) as

Y =

⎡

⎣
1.9724 2.2028 0.6425
1.9886 2.8755 0.6628
0.1568 0.0200 0.0523

⎤

⎦.

Therefore, the transfer function from u(t) to y(t) of the
system in (6) and (24) is α-negative imaginary with
α = 1.

A state-feedback controller can be designed in the case
when w(t) ̸= 0. Given α = 1. The optimisation problem
(18) was solved to obtain a set of solutions as

M =
[
−0.4478 −0.6631 0.2814

]
,

Y =

⎡

⎣
1.1786 1.1370 −0.2501
1.1370 1.7519 −0.4468

−0.2501 −0.4468 0.2542

⎤

⎦,

β = 2.8533 × 10−12, ε = 10−6.

Hence, the LMI (10) and the equality (11) are satisfied.
According to Theorem 2, the transfer function from w(t) to
y(t) of the system in (6) and (24) is α-negative imaginary
under the state-feedback controller

u(t) = MY−1x(t) =
[
−0.0733 −0.2359 0.3725

]
x(t).

Given θ = π
12 . The optimisation problem (23) was solved

to obtain a set of solutions as

M =
[
−28.4743 −39.9705 22.5113

]
,

Y =

⎡

⎣
48.4809 50.4019 −18.1522
50.4019 111.8582 −24.4410

−18.1522 −24.4410 23.6423

⎤

⎦,

β = 1.4672 × 10−8, ε = 10−6.

According to Corollary 2, the transfer function from w(t) to
y(t) of the system in (6) and (24) is negative imaginary, and
all the poles lie in the conic sector S(0, 0, π

12 ). The obtained
state-feedback controller is given by

u(t) = MY−1x(t) =
[
−0.2214 −0.1119 0.6664

]
x(t).

Example 3: The example in Lanzon and Petersen (2008)
was modified so that we can analyse the α-stability of an
uncertain multi-input multi-output system. Consider the
lightly damped uncertain mechanical plant as depicted in
Figure 4. This two-degree-of-freedom spring mass system
consists of two unit masses and three springs. The masses
are attached to fixed walls via two springs of known unit
stiffness and two dampers of known unit viscous resis-
tance. Moreover, those two masses are coupled together via
a third spring of unknown stiffness k and a third damper of
known unit viscous resistance. Let u(t) :=

[
u1(t) u2(t)

]T

denote the control inputs, which are the forces applied to the
masses; let y(t) :=

[
y1(t) y2(t)

]T
denote the displacement
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1940 Mei Liu and Junlin Xiong

Figure 4. Lightly damped uncertain mechanical plant.

measurements of the masses. Let

p(s) := 1
s2 + s + 1

, δ(s) := 1
s2 + 3s + (2k + 1)

.

The transfer function of the uncertain plant from u(t) to y(t)
is given by

P,(s) = P (s) + ,(s), (25)

where k > 0 is unknown and represents the uncertainty in the

system, P (s) = p(s)
[

0.5 0.5
0.5 0.5

]
is the nominal plant model

and ,(s) = δ(s)
[

0.5 −0.5
−0.5 0.5

]
is the uncertain remainder.

We split the uncertain plant P,(s) as in (25) for the purpose
of control system design, see Figure 5.

Now, we choose

C(s) = 1
s + 2

⎡

⎣
−3(s2 + s + 1)(s + 2) − 1

(s2 + s + 1)(s + 2) + 1
1

1 −1

⎤

⎦. (26)

Define R(s) := −C(s)(I + P(s)C(s))−1 as the transfer func-
tion matrix mapping from w(t) to z(t) so that the closed-
loop system in Figure 5 can be rearranged into the form
in Figure 6. Because of our particular choice of C(s), we

have R(s − α) = 1
s−α+2

[
3 −1

−1 1

]
. When 0 ≤ α < 2, R(s

− α) is strictly negative imaginary. In addition, we have

,(s − α) = 1
s2+(3−2α)s+α2−3α+2k+1

[
0.5 −0.5

−0.5 0.5

]
. When 0 ≤

( )s∆

( )P s( )C s

( )P s∆

z

u yr

−

w

Figure 5. The closed-loop system.

( )s∆

wz

( )R s

Figure 6. Rearranged closed-loop system.

α < 3−
√

5
2 , ,(s − α) is negative imaginary for all k > 0.

Note that R(∞) ≥ 0, ,(∞) ≥ 0 and R(∞),(∞) = 0.
For a given α = 0.3, we have ,(−α)R(−α) =
1

3.4k+0.323

[
2 −1

−2 1

]
, λmax(,(−α)R(−α)) = 3

3.4k+0.323 . Theo-
rem 1 indicates that the uncertain plant is α-stable (α =
0.3) by the controller (26) if and only if k > 0.79 (obtained
through the condition 3

3.4k+0.323 < l).

7. Conclusions

This paper has studied the α- and D-negative imaginary
properties of square real-rational proper transfer function
matrices. The concept of α-negative imaginary transfer
functions has been introduced. An α-negative imaginary
lemma without minimality assumption has been established
for transfer functions that are α-negative imaginary. A nec-
essary and sufficient condition has been derived for the
internal α-stability of positive feedback interconnected sys-
tems. Also, a state-feedback controller has been designed to
ensure that the resulting closed-loop system is α-negative
imaginary. Moreover, the D-negative imaginary property
has been introduced by considering pole placement in LMI
regions. Finally, the main results of this paper have been
illustrated by two examples.
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