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ABSTRACT
This paper studies the output-feedback LQG control of a two-player system with one-step commu-
nication delay. A novel information pattern is considered and a new controller structure is intro-
duced. The proposed controller consists of twoparts: the first part is based on estimated system state;
the second part is based on current local measurement output. The form of the optimal controller
is established using the method of independence decomposition. A necessary condition is estab-
lished to construct the optimal controller gains. Two iterative algorithms are used to find the optimal
gains numerically. Finally, the effectiveness of the theoretical results is illustrated through a numerical
example.

1. Introduction

Generally speaking, large-scale systems are typically com-
posed of subsystems that are coupled via their system
dynamics or common performance criterion. Numerous
physical examples of such systems are found in engineer-
ing fields, including power grid (Aldeen, Saha, Alpcan, &
Evans, 2015), teams of autonomous vehicles (Fax &Mur-
ray, 2004; Jin & Ray, 2014), satellite formation and aircraft
(Esfahani & Khorasani, 2016). For large-scale systems
where subsystems cannot obtain full system information,
decentralised control is an effective control technique
(Sandell, Varaiya, Athans, & Safonov, 1978). To achieve
the best system performance, optimal decentralised con-
trol problems are usually modelled as optimisation prob-
lems with constraints. Unfortunately, those optimisation
problems have been shown to be intractable inmany cases
(see Blondel & Tsitsiklis, 2000; Papadimitriou & Tsitsik-
lis, 1986). As a result, research attention has been paid to
classes of the problems to which the corresponding opti-
misation problems are tractable. Several classes of these
problems have been found in previous works such as
Ho and Chu (1972), Qi, Salapaka, Voulgaris, and Kham-
mash (2004), Rotkowitz and Lall (2006) and Lessard and
Lall (2014). In Ho and Chu (1972), the partially nested
information pattern was defined. Under this information
pattern, the optimal decentralised control policies were
proved to be linear. Linear control policies are easy to
be found. In Qi et al. (2004), Rotkowitz and Lall (2006),
and Lessard and Lall (2014), the definition of quadratic
invariance was introduced. The optimal control problems
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with quadratic invariance constraint can be recast as con-
vex optimisation problems. Convex optimisation prob-
lems can be solved by existing algorithms.

Decentralised linear quadratic Gaussian (LQG) con-
trol is an important and hot research topic. The output-
feedback LQG control with one-step delay-sharing pat-
tern has been studied by matrix minimum principle in
Kurtaran and Sivan (1974), and by the second-guessing
technique in Toda and Aoki (1975). For multiple steps
delay-sharing pattern, the structural results to the opti-
mal control have been established in Nayyar, Mahajan,
and Teneketzis (2011). A common feature of the results
in Kurtaran and Sivan (1974), Toda and Aoki (1975) and
Nayyar et al. (2011) is that the estimator of each subsys-
tem needs to estimate the global system state. Hence, the
system state is estimated repeatedly by the subsystems in
Kurtaran and Sivan (1974), Toda and Aoki (1975) and
Nayyar et al. (2011). For a nested information pattern, the
optimal decentralised output-feedback LQG controllers
for large-scale systems with two interconnected subsys-
tems have been designed in Lessard and Lall (2015). The
result in Lessard and Lall (2015) is suitable for the two-
player systems in which the systemmatrices are lower tri-
angular, and is unlikely to be extended to the general two-
player systems. For the delay model defined over a com-
munication graph, the explicit optimal solution to decen-
tralised state-feedback LQG control has been provided
by information hierarchy graph and dynamic program-
ming in Lamperski and Doyle (2012) and Lamperski and
Lessard (2015). Furthermore, the explicit optimal solu-
tion to the varying delay case has been derived in Matni
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and Doyle (2013). However, the results in Lamperski and
Doyle (2012), Lamperski and Lessard (2015) and Matni
and Doyle (2013) are not suitable for output feedback
case, because the information independence decomposi-
tion is not valid for the output feedback case.

Motivated by the above discussion, we want to incor-
porate and expend the optimal controller design meth-
ods in Kurtaran and Sivan (1974), Toda and Aoki (1975),
Nayyar et al. (2011), Lamperski and Doyle (2012), Lam-
perski and Lessard (2015) andMatni and Doyle (2013) to
a novel information pattern case (that is, output feedback,
local state estimation). In particular, we are interested in
the output feedback LQG control with communication
delay in which the subsystem only estimates its own sub-
system state. Compared to the previous work in Kurtaran
and Sivan (1974), Toda and Aoki (1975), Nayyar et al.
(2011), Lessard and Lall (2015), Lamperski and Doyle
(2012), Lamperski and Lessard (2015) and Matni and
Doyle (2013), the advantages of ourwork are summarised
as follows. First, the information pattern in this paper is
novel. Compared to the information pattern considered
in Kurtaran and Sivan (1974), Toda and Aoki (1975) and
Nayyar et al. (2011), where global state is estimated, our
information pattern is suitable for local state estimation.
Hence, the repeated calculation for global estimation in
Kurtaran and Sivan (1974), Toda and Aoki (1975) and
Nayyar et al. (2011) is avoided in this paper. Second, the
two-player system model in this paper is more general
than the one in Lessard and Lall (2015), and the require-
ment on system matrices are removed. Third, the out-
put feedback controller design method is studied in this
paper, whereas Lamperski and Doyle (2012), Lamperski
and Lessard (2015) and Matni and Doyle (2013) inves-
tigate the state feedback controller design. Because the
measurement output instead of the system state is usually
available in engineering practice, the study of output feed-
back controller design is more desirable than the study of
the state feedback case.

This paper focuses on the decentralised output-
feedback LQG control problem. A two-player system
with one-step communication delay is considered. In the
two-player system, the measurement output of each sub-
system is transmitted to the other via the network with
one-step delay. Each subsystem has a plant, a local esti-
mator and a local controller. The local estimator estimates
only the local system state and transmits the estimated
local state to the other through the network. Based on the
available information, a novel controller structure is pro-
posed. The proposed controller is composed of two parts.
By means of information independence decomposition
and dynamic programming, the form of the optimal con-
troller is established. A necessary condition for the design

of the gains of the optimal controller is developed based
on the discrete-timematrixminimumprinciple. The con-
dition is given in terms of a set of matrix equations. The
numerical solution to the gains of the optimal controller
is found by two iterative algorithms. The first algorithm
is developed based on the penalty function method. The
second algorithm is exploited according to the gradient
descent method. The value of the corresponding perfor-
mance criterion achieved by the designed controller is
derived. Finally, a numerical example is given to illustrate
the effectiveness of the proposed theory.

Notation
E[x] denotes the expectation of a random variable x. AT

is the transpose of the matrix A. Let {x0: t} denote the
sequence {x0, x1,… , xt}. tr[X] is the trace of the square
matrix X. The notation X�0 (respectively, X�0) means
thatX is a real symmetric positive definitematrix (respec-
tively, real symmetric positive semi-definite matrix). For
a matrix M that is partitioned into n × m blocks
[Mij]1 � i � n, 1 � j � m, Mrs denotes the sub-matrix of M,
given by [Mij]i � r, j � s, where r�{1,… , n}, s�{1,… , m}.
For instance, if r = {1}, s = {1, 2}, then M{1}{1,2} =[
M11 M12

]
.

2. Problem statement

Consider a linear time-varying stochastic system with
two interconnected subsystems of the form

x1t+1 = A11
t x1t + A12

t x2t + B1
t u

1
t + ω1

t , (1)

x2t+1 = A21
t x1t + A22

t x2t + B2
t u

2
t + ω2

t , (2)

yit = Ci
tx

i
t + υ i

t , i ∈ {1, 2}, (3)

where xit ∈ Rni is the state of subsystem i at time t;
uit ∈ Rli is the control input; yit ∈ Rmi is the measure-
ment output; ωi

t ∈ Rni and υ i
t ∈ Rmi are the system noise

and measurement noise, respectively. All the matrices in
(1)–(3) have proper dimensions.

Define the following vectors

x �
[
x1

x2

]
, u �

[
u1

u2

]
, ω �

[
ω1

ω2

]
,

y �
[
y1

y2

]
, υ �

[
υ1

υ2

]
,

then, the global system dynamics can be written as

xt+1 = Atxt + Btut + ωt , (4)
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Figure . The large-scale system is composed of two subsystems.
Each subsystem has a plant, a local estimator (LE) and a local con-
troller (LC). The two subsystems exchange information via a one-
step delay communication network.

yt = Ctxt + υt , (5)

where At = [ A
11
t A12

t
A21
t A22

t
], Bt = [ B

1
t 0
0 B2

t
], Ct = [C

1
t 0
0 C2

t
]. The fol-

lowing assumptions are made about the initial state and
noises. The initial state x0 is a Gaussian random vec-
tor with x0 ∼ N(0, �0), where �0�0. The disturbances
ωt and υ t are independent Gaussian noises with ωt ∼
N(0,Wt ), νt ∼ N(0,Vt ), where Wt�0, Vt�0. Further-
more, x0, ωt1 and νt2 are pairwise uncorrelated for all t1
and t2.

Remark 2.1: The control problems for two-player sys-
tems are basic and important research problems. Some
special decentralised control problems in discrete-time
interconnected systems composed of two subsystems
were addressed in Duan, Wang, and Huang (2007). The
stabilisation problem of second-order switched positive
systems consisting of two unstable subsystems has been
studied in Zheng and Feng (2011). A class of two-player
output-feedback problemswith a nested information pat-
tern has been studied in Lessard and Lall (2015).

In the large-scale system (4)–(5), the subsystems
exchange information through a network with one-step
delay. The system configuration is depicted in Figure 1,
where each subsystem has a plant, a local estimator (LE)
and a local controller (LC). Because y jt is transmitted to
LEi via network with one-step delay, the available mea-
surement output to LEi is {yit , y0:t−1}. In order to use the
standard Kalman filter in LEi, {y0: t − 1} is used to estimate
the local state xit . The estimated value of xit is denoted by

x̂it . The estimated local state x̂it computed in LEi is trans-
mitted to LEj via the same communication network. As
a result, the estimated state available to LEi is given by
Eit � {x̂it , x̂0:t−1}, where x̂t is obtained by the following
standard Kalman filter (Åström, 2012):

x̂t+1 = At x̂t + Btut + Kt (yt −Ct x̂t ), x̂0 = 0, (6)

Pt+1 = AtPtAT
t +Wt − AtPtCT

t (CtPtCT
t +Vt )

−1CtPtAT
t ,

P0 = �0, (7)

Kt = AtPtCT
t (CtPtCT

t +Vt )
−1, (8)

where Pt = E[eteTt ] and et � xt − x̂t is the estimation
error.

A lemma associated with the Kalman filter is stated in
the following.

Lemma 2.1: (Åström, 2012) The sequence

φt = yt −Ct x̂t , for t = 0, . . . ,N − 1,

is a zero-mean uncorrelated Gaussian process with covari-
ance Yt = CtPtCT

t +Vt . Moreover, φt is uncorrelated with
the past measurements, that is E[φt1yTt2 ] = 0, for t2 < t1.

Remark 2.2: If the global state xt is estimated in each
LE such as in Kurtaran and Sivan (1974), Toda and Aoki
(1975) and Nayyar et al. (2011), then the estimated local
state x̂it is not needed to be transmitted to LEj via the net-
work. This means that the estimated state available to LEi
is {x̂0:t}. However, in this case, the repeated calculation for
estimation is conducted across over the two LEs. In other
words, the amount of calculation for estimation is larger
than that of the case considered in this paper.

The estimated state available to LEi and {yit} are deliv-
ered to LCi through the physical connection without
delay as illustrated in Figure 1. Thus, the information for
LCi has two parts:

Di
t = {yit} ∪ Eit , i = 1, 2. (9)

Based on (9), the controller to be designed in this paper
is of the form:

uit = γ i
t (Eit ) + Fi

t y
i
t , i = 1, 2, (10)

where Fi
t is the gain matrix and γ i

t is a Borel-measurable
function.
Remark 2.3: Although yit is not used to estimate the sys-
tem state xit , it is used to generate the control input uit
directly. Thus, the second term in (10) plays the role of
the correction.

1922 Y. WANG ET AL.



The objective of this paper is to find the control
sequences {ui0:N−1}, i = 1, 2, satisfying (10) such that the
quadratic performance criterion

J � E

[N−1∑
t=0

(xTtQtxt + uTtRtut ) + xTNQNxN

]
(11)

is minimised, where Qt�0 and Rt�0 are given matrices.
In other words, our control problem can be formulated as
the following optimisation problem:

min J
subject to (1), (2), (3), (10).

(12)

3. Controller design

In this section, the main results of this paper are pre-
sented. In Section 3.1, the form of the optimal policies
γ 1
t (E1t ) and γ 2

t (E2t ) are found. In Section 3.2, a necessary
condition to (12) with respect to the gains of the con-
troller is established. In Section 3.3, two algorithms are
given to compute the optimal controller gains. In Sec-
tion 3.4, the value of the optimal performance criterion
is derived.

3.1 The form of optimal policies γ 1
t and γ2

t

The optimal policies γ 1
t and γ 2

t are shown to be linear in
this subsection. Moreover, the form of optimal γ 1

t and γ 2
t

are presented.

Lemma 3.1: Consider the optimisation problem (12), the
optimal policies γ 1

t and γ 2
t are of the form

[
γ 1
t (E1t )

γ 2
t (E2t )

]
=

[
(T {1}

t − F1
t C1

t )ζ
{1}
t

(T {2}
t − F2

t C2
t )ζ

{2}
t

]
+ (T {1,2}

t − FtCt )ζ
{1,2}
t ,

(13)

where

� = {{1}, {2}, {1, 2}},
ζ r
0 = 0, for r ∈ �,

ζ
{1}
t+1 = ω̂1

t , ζ
{2}
t+1 = ω̂2

t ,

ζ
{1,2}
t+1 =

∑
r∈�

(A{1,2}r
t + B{1,2}r

t T r
t )ζ r

t , (14)

the gainmatrices T {1}
t , T {2}

t and Ft = diag{F1
t , F2

t } are to be
chosen in the optimisation procedure, and T {1,2}

t are com-
puted, recursively, as follows:

XN = QN, (15)

	t = Rt + BTtXt+1Bt , (16)

T {1,2}
t = −	−1

t BTtXt+1At , (17)

Xt = Qt + At
TXt+1At − T {1,2}

t
T
	tT {1,2}

t . (18)

Proof: The control input uit in (10) can be decomposed
into

uit = ũit + Fi
t φ

i
t , i = 1, 2. (19)

As a result,

ũit = Fi
t y

i
t + γ i

t (Eit ) − Fi
t (y

i
t −Ci

t x̂
i
t )

= γ i
t (Eit ) + Fi

t C
i
t x̂

i
t , i = 1, 2. (20)

Denote ũt =
[
ũ1t
ũ2t

]
. Using et = xt − x̂t and substituting

(19) into (11), we have

J =E

{
x̂TNQNx̂N +

N−1∑
t=0

(x̂TtQt x̂t + ũTtRt ũt )

+
N∑
t=0

eTtQtet +
N−1∑
t=0

φT
t F

∗
t
TRtF∗

t φt + 2
N−1∑
t=0

φT
t F

∗
t
TRt ũt

}
.

(21)

A routine computation gives that

E[eTtQtet ] = tr
(
QE[eteTt ]

) = tr(QtPt ), (22)

E[φT
t F

∗
t
TRtF∗

t φt ] = tr
(
F∗
t
TRtF∗

t E[φtφ
T
t ]

)
= tr[F∗

t
TRtF∗

t (CtPtCT
t +Vt )]. (23)

Using the fact that Eit is a linear combination of
{y0: t − 1} and according to Lemma 2.1, it holds that

E[ũtφT
t ] = E

[[
γ 1
t (E1t ) + F1∗

t C1
t x̂1t

γ 2
t (E2t ) + F2∗

t C2
t x̂2t

]
φT
t

]
= 0,

which implies that

E
[
φ′
tF

∗
t
TRt ũt

]
= tr{F∗

t
TRtE[ũtφT

t ]} = 0. (24)

Because (22), (23) and (24) do not depend on ũt , it turns
out that the optimal input ũt minimising the performance
criterion (11) is identical to the one minimising

J̃ = E

{
x̂TNQNx̂N +

N−1∑
t=0

(x̂TtQt x̂t + ũTtRt ũt )

}
. (25)
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Plugging (19) back into (6) and using φt = yt −Ct x̂t ,
we obtain that

x̂t+1 = At x̂t + Bt ũt + ω̂t , x̂0 = 0, (26)

where ŵt = (BtFt + Kt )φt . Consider the system dynam-
ics (26), the performance criterion (25) and the control
input (20). The optimal ũt is the solution to the following
optimisation problem:

min J̃
subject to x̂t+1 = At x̂t + Bt ũt + ω̂t ,

ũit = γ i
t (Eit ) + Fi∗

t Ci
t x̂

i
t .

(27)

The information structure of problem (27) is partially
nested in terms of Definition 3 in Ho and Chu (1972).
Using Theorem 2 in Ho and Chu (1972), the optimal ũit
to the problem (27) is linear. According to (20), the opti-
mal γ i

t (Eit ) to the problem (12) is linear.
Considering problem (27) and using the state and

input decomposition results in Lamperski and Lessard
(2015), we have

x̂t =
[
ζ

{1}
t

ζ
{2}
t

]
+ ζ

{1,2}
t , ũt =

[
ϕ̃

{1}
t

ϕ̃
{2}
t

]
+ ϕ̃

{1,2}
t , (28)

where ζ
{1}
t and ϕ̃

{1}
t are the functions of ω̂1

t−1; ζ
{2}
t and ϕ̃

{2}
t

are the functions of ω̂2
t−1; ζ

{{1,2}}
t and ϕ̃

{1,2}
t are the func-

tions of {ω̂0:t−2}.
It follows from Lemma 2.1 that {ω̂0:t−1} is independent

of ω̂{1}
t and ω̂

{2}
t . By the technology of dynamic program-

ming in Lamperski and Doyle (2012), the optimal solu-
tion ϕ̃

{1,2}
t to problem (27) is given by

ϕ̃
{1,2}
t = T {1,2}

t ζ
{1,2}
t ,

where T {1,2}
t is given by (15)–(18). As a result, the optimal

ũt has the following form:

ũt =
[
T {1}
t ζ

{1}
t

T {2}
t ζ

{2}
t

]
+ T {1,2}

t ζ
{1,2}
t .

Using (20), it follows that
[
γ 1
t (E1t )

γ 2
t (E2t )

]
= ũt − FtCt x̂t

=
[
T {1}
t ζ

{1}
t

T {2}
t ζ

{2}
t

]
+ Tr

t ζ
{1,2}
t − FtCt

( [
ζ

{1}
t

ζ
{2}
t

]
+ ζ

{1,2}
t

)

=
[
(T {1}

t − F1
t C1

t )ζ
{1}
t

(T {2}
t − F2

t C2
t )ζ

{2}
t

]
+ (T {1,2}

t − FtCt )ζ
{1,2}
t .

The proof is completed. �

In the following, for easy of notation, we denote
T {1,2}
t and ζ

{1,2}
t by Tt and ζ t, respectively. In addition,

define

Ht = diag{T {1}
t ,T {2}

t }.

3.2 Optimisation condition of gainmatrices

According to Lemma 3.1, a necessary optimisation con-
dition to problem (12) with respect tomatrix variables Ft,
andHt is presented in this subsection by means of matrix
minimum principle.
Theorem 3.1: Consider the optimisation problem
(12), suppose F∗

0:N−1 and H∗
0:N−1 are the optimal solu-

tions. Then, F∗
0:N−1 and H∗

0:N−1 satisfy the following
conditions:

� H∗
0 is any block diagonal matrix with proper dimen-

sion, and satisfies ‖H∗
0 ‖ < +∞.

� For t = 0,… , N − 2,

(BtT�t+1Bt + Rt )FtYt + BtT�t+1KtYt + St = 0,
(29)

(BTt+1Mt+2Bt+1 + Rt+1)Ht+1Ŵt

+ BTt+1Mt+2At+1Ŵt + S̃t = 0. (30)

� For t = N − 1,

(BN−1
TQNBN−1 + RN−1)FN−1YN−1

+ BN−1
TQNKN−1YN−1 + SN−1 = 0. (31)

In (29)–(31),

�t = Qt + HT
t RtHt + (At + BtHt )

TMt+1(At + BtHt ),

Ŵt = (BtFt + Kt )Yt (BtFt + Kt )
T,

St ∈
[
0 S12t
S21t 0

]
, S12t ∈ Rl1×m2, S21t ∈ Rl2×m1,

S̃t ∈
[
0 S̃12t
S̃21t 0

]
, S̃12t ∈ Rl1×n2, S̃21t ∈ Rl2×n1,

and M∗
t ∈ Rn×n is obtained by the following recursion

equations:

M∗
t = QT

t + TtTRtTt + (At + BtTt )TM∗
t+1(At + BtTt ),

t = N − 1, . . . , 1, (32)

M∗
N = QT

N . (33)

1924 Y. WANG ET AL.



Proof: Equations (28) can be rewritten in the following
form:

x̂t = ω̂t−1 + ζt , (34)

ũt = Ht ω̂t−1 + Ttζt , (35)

where Ht = diag{T {1}
t ,T {2}

t }. Recall that, ω̂−1 = [
ζ

{1}
0

ζ
{2}
0 ] =

0 (see Lemma 3.1). It follows from (35) and ω̂−1 = 0 that
the optimal H∗

0 can be any block diagonal matrix with
proper dimension satisfying ‖H∗

0 ‖ < +∞.
Plugging (34)–(35) into (21), we have

J = J̄ + E
[ N∑

t=0

eTtQtet
]
,

where

J̄ = E

{N−1∑
t=0

[(
ω̂t−1 + ζt )

TQt

(
ω̂t−1 + ζt

)

+
(
Ht ω̂t−1 + Ttζt

)T
Rt

(
Ht ω̂t−1 + Ttζt

)
+

(
Ftφt

)T
RtFtφt

]
+

(
ω̂N−1 + ζN

)T
QN

(
ω̂N−1 + ζN

)}

= E

{N−1∑
t=1

[
ζt
T
(
Qt + TtTRtTt

)
ζt + ω̂T

t−1

(
Qt + Ht

TRtHt

)
ω̂t−1

]

+ ζN
TQNζN + ω̂T

N−1QNω̂N−1 +
N−1∑
t=0

(
Ftφt

)T
RtFtφt

}
.

The first equality follows from direct computation; the
second equality holds due to the independence of ζt and
ω̂t−1.

Define �t � E[ζtζt
T] for t = 0,… , N. It turns out that

J̄ = ∑N−1
t=0 Lt+1, where Lt + 1 is given by

Lt+1 = tr
[
(Qt+1 + TT

t+1Rt+1Tt+1)�t+1

]
+ tr

[
(Qt+1 + HT

t+1Rt+1Ht+1)Ŵt

]
+ tr(FTt RtFtYt ). (36)

In (36), TN = 0 and HN = 0. In addition, according to
(14), one has that �t can be computed by the following
recursion equations:

�0 = �1 = 0, (37)

�t+1 = (At + BtTt )�t (At + BtTt )T

+ (At + BtHt )Ŵt−1(At + BtHt )
T, (38)

for t = 1, . . . ,N − 1.

Thus, the optimal F∗
0:N−1 and H∗

0:N−1 of the minimising
problem (12) are the optimal solution to the following
optimisation problem:

min J̄ =
N−1∑
t=0

Lt+1

subject to (37), (38).

(39)

Now (37) and (38) are viewed as the state dynamic
equations, where the state is �t, the gain matrices Ft − 1
andHt play the role of inputs, and the performance crite-
rion is J̄. The aim is to find optimal F∗

0:N−1 and H∗
0:N−1 to

minimise J̄. This optimisation problem can be dealt with
by the discretematrixminimumprinciple (Athans, 1967).
The Hamiltonian function for the optimisation problem
is

ht = Lt + tr
[
(At + BtTt )�t (At + BtTt )TMT

t+1

]
+ tr

{
(At + BtHt )Ŵt−1(At + BtHt )

TMT
t+1

}
+ tr

[
2Ft−1STt−1

]
+ tr

[
2HtS̃Tt

]
,

for t = 1, . . . ,N,

where St and S̃t are the Lagrangemultipliers matrices and
Mt � Rn × n is the costate matrix. A necessary condition
to problem (12) is given by

∂ht
∂Ft−1

∣∣∣
∗

= 0,
∂ht
∂Ht

∣∣∣
∗

= 0, (40)

∂ht
∂Mt+1

∣∣∣
∗

= �∗
t , �1 = �∗

1 , (41)

∂ht
∂�t

∣∣∣
∗

= M∗
t , 0 = M∗

N+1. (42)

Through direct computation, the partial differential ofŴt
with respect to Ft is given by

∂(Ŵt ) = Bt∂(Ft )(YtFTt B
T
t +YtKT

t )

+ (BtFtYt + KtYt )(∂(Ft ))TBTt , (43)

and with respect to Ht is

∂(Ŵt ) = 0. (44)
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Using (43)–(44), (40) gives (29)–(31). In addition, (42)
gives (32)–(33). The proof is completed. �
Remark 3.1: In this paper, the optimal Ft − 1 depends on
T {1}
t and T {2}

t , where we have denoted diag{T {1}
t ,T {2}

t } =
Ht . Thus, Ft cannot be designed separably by solving
matrix equation as in Kurtaran and Sivan (1974), Toda
and Aoki (1975) and Nayyar et al. (2011). On the other
hand, because ζ

{1}
t and ζ

{2}
t are correlated in this paper,

T {1}
t and T {2}

t cannot be computed directly by recursive
equations as in Lamperski and Doyle (2012), Lamperski
and Lessard (2015) and Matni and Doyle (2013). Con-
structing the optimal T {1}

t , T {2}
t and Ft − 1 is a challenging

task in this paper. In the following, we construct the opti-
mal T {1}

t , T {2}
t and Ft − 1 jointly via iterative algorithms, as

the following subsection presents.

3.3 Iterative algorithms

In order to obtain the optimal gain matrices F0: N − 1 and
H0: N − 1 numerically, iterative algorithms are exploited in
this subsection. According to the proof of Theorem 3.1
and the matrix minimum principle (Athans, 1967), the
optimal Ft and Ht are obtained by solving the following
optimisation problem:

min ĥt

subject to Ft ∈
⎡
⎣∗ 0
0 ∗

⎤
⎦ ,Ht ∈

⎡
⎣∗ 0
0 ∗

⎤
⎦ ,

(45)

where

ĥt = Lt + tr
[
(At + BtTt )�t (At + BtTt )TMT

t+1

]
+ tr

{
(At + BtHt )Ŵt−1(At + BtHt )

TMT
t+1

}
.

Here, we solve the optimisation problem (45) by the
penalty function method. In the following, we first derive
the augmented objective function for the penalty func-
tion method.

Gain matrices are given as follows:

F =
[
F11 F12

F21 F22

]
, H =

[
H11 H12

H21 H22

]
,

where F11 ∈ Rl1×m1 , F12 ∈ Rl1×m2 , F21 ∈ Rl2×m1 , and
F22 ∈ Rl2×m2 ; H11 ∈ Rl1×n1 , H12 ∈ Rl1×n2 , H21 ∈ Rl2×n1 ,
and H22 ∈ Rl2×n2 . We have that

1F2 = F21, 3F4 = F12,

ϒ1Hϒ2 = H21, ϒ3Hϒ4 = H12,

where

1 = [
0l2×l1 Il2

]
, 2 =

[
Im1

0m2×m1

]
,

3 = [
Il1 0l1×l2

]
, 4 =

[
0m1×m2

Im2

]
,

ϒ1 = [
0l2×l1 Il2

]
, ϒ2 =

[
In1

0n2×n1

]
,

ϒ3 = [
Il1 0l1×l2

]
, ϒ4 =

[
0n1×n2
In2

]
.

As a result, the following constraint conditions are
equivalent:

(1)

Ft ∈
[∗ 0
0 ∗

]
, Ht ∈

[∗ 0
0 ∗

]
.

(2)

1F2 = 0, 3F4 = 0,
ϒ1Hϒ2 = 0, ϒ3Hϒ4 = 0.

(3)

tr(1F2(1F2)T) = 0,
tr(3F4(3F4)T) = 0,

tr(ϒ1Hϒ2(ϒ1Hϒ2)T) = 0,
tr(ϒ3Hϒ4(ϒ3Hϒ4)T) = 0.

Hence, the augmented objective function for the
penalty function method can be given by

�t (c, Ft−1,Ht )

= ĥt + c
{
tr

[
1Ft−1

2(1Ft−1
2)T]

+ tr[3Ft−1
4(3Ft−1

4)T
]

+ tr
[
ϒ1Htϒ

2(ϒ1Htϒ
2)T]

+ tr[ϒ3Htϒ
4(ϒ3Htϒ

4)T
]}

, t = 0, . . . ,N,

(46)

where c is the penalty parameter; HN = 0 and TN = 0.
Based on the augmented objective function (46), Algo-

rithm 1 is presented to solve the optimisation problem
(45) off-line. Based on Theorem 17.1 in Nocedal and
Wright (2006), the convergence of Algorithm 1 is guar-
anteed.
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Algorithm 1: Compute optimal F0: N − 1 andH0: N − 1 off-
line

1: Obtain H∗
0 = 0, and obtain F∗

N−1 by solving (31).
2: for 1 ≤ t ≤ N − 1 do
3: Initialisation: Select an initial penalty parameter

c0, a stopping parameter δ > 0, and a growth
parameter η > 1. Choose the starting point
Ft−1[0] = 0, Ht [0] = 0 and formulate the initial
augmented objective function �t (c[0], Ft−1,Ht ).
Set k = 1.

4: Iterative: Starting from Ft−1[k − 1], Ht [k − 1], use
gradient descent algorithm (Algorithm 2) to find
the solution of min{�t (c[k − 1], Ft−1,Ht )}, and
the solution is denoted by Ft−1[k], Ht [k].

5: Stopping: If the following condition is satisfied,

tr
[
1Ft−1

2(1Ft−1
2)T]

+ tr[3Ft−1
4(3Ft−1

4)T
]

+ tr
[
̃1Ht̃

2(̃1Ht̃
2)T]

+ tr[̃3Ht̃
4(̃3Ht̃

4)T
]

< δ,

then stop with F∗
t−1 = Ft−1[k], H∗

t =
Ht [k].Otherwise, let c[k] = ηc[k − 1], for-
mulate the newaugmented objective function
�t (c[k], Ft−1,Ht ), let k = k + 1 and return to
Iterative Step.

6: end for

In iterative step of Algorithm 1, the gradient descent
algorithm is given by Algorithm 2. Algorithm 2 is devel-
oped according to the steepest descent algorithm in Sny-
man (2005).
Algorithm 2: Gradient descent algorithm in
Algorithm 1

1: Initialisation: Set Ft−1[k][0] = 0, Ht [k][0] = 0,
�t [k][−1] = ∞. Select an iteration steplength γ >

0. Let i = 0.
2: while �t [k][i] < �t [k][i − 1] do
3: i = i + 1,

Ft−1[k][i] = Ft−1[k][i − 1] −
γ

∇Ft−1�t [k]
(
Ft−1[k][i−1],Ht [k][i−1]

)
||∇Ft−1�t [k]

(
Ft−1[k][i−1],Ht [k][i−1]

)
||
,

Ht [k][i] = Ht [k][i − 1]

− γ
∇Ht �t [k]

(
Ft−1[k][i−1],Ht [k][i−1]

)
||∇Ht �t [k]

(
Ft−1[k][i−1],Ht [k][i−1]

)
||
,

4: end while
5: Ft−1[k] = Ft−1[k][i], Ht [k] = Ht [k][i].

Remark 3.2: In Algorithm 2, the partial gradients of
� t(c[k], Ft − 1,Ht) with respect to Ft − 1 andHt are given,

respectively, by

∂�t (c[k], Ft−1,Ht )

∂Ft−1

= (B−T
�B− + R−)F−Y− + B−T

�K−Y−

+ c[k](1T1F−22T + 3T3F−44T),

∂�t (c[k], Ft ,Ht )

∂Ht

= (BTM+B + R)HŴ− + BTM+AŴ−

+ c[k](ϒ1Tϒ1Htϒ
2ϒ2T + ϒ3Tϒ3Htϒ

4ϒ4T),

where the time index is omitted here, and the superscript
‘+’, (‘−’) means that the time index is ‘t + 1’, (‘t − 1’); �t
is defined in Theorem 3.1. For simplicity, in Algorithm 2,
∂�t (c[k],Ft−1,Ht )

∂Ft−1
is denoted by ∇Ft−1�t [k], and ∂�t (c[k],Ft ,Ht )

∂Ht
is denoted by ∇Ht�t [k].

3.4 The controller and corresponding performance
criterion

Based on the results developed in the previous subsec-
tions, the designed controller and the corresponding per-
formance criterion are presented in this subsection.

Theorem 3.2: The optimal solution to problem (12) is
given by

ui∗t = γ i∗
t (Eit ) + Fi∗

t yit , for i = 1, 2, (47)

where γ i∗
t (Eit ) is given by (13) in Lemma 3.1. In γ i∗

t (Eit ),
T {1}
t and T {2}

t are constructed fromH∗
t . H∗

t and F∗
t are com-

puted by Algorithm 1 or Theorem 3.1. Moreover, the value
of the performance criterion (11) achieved by the designed
controller is

J∗ =
N−1∑
t=0

tr
[
F∗
t
TRtF∗

t (CtPtCT
t +Vt )

]

+
N∑
t=0

{
tr

[
(Qt + TT

t RtTt )�∗
t

]

+ tr
[
(Qt + H∗T

t RtH∗
t )Ŵ ∗

t−1

]
+ tr

[
QtPt

]}
,

(48)

where �∗
0 = 0, Ŵ ∗

−1 = 0.

Proof: According to Lemma 3.1 and Theorem 3.1, it fol-
lows that (47) is the optimal solution to problem (12).We
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proceed to prove (48). Considering (25), one has that

J̃∗ =
N∑
t=0

{
x̂∗T
t (Qt + TT

t RtTt )x̂∗
t

+ ω̂∗T
t−1(Qt + H∗T

t RtH∗
t )ω̂∗

t−1

}
,

=
N∑
t=0

{
tr

[
(Qt + TT

t RtTt )�∗
t

]

+ tr
[
(Qt + H∗T

t RtH∗
t )Ŵ ∗

t−1

]}
.

The optimal values of the other terms in (21) follow from
direct computations. That is,

[ N∑
t=0

eTtQtet

]∗

=
N∑
t=0

tr [QtPt] ,

[N−1∑
t=0

φT
t F

∗
t
TRtF∗

t φt

]∗

=
N−1∑
t=0

tr[F∗
t
TRtF∗

t (CtPtCT
t +Vt )].

According to (21), one has that (48) holds. The proof is
completed. �

4. Numerical example

In this section, a numerical example is used to illustrate
the proposed method. In particular, the numerical exam-
ple is used to compare our controller and the optimal con-
trollers in Anderson andMoore (1971) and Kurtaran and
Sivan (1974), and exhibit that our controller achieves a
good performance.

Consider a linear time-invariant system (1)–(3) given
by

At =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.1 · a 0.2 · a −0.9 −0.5 0.2 −0.1
0.1 · a 0.3 · a 0.6 0.2 0 0.3
0 −0.3 0.4 · b 0.6 · b 0.8 −0.1
0 0 0.2 · b 0.3 · b 0.4 0.1
0.3 0.2 0.1 · b 0.5 · b 0.7 0.8
0.2 −0.3 0 0.1 0.2 −0.1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Bt =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Ct =

⎡
⎢⎢⎢⎢⎣
0.5 0 0 0 0 0
0.5 0.5 0 0 0 0
0 0.5 0.5 0 0 0
0 0 0 0.5 0.5 0
0 0 0 0 0 0.5

⎤
⎥⎥⎥⎥⎦ ,

Figure . The values of performance criterion with respect to the
parameter a, where b= .

where a and b are parameterised scalars, which will
take different values for comparison purpose. The weight
matrices in the quadratic performance criterion (11) are
chosen to be

Qt =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 4 0 0
0 0 0 0 1 0
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

, Rt =

⎡
⎢⎢⎢⎢⎣
2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The noises ωt and νt are assumed to be Gaussian noises
with zero-mean and identity covariance. The time
horizon is chosen to be N = 20. The gain matrices
Ft and Ht = diag{T {1}

t ,T {2}
t } are computed based on

Algorithm 1 and Algorithm 2. In Algorithm 1, the stop-
ping rule is chosen to be tr

[
1Ft−1

2(1Ft−1
2)T] +

tr[3Ft−1
4(3Ft−1

4)T
] + tr

[
̃1Ht̃

2(̃1Ht̃
2)T] +

tr[̃3Ht̃
4(̃3Ht̃

4)T
]

< δ, where δ = 0.0001. The
initial penalty parameter is c0 = 2 and the growth param-
eter is η = 2. In Algorithm 2, the iteration step length is
γ = 0.0005. Given the system parameters and algorithm
parameters, our controller is designed successfully for
two cases: (1) b = 1, and a takes the values in {0.5, 1,
1.5,… , 4.5}, respectively; (2) a= 1, and b takes the values
in {0.3, 0.6, 0.9,… , 2.7}, respectively, where a and b are
the scalars in system matrix A.

Now we compare the performance criterion achieved
by our designed controller (47) and the optimal con-
trollers in Anderson and Moore (1971) and Kurtaran
and Sivan (1974). The comparison result is given by
Figures 2–3. In Figures 2 and 3, the values of the
performance criterion with the information pattern
{yit , x̂it , x̂0:t−1}, {y0: t − 1}, {yit , y0:t−1} and {y0: t} are depicted
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Figure . The values of performance criterion with respect to the
parameter b, where a= .

by the solid lines marked by triangle, square, star and
cross, respectively.

In theory, optimal controllers using more informa-
tion should achieve better performance. In Figures 2
and 3, the controller in Anderson and Moore (1971)
based on the full information {y0: t} has the best per-
formance as expected. The controller in Kurtaran and
Sivan (1974) based on the information {yit , y0:t−1} is worse
than the controller with {y0: t} in Anderson and Moore
(1971), since {y0:t} � {yit , y0:t−1}. Our controller is based
on the information {yit , x̂it , x̂0:t−1}, and has poorer per-
formance than the controller with {yit , y0:t−1} in Kur-
taran and Sivan (1974). The reason is that the informa-
tion set {yit , y0:t−1} is equivalent to {yit , x̂0:t} (see Asser-
tion in Kurtaran & Sivan, 1974) and that {yit , x̂0:t} �
{yit , x̂it , x̂0:t−1}. Our controller outperforms the controller
based on {y0: t − 1} in Anderson and Moore (1971). The
information sets {yit , x̂it , x̂0:t−1} and {y0: t − 1} have not any
inclusion relation.

Based on qualitative analysis, our controller is always
close to the controller with {yit , y0:t−1} in Kurtaran
and Sivan (1974). Compared to {yit , x̂0:t}, our informa-
tion structure {yit , x̂it , x̂0:t−1} is more practical. Under
the information structure {yit , x̂it , x̂0:t−1}, the estimator
of each subsystem only needs to estimate the local
subsystem state instead of the global system state in
Kurtaran and Sivan (1974). In addition, our controller
is almost always much better than the controller with
{y0: t − 1} in Anderson andMoore (1971). This shows that
the controller designed in this paper achieves a good
performance.

5. Conclusions

This paper studied the output-feedback LQG control
problem with a new and more practical information

pattern. A general two-player system was considered and
a novel controller structure was proposed. Using the
method of independence decomposition, the form of
the optimal controller was established. The gains of the
optimal controller satisfying sparse constraint were con-
structed by penalty function algorithm. The augmented
objective function in penalty function algorithm was
minimised by the gradient descent method. In addition,
the value of the performance criterion achieved with the
designed controller was derived. Under our design, the
local estimator only estimates its own subsystem state.
This implied that the computational burden of state esti-
mation was reduced compared to the existing related
results. Also, the system achieved a good performance
under our designed controller, which has been illustrated
by the numerical example.

In the future, we will extend this work to general large-
scale systems composed of multiple subsystems, the ran-
dommultiple communication delays and the information
pattern arising from a directed connected communica-
tion graph.
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