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Components in cold-standby state are usually assumed to be as good as new when they are
activated. However, even in a standby environment, the components will suffer from per-
formance degradation. This article presents a study of a redundancy allocation problem
(RAP) for cold-standby systems with degrading components. The objective of the RAP is
to determine an optimal design configuration of components to maximize system reliability
subject to system resource constraints (e.g. cost, weight). As in most cases, it is not possi-
ble to obtain a closed-form expression for this problem, and hence, an approximated objec-
tive function is presented. A genetic algorithm with dual mutation is developed to solve
such a constrained optimization problem. Finally, a numerical example is given to illustrate
the proposed solution methodology.
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1. Introduction

The development of industrial technologies involves an increasing amount of design of com-
plex and interrelated systems. Reliability is an important performance measure of industrial
systems, especially when it is of safety-critical concerns. Allocating redundant components in
a system is a popular and direct design methodology of enhancing system reliability (Kuo
and Prasad 2000; Kuo and Wan 2007). However, introducing redundant components is a
difficult decision due to the limited resources and the economic considerations. Many
researchers have studied this redundancy allocation problem (RAP), for example Kumar et al.
(2009), Feizollahi and Modarres (2012), Chambari et al. (2013), Laniado and Lillo (2014),
Xiao and Peng (2014).

In general, active redundancy has been the main focus in this type of problem. Recently,
cold-standby (Coit 2001; van Gemund and Reijns 2012; Levitin, Xing, and Dai 2013a,
2013b; Wang, Xing, and Amari 2012) and warm-standby (Amari, Pham, and Misra 2012;
Eryilmaz 2013) have begun to draw more attention. The warm-standby is an intermediate
case between active-standby and cold-standby; the standby components operate in a milder
environment. In contrast with active-standby, the cold-standby elements are unpowered and
thus do not operate until needed to replace a failed online component. The likelihood of fail-
ure in the cold-standby state is very low and has usually been assumed to be zero. Therefore,
using cold-standby redundancy can usually provide higher system reliability than using
active-standby and warm-standby redundancy, especially for large and long-term systems.
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In many engineering systems, such as deep-sea exploration, outer-space equipment and
other facilities in extreme environment, it is not possible to carry out frequent maintenance
and repairs, so the cold-standby redundancy is used to ensure the system works with high
reliability in the long term. However, when exposed in certain environments with extreme
temperature, humidity, pressure or radiation for a long time, the performance of cold-standby
components will decrease more or less. The performance degradation of cold-standby compo-
nent is not negligible, and it is a complex and irreversible stochastic process, which may ulti-
mately lead to component failure.

Considerable research efforts have been dedicated to studying and formulating degradation
or deterioration processes recently. Zhao and Xie (1994) and Zhao, Xie, and Zhang (1995)
studied the storage reliability and discussed the failure and deterioration of items in a dormant
state. Lu and Meeker (1993) presented a successful application of degradation modelling to
estimate the time-to-failure distribution for a broad class of degradation models. Coit et al.
(2005) used degradation modelling to predict reliability and developed a method to correlate
field life with observed degradation for electronics modules. Peng, Coit, and Feng (2012) pro-
posed new importance measures as functions of time that can provide timely feedback on the
critical components prior to failure based on the measured or observed degradation. Rathod
et al. (2012) studied a dynamic reliability-based design optimization model considering proba-
bilistic degradation behaviour, which aimed to capture life cycle issues early at product design
and development stage. Furthermore, in the series works of Zhang and Wang (2006, 2007,
2009), deteriorating cold-standby repairable systems were studied using the geometric pro-
cess. A survey article (Wang 2002) summarized, classified and compared various existing
maintenance policies of deteriorating systems.

However, in the aforementioned literature about RAPs and degradation process, none
studied the cold-standby RAPs with consideration of the performance degradation of compo-
nents in the standby state, which is however also a critical factor for the system design and
redundancy allocation. Actually, the objective of the RAP is to determine an optimal design
configuration to maximize system reliability, but if the system designer only considers the
components reliabilities in working state, one can hardly ensure the designed allocation is the
optimum one for the whole mission time.

In this article, we consider the reliability of components in the working state as well as
the performance degradation of the components in standby state and show how the degrading
components affect the result of system design and redundancy allocation. In the cold-standby
system, there are several types of choices for each subsystem. Different types of available
components have different characteristics and parameters for working state and standby state.
Subjected to the cost and resources constraints, the RAP is formulated as a nonlinear con-
strained integer programming problem. Generally, it is not possible to obtain a closed-form
expression for the objective function of this problem, because calculating the multiple inte-
grals and convolutions is a complicated and time-consuming task, especially for the cold-
standby systems with components following non-exponential time-to-failure distributions. In
Coit (2001), a tractable form has been proposed for cold-standby systems with component
time-to-failure following the Erlang distribution. In Rausand and Høyland (2004), the central
limit theorem has been used to approximate the distribution functions of renewal process. Fol-
lowing Rausand and Høyland (2004), a fast approximation method has been proposed in
Wang, Xing, and Amari (2012) for reliability analysis of cold-standby systems using the cen-
tral limit theorem. Another method for evaluating the mission reliability of cold-standby sys-
tem has been presented in Levitin, Xing, and Dai (2013a, 2013b), which is based on a
discrete approximation of time-to-failure distributions of system components. In our mod-
elling and analysis, we use an approximation objective function based on the central limit
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theorem. Components with exponential, normal and Weibull-distributed time-to-failure are
considered in the modelling.

For solving such a nonlinear constrained integer programming problem, which is NP-hard
(Chern 1992), many approaches have been proposed. The most popular approaches in recent
are heuristic or meta-heuristic algorithms, such as the genetic algorithm (GA) (Coit and Smith
1996; Tavakkoli-Moghaddam, Safari, and Sassani 2008), hierarchical GA (Kumar et al.
2009), memetic algorithm (Wang, Tang, and Yao 2010), hybrid GA (He et al. 2013), ant col-
ony algorithm (Shelokar, Jayaraman, and Kulkarni 2002), simulated annealing algorithm
(Chambari et al. 2013) and particle swarm optimization (Garg and Sharma 2013; Zhang, Wu,
and Chen 2014). For more approaches and algorithms, one can refer to the review articles
(Kuo and Prasad 2000; Kuo and Wan 2007). In this article, a GA-based approach is devel-
oped to solve the considered problem. Penalty function is introduced into the fitness function
to handle the constraints, and dual mutation (Wang, Ma, and Wang 2008) is used in the pro-
posed algorithm to avoid premature convergence.

The rest of this article is organized as follows. The next section gives the overview of
system model and the formulation of reliability for the cold-standby system with degrading
components. Section 3 presents the problem formulation and a detailed solution methodology.
In Section 4, a numerical example is used to illustrate the validity of the proposed model and
method. Finally, conclusions and future studies are discussed.

2. Model description

2.1. Overview of the model

We consider a system consisting of N subsystems in series, as shown in Figure 1. The system
is functioning only if all the N subsystems are working properly. In subsystem j of the sys-
tem, there are mj types of components for using and all the xj components in parallel are
identical, among them there is one principal functioning component and xj− 1 cold-standby
redundant components.

The following assumptions are made for the system model and used throughout this article,

(1) All the components in the system are statistically independent, and each component
has binary states: working and failed.

Figure 1. A series system with cold-standby redundant components.
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(2) Components in a subsystem are identical.
(3) The failure detection and component switching mechanisms are fully reliable, and

the restoration times are negligible.
(4) Failed components do not damage the system and are not repaired.

In subsystem j, all the standby components are used in the specified order, from up to
down. The subsystem fails when all the xj components have failed. When component 1 fails
at time t1, it is replaced by component 2. When component 2 fails at time t1 þ t2, it is
replaced by component 3, and so on.

The reliability of the cold-standby system without considering performance degradation of
cold-standby components is studied in Coit (2001), given as

R t; z; xð Þ ¼
YN

j¼1

rjzj tð Þ þ
Xxj%1

x¼1

Z t

0
rjzj t % uð Þf xð Þ

jzj uð Þdu

 !

; t[ 0; (1)

where z ¼ ðz1; z2; . . .; zN Þ; x ¼ ðx1; x2; . . .; xN Þ; j ¼ 1; 2; . . .;N ; zj 2 1; 2; . . .;mj
! "

; rjzj tð Þ is the
reliability at time t for component of type zj used for subsystem j; f ðxÞjzj ðtÞ is the probability
density function (pdf) for the xth failure arrival for subsystem j.

In Equation (1), if the components have exponential distributed time-to-failure, then a
closed-form version of R t; z; xð Þ can be obtained by considering the failure arrival as a
homogeneous Poisson process (Rausand and Høyland 2004). However, for non-exponential

distributions, the computation of convolution integrals and f ðxÞjzj ðtÞ becomes an intractable task.

2.2. Degrading cold-standby component

In order to assess the reliability of degrading cold-standby components, the degradation path
of component is first determined. The degradation path of a cold-standby component is pre-
sented as g tð Þ ¼ /þHt, where ϕ is the initial amount of degradation of the cold-standby
component; Θ represents the degradation rate which is considered following Weibull (α, β)
distribution (Lu and Meeker 1993).

We use D to denote the critical level for the degradation path, above which failure is
assumed to have occurred. If the pre-defined failure threshold is D ¼ /þHT , that is
T ¼ ðD% /Þ=H, then the distribution function of T, the time-to-failure in standby state, can
be obtained by

FT tð Þ ¼ Pr T & tð Þ ¼ Pr
D% /
H

& t
# $

¼ Pr H' D% /
t

# $
¼ exp % D% /

at

# $b
" #

; t[ 0:

(2)

In this article, our aim was to determine the optimum redundancy allocation of the
cold-standby system, so all the parameters of the degradation model are assumed to be
known. Then, Equation (2) can be rewritten as:

FT tð Þ ¼ exp % 1
k0t

# $b0
" #

; t[ 0; (3)
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where β′ = β, k0 ¼ a
D%/ and FT tð Þ is not relevant with the time-to-failure distribution for the

working state. Hence, the reliability of a cold-standby component in standby state can be
obtained by

~rðtÞ ¼ 1% FT ðtÞ ¼ 1% exp % 1
k0t

# $b0
" #

; t[ 0 (4)

2.3. System reliability with degrading cold-standby redundancy

In subsystem j, the functioning component has a reliability of rjzj tð Þ and the component in
cold-standby state have a reliability of ~rjzjðtÞ, where zj 2 1; 2; . . .;mj

! "
. When the functioning

component fails at time u, the activated cold-standby component has a reliability of
~rjzjðuÞrjzjðt % uÞ; t' u. Then the system reliability can be obtained from Equation (1),

Rðt; z; xÞ ¼
YN

j¼1

rjzjðtÞ þ
Xxj%1

x¼1

Z t

0
~rjzjðuÞrjzjðt % uÞ!f ðxÞjzj ðuÞdu

 !

; t[ 0; (5)

where ~rjzjðtÞ is a non-increasing function; !f
ðxÞ
jzj ðuÞ is the pdf for the xth failure arrival for sub-

system j considering performance degrading of cold-standby components. It is difficult to
determine a closed-form version of Equation (5). Therefore, an approximation of system relia-
bility, ~Rðt; z; xÞ, is put forward as follows,

Rðt; z; xÞ ¼
YN

j¼1

rjzjðtÞ þ
Xxj%1

x¼1

~rjzjðtÞ
Z t

0
rjzjðt % uÞ!f ðxÞjzj ðuÞdu

 !

'
YN

j¼1

rjzjðtÞ þ
Xxj%1

x¼1

~rjzjðtÞ
% &xþ1

Z t

0
rjzjðt % uÞf ðxÞjzj ðuÞdu

 !

¼ ~Rðt; z; xÞ;

(6)

where f ðxÞjzj ðtÞ is the pdf for the xth failure arrival for subsystem j without considering perfor-
mance degrading of cold-standby components. The expression (6) holds because all the
replacement of failed components has to operate successfully until the last cold-standby
component, that is ~rjzjðuÞ'~rjzjðtÞ for all u& t.

The convolution parts in ~Rðt; z; xÞ are difficult to obtain the exact value. We use the cen-
tral limit theorem to estimate the convolution parts. The arrival of component failures in sub-
system j follows a renewal process fNðtÞ; t' 0g, based on the definition of N(t) and the
central limit theorem (Rausand and Høyland 2004; Wang, Xing, and Amari 2012), we can
obtain that

Z t

0

rjzj t % uð Þf xð Þ
jzj uð Þdu ¼ Pr N tð Þ ¼ xð Þ ¼ Pr N tð Þ' xð Þ % Pr N tð Þ' xþ 1ð Þ

( U
t % xljzj
rjzj

ffiffiffi
x

p
 !

% U
t % xþ 1ð Þljzj
rjzj

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
 !

; (7)
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where Uð)Þ denotes the distribution function of the standard normal distribution N(0, 1); ljzj
denotes mean time-to-failure of each component used in subsystem j; rjzj denotes standard
deviation of Ti in the count process.

• If the time-to-failure of the component in working state follows exponential distribution
with parameter kjzj , then in Equation (7); ljzj ¼ rjzj ¼ 1

kjzj
;

• If the time-to-failure of the component in working state follows normal distribution,
T ∼ N(ν, τ2), then in Equation (7), ljzj ¼ m; rjzj ¼ s;

• If the time-to-failure of the component in working state follows Weibull distribution,
T *Weibullðbjzj ; kjzjÞ, then in Equation (7),

ljzj ¼
1
kjzj

C 1þ 1
bjzj

 !

; rjzj ¼
1
kjzj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 1þ 2
bjzj

 !

% C 1þ 1
bjzj

 !" #2
vuut ;

where Cð)Þ is Gamma function, C zð Þ ¼
R1
0 xz%1e%xdx.

3. Problem formulation and solution algorithm

3.1. Problem formulation

The purpose of the considered RAP is to determine the optimal combination of component
choices, z, and the number of redundant components, x, and to maximize the system reliabil-
ity while meeting the resource constraints. So, the RAP for the cold-standby system can be
formulated with an objective function of approximated system reliability,

max ~Rðt; z; xÞ

s:t:
PN

j¼1
gij xj
( )

& bi; 8i 2 I

zj 2 1; 2; . . .;mj
! "

; j ¼ 1; 2; . . .;N ;
1& xj &maxsize : integer:

(8)

where gijð)Þ is a convex function of xj and the coefficients in gijð)Þ are determined by the type
of components zj, I is the set of all resource constraints, and bi is the maximum value of the
ith resource constraints.

3.2. GA-based approach

In order to solve the nonlinear constrained integer programming problem (8), a GA-based
approach is developed. In the algorithm, penalty function is used to handle the constraint
conditions. The penalty fitness function is presented by,

fitnessðz; xÞ ¼ ~Rðt; z; xÞ %
X

i!I

di )
XN

j¼1

gijðxjÞ % bi

*****

*****

k

;

where

di ¼
1; if constraint i is violated
0; otherwise

+
;
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and the exponent κ is a preset amplification parameter, which is set to 2 throughout this
article.

Following Tavakkoli-Moghaddam, Safari, and Sassani (2008), the solution of the problem
is encoded as a 2+ N matrix, which is called the chromosome. The two rows represent the
type and the quantity of selected components, respectively. A random crossover mask is used
in the crossover operator as shown in Figure 2. The crossover mask is a binary matrix of the
same size with the chromosome. All 1s in the crossover mask mean exchanging the genes of
parents in the same positions, and all 0s mean no action. The mutation operator performs ran-
dom perturbations to the selected chromosomes. Each value within the chromosome matrix is
randomly altered at a mutation probability of pm. As depicted in Figure 3, a 2+ N matrix is
generated randomly with all its elements in ð0; 1Þ, the gene of the selected chromosome in
the position, where the value is lower than pm, will be altered.

Premature convergence is a noticeable phenomenon in standard GA. In order to avoid the
phenomenon and speed up the search, dual mutation (Wang, Ma, and Wang 2008) is intro-
duced into the algorithm, which involves a local mutation and a global mutation. When the
population approaches convergence, the Hamming distance between individuals becomes
smaller. The Hamming distance between two individuals (of the same length) is the number
of places where they differ (Ventura and Yoon 2013), and it is normalized so that the biggest
value in the search domain of the problem is equal to 1. When a pair of parents is randomly
selected from the population, their Hamming distance will be calculated. The crossover opera-
tor executes only if their Hamming distance is greater than a certain threshold (usually 0.1 ~
0.2). Otherwise, the parents will undergo random perturbations with local mutation probabil-
ity, which is lower than the global mutation probability.

3.3. Solution algorithm

The main algorithmic procedures are shown in Algorithm 1.

Algorithm 1. General Framework of GA used to solve the proposed RAP

(1) Generate an initial population Vpop with a population size of pop_size. Set a maxi-
mum generation of max_gen, crossover probability pc, dual mutation probabilities
pm1 and pm2;

(2) Calculate the fitness of all individuals in Vpop, preserve the best individual;
(3) Perform roulette selection on Vpop, set the selected the group as Vsel;
(4) Select a group of individuals from the Vsel with probability of pc, the group size is

p size. For any two individuals in the group, calculate their Hamming distance, if
greater than a pre-set threshold (0.2), perform crossover operation;

Figure 2. Crossover operator.
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(5) Put individuals generated from crossover operation into a temporary population Vtemp.
If the size of Vtemp is greater than p size, goto Step 6; Otherwise, perform local
mutation operation on Vtempwith probability of pm2, then goto Step 4;

(6) Select p size best individuals from Vtemp according to their fitness values, put them
back into Vsel, then clean Vtemp;

(7) Perform global mutation operation on Vsel with global mutation probability of pm1;
(8) Use the best individual in Step 2 to replace the worst individual in the Vsel;
(9) Let Vsel be the initial population of next generation;
(10) If the number of generations achieves max gen, the algorithm is terminated, output

the final results; Otherwise, goto Step 2.

4. Numerical example

In this section, a numerical example is presented to illustrate the considered problem and the
proposed solution methodology. The example is based on a similar example presented by
Zhang, Wu, and Chen (2014). The mathematical model of the RAP at time t is represented as
follows:

max ~Rðt; z; xÞ

s.t.
P3

j¼1
cjzj ) xj &C;

P3

j¼1
wjzj ) xj &W ;

zj 2 1; 2; . . .;mj
! "

; j ¼ 1; 2; . . .;N ;
1& xj & 6 : integer:

(9)

The system consists of 3 subsystems, each including 4 or 5 choices for component types, and
the maximum number of components allowed in a subsystem is 6. Components in this exam-
ple are assumed as having exponential distributed time-to-failure in working state and suffer-
ing performance degradation before being used. The cost, weight and pre-set distribution
parameters of components are all listed in Table 1.

The maximum system cost is C = 38 and the maximum system weight is W = 32. The
computation of this problem is performed with following initial parameters: population size
pop size ¼ 100, maximum generation max gen ¼ 50, crossover probability pc ¼ 0:95, global
mutation probability pm1 = 0.45 and local mutation probability pm2 ¼ 0:05.

Due to the stochastic nature of GA, the proposed Algorithm 1 is performed 10 times and
the best one is selected as the final solution. Figure 4 demonstrates the convergence process
of the proposed GA to the best compromise solution at time t = 100. As shown in Figure 4,
the optimal solution is achieved at approximately 5 generations. The configuration of the best

Figure 3. Mutation operator.
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allocated solution of problem (9) is shown in Table 2. The corresponding approximate system
reliability is 0.9930. Total system cost of the optimal solution is 32, and the total system
weight is 32.

In addition, for comparative purpose, Table 2 also presents the solution of a comparative
trail without considering performance degradation of cold-standby components before being
activated. In the comparative trail, the best solution corresponds to the system reliability of
0.9997, the system cost of 36 and the weight of 31. If system designers neglect the perfor-
mance degradation of cold-standby components, the solution of comparative trail in Table 2
may be selected. Actually, the best solution of comparative trail only has a reliability of
0.9900 in the model of considering degrading cold-standby components. Evidently, the perfor-
mance degradation of cold-standby components has dramatic effects on the result of the RAP
and the system reliability. Thus, the performance degradation of components in cold-standby
state should be considered as a significant factor when allocating redundancy for cold-standby
systems.

Figure 4. Convergence process for proposed RAP, when t = 100.

Table 2. Example results.

Subsystem
Proposed model Comparative trial*

j zj xj zj xj

1 2 2 3 3
2 1 2 3 5
3 5 1 3 2
Reliability 0.9930 0.9900 (0.9997*)
Cost 32 36
Weight 32 31

*Without considering performance degradation of standby components.
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5. Conclusions

In this article, we studied the redundancy allocation optimization for cold-standby systems. As
in the real world, performance of components in standby state may decrease over time, so we
should consider the performance degradation of cold-standby redundant components as a fac-
tor for redundancy allocation optimization. However, most of the existing models have
assumed that the cold-standby components are as good as new before they are activated. In
this article, we formulate the reliability of the cold-standby system with consideration of
degrading cold-standby components and develop the constraint RAP model. Then, using the
central limit theorem, an approximate objective function is put forward to solve the RAP more
efficiently. For problem solution, a GA-based approach with dual mutation is developed.
Finally, the results of numerical example have validated that considering performance degrada-
tion of cold-standby components gives us the real optimal redundancy allocation designs.

Further work includes relaxing some of the assumptions made in this article. Improve-
ments could also be obtained by considering preventive maintenance and inspection for the
components.
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