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Summary

This paper studies stability of a general class of impulsive switched systems
under time delays and random disturbances using multiple Lyapunov func-
tions and fixed dwell-time. In the studied system model, the impulses and
switches are allowed to occur asynchronously. As a result, the switching may
occur in the impulsive intervals and the impulses can occur in the switching
intervals, which have great effects on system stability. Since the switches do
not bring about the change of the system state, we study two cases in terms
of the impulses, ie, the stable continuous dynamics case and the stable impul-
sive dynamics case. According to multiple Lyapunov-Razumikhin functions
and the fixed dwell-time, Razumikhin-type stability conditions are established.
Finally, the obtained results are illustrated via a numerical example from the
synchronization problem of chaotic systems.
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1 INTRODUCTION

Because of numerous applications in diverse fields of sciences and engineering, impulsive systems and switched systems
are two important types of hybrid systems, and have been studied extensively in the past few decades. Impulsive sys-
tems are dynamical systems that combine continuous-time dynamics with instantaneous state jumps (ie, impulses).1,2

Switched systems consist of a family of subsystems and a switching signal that orchestrates the switching among them.3

Many physical systems can be modeled as impulsive or switched systems, such as networked control systems,4 electronic
circuit systems,5 Lorenz systems,6 aircraft,7 and medical systems.8 The readers can refer to other works1,9-12 for a general
introduction.

In the real world, impulses and switches coexist in many physical and man-made systems like chaotic systems5 and
networked control systems.4 As a result, the impulses and switches can be studied together, thereby leading to impulsive
switches systems. Many results can be found on stability and performances of impulsive switched systems.13-15 However,
in all the previous works, a common assumption is required a priori, ie, the impulses and switches occur simultaneously.
Such an assumption is impractical and constrained. For instance, if the switching times between two subsystems cannot
be ignored in circuit systems, then the switching bring about asynchronous changes of the currents and voltages. In
addition, impulsive control of switched systems16-18 and switched control of impulsive systems19 lead to asynchronization
between the switches and impulses. Therefore, the impulses and switches are coexistent in many physical systems, but
do not necessarily occur synchronously. This is the main motivation for us to study this topic further. Furthermore, to
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the best of our knowledge, until now, there is no work in the literature on stability of such class of impulsive switched
systems with asynchronous switches and impulses.

On the other hand, both time delays and external disturbances are frequently encountered in engineering systems,20,21

and affect system performances in some extent. For instance, finite switching speeds of the amplifiers or information
processing lead to the time delays in hardware implementations.20 External random fluctuations in the transmission
process or the probabilistic factors bring about the unavoidable stochastic perturbations in control systems. Recently,
great efforts have been devoted to stochastic impulsive (switched) delayed systems, and the related results can be found;
see other works18,21-25 and references therein.

In this paper, we study stability of a general class of stochastic impulsive switched time-delay systems, where the
impulses and switches occur asynchronously. According to a Lyapunov-based approach and the fixed dwell-time (FDT),
sufficient conditions are established for the stability of such class of stochastic impulsive switched time-delay systems.
The main contributions of this paper are two-fold. First, such class of stochastic impulsive switched time-delay systems is
studied for the first time, which are more general and practical than those in previous works.5,16,17,19,22 If the impulses and
switches occur simultaneously, then the studied system is similar to those in the literature.22 Second, Razumikhin-type
stability conditions are established to guarantee stochastic stability. Asynchronous impulses and switches result in two
discrete-time sequences, which induces additional difficulties in stability analysis. To obtain Razumikhin-type conditions,
multiple Lyapunov-Razumikhin functions (LRFs) and FDT are applied. In contrast to exponential Lyapunov functions
as in previous works,25-27 general LRFs are implemented here. As a result, Razumikhin-type conditions can be applied to
study stability of control systems that cannot be analyzed via exponential Lyapunov functions.

The reminder of this paper is organized as follows. In Section 2, the problem is formulated and some preliminaries are
presented. Razumikhin-type stability conditions are derived for stochastic impulsive switched time-delay systems in the
stable continuous dynamics case in Section 3 and in the stable impulsive dynamics case in Section 4. A numerical example
from the synchronization problem of stochastic chaotic systems is provided in Section 5 to illustrate the obtained results.
Conclusion and future works are presented in Section 6.

Notation. R ∶= (−∞,+∞); R+
t ∶= [t,+∞) for a given t ∈ R. N ∶= {0, 1, …}; N+ ∶= {1, 2, …}. Given a vector or

matrix P, P⊤ denotes its transpose. For a matrix P ∈ Rn×n, tr[P] denotes the trace of P; 𝜆min(P) and 𝜆max(P) are the
minimal and maximal eigenvalues of P, respectively. I denotes the identity matrix with the appropriate dimension. | · |
represents the Euclidean vector norm; P{·} denotes the probability measure; E[·] denotes the mathematical expecta-
tion; Id denotes the identity function. Given a function 𝑓 ∶ R

+
t0
→ Rn with t0 ≥ 𝜏 > 0, 𝑓 (t−) ∶= lim sups→0−𝑓 (t + s);||𝑓 ||𝜏 ∶= sups∈[t0−𝜏,t0]|𝑓 (s)|; |𝑓 (t)|𝜏 ∶= sups∈[t−𝜏,t]|𝑓 (s)|. 1,2 denotes the class of nonnegative functions on R

+
0 × Rn,

which are continuously differentiable on the first augment and continuously twice differentiable on the second aug-
ment. A function 𝛼 ∶ R

+
0 → R

+
0 is of class  if it is continuous, zero at zero, and strictly increasing; 𝛼(t) is of class

∞ if it is of class  and unbounded; 𝛼(t) is of class  (∞) if it is of class  (∞) and convex; 𝛼(t) is of class 
(∞) if it is of class  (∞) and concave. A function 𝛽 ∶ R

+
0 ×R

+
0 → R

+
0 is of class  if 𝛽(s, t) is of class  for each

fixed t ≥ 0 and 𝛽(s, t) → 0 as t → ∞ for each fixed s ≥ 0.

2 PROBLEM FORMULATION

Consider the following stochastic impulsive switched time-delay system:

⎧⎪⎪⎨⎪⎪⎩

dx(t) = 𝑓𝜎(t)(t, xt,u)dt + g𝜎(t)(t, xt,u)dB(t), t ∈ R
+
t0
∖,

x(t) = h𝜎(t)(x(t−),u(t−)), t ∈ ,
x(t) = x(t−), t ∈ ∖,
x(t) = 𝜉(t), t ∈ [t0 − 𝜏, t0],

(1)

where x(t) ∈ Rnx is the system state, u(t) ∈ Rnu is the external input, and B(t) ∈ Rnw is an 𝔉t-adapted Brownian motion
defined on a complete probability space (Ω, 𝔉,P, {𝔉t}t≥t0). The time-delay state is denoted by xt ∶= x(t − 𝜏(t)), where the
time delay 𝜏(t) is bounded with a constant 𝜏 > 0.  ∶= {i1, i2, …} and  ∶= {s1, s2, …} are, respectively, the impulsive
time sequence and switching time sequence, which are strictly increasing. The function 𝜎 ∶ R

+
t0
→ 𝔏 =∶ {1, … ,L} is the

switching signal, which is piecewise right-continuous. The initial function 𝜉 ∶ [t0 −𝜏, t0] → Rnx is an 𝔉t0 -adapted random
variable with finite E[||𝜉||2𝜏]. For all l ∈ 𝔏, the functions 𝑓l ∶ R

+
t0
× Rnx × Rnu → Rnx , gl ∶ R

+
t0
× Rnx × Rnu → Rnx×nw , and
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hl ∶ Rnx × Rnu → Rnx are assumed to be Lipschitz and Borel-measurable. Suppose that fl(t, 0, 0) ≡ 0, gl(t, 0, 0) ≡ 0, and
hl(0, 0) ≡ 0 for all t ∈ R

+
t0

. That is, x(t) ≡ 0 is a trivial solution of the system (1). It follows from other works25,28,29 that the
system (1) has a unique solution process for all the time.

Compared with impulsive switched systems studied in previous works13,14,22 where the switches and impulses are syn-
chronous, the switches and impulses are allowed to be asynchronous in the system (1), ie,  ≠  . As a result, there are
two classes of discrete-time sequences, ie, the impulsive time sequence  and the switching time sequence  , which need
to be studied simultaneously. Due to the coexistence and asynchronization of such two discrete-time sequences, many
phenomena are included in this paper, such as the overlapping (ie, ⋂ ≠ ∅) and disjointness (ie, ⋂ = ∅). In par-
ticular, if either the impulses or switches do not exist, or both the impulsive and switching time sequences are the same,
then the system (1) is similar to those studied in other works.13,14,22,27

Definition 1. Given a switching time sequence  and an impulsive time sequence , the system (1) is stochastically
input-to-state stable (SISS), if for an arbitrary 𝜀 ∈ (0, 1), there exist 𝛽 ∈ , 𝛾 ∈ ∞ such that for all x(t) ∈ Rnx and
u ∈ Rnu ,

P {|x(t)| ≤ 𝛽(E[||𝜉||𝜏], t − t0) + 𝛾(||u||)} ≥ 1 − 𝜀, ∀t ∈ R
+
t0
. (2)

Remark 1. Definition 1 is an extension of the one in the work of Ren and Xiong24 for stochastic impulsive systems,
the one in the work of Wu et al25 for impulsive systems, and those in the works of Ren and Xiong23 and Zhao et al30

for switched systems. In addition, if there are no external disturbances, then Definition 1 is reduced to be the one for
stochastic asymptotic stability as in the work of Wu and Sun.14

The goal of this paper is to study the SISS property of the system (1) in two cases, ie, the stable continuous dynamics
case and the stable impulsive dynamics case. The stability analysis is based on multiple Lyapunov functions and the FDT.
In the following, an infinitesimal operator of multiple Lyapunov functions is defined.

Definition 2 (See the work of Mao28).
Given any 1,2 function Vl ∶ R

+
t0
× Rnx → R

+
0 with l ∈ 𝔏, the differential operator ℒ associated with the continuous

dynamics in the system (1), is defined as

ℒVl(t, xt) ∶=
𝜕Vl(t, x)
𝜕t

+ 𝜕Vl(t, x)
𝜕x

𝑓l(t, xt,u) +
1
2

tr
[
g⊤l (t, xt,u)

𝜕2Vl(t, x)
𝜕x2 gl(t, xt,u)

]
.

From Itô's differential formula in chapter 1 in the work of Mao,28 we have that, for all l ∈ 𝔏 and t ∈ R
+
t0
∖ , the derivative

of Vl(t, x) is given by

dVl(t, x) = ℒVl(t, xt)dt + 𝜕Vl(t, x)
𝜕x

gl(t, xt,u)dB(t).

By taking expectation, we have from the proofs of Lemma 1 and Theorem 1 in the work of Zhao et al30 that

dE[Vl(t, x)] = E[ℒVl(t, x)]dt, ∀t ∈ R
+
t0
∖ .

3 STABLE CONTINUOUS DYNAMICS CASE

In this section, the stable continuous-time dynamics case is studied, which means that the continuous dynamics in (1)
is stable, whereas the impulsive dynamics is not. For this case, based on multiple LRFs and the FDT, Razumikhin-type
conditions are established to guarantee SISS of the system (1).

To begin with, some auxiliary notations are introduced. Denote by  ∶= {t1, t2, …} the discrete time sequence com-
bining both  and  . Define the set ℑ1(𝜃1) ∶= { = {i1, i2, …}| ⊆ R

+
t0
, ik+1 − ik ≥ 𝜃1,∀k ∈ N} for some constant 𝜃1 > 0,

and thus, the impulsive intervals are not less than 𝜃1. With these auxiliary notations, the following theorem provides
sufficient conditions for the SISS property of the system (1) in the stable continuous dynamics case.

Theorem 1. Consider the system (1). Assume that there exist 1,2 Lyapunov functions Vl ∶ R
+
t0−𝜏

× Rnx → R
+
0 , l ∈ 𝔏,

𝛼1, 𝜑 ∈ ∞, 𝛼2, 𝜙1, 𝜙2 ∈ ∞, 𝜌2 ∈ ∞, and constants 𝜌̄1 ∈ (0, 1), 𝜃1 > 𝛿 > 0, 0 < N < ∞ such that 𝜙1 > Id, 𝜙2 ≥
Id, and

(A.1) for all t ∈ R
+
t0−𝜏

and all l ∈ 𝔏, 𝛼1(|x(t)|) ≤ Vl(t, x(t)) ≤ 𝛼2(|x(t)|);



REN AND XIONG 3991

(A.2) for all t ∈ R
+
t0
∖ , V𝜎(t)(t, x(t)) ≥ max{𝜌̄1|V𝜎(t)(t, x(t))|𝜏 , 𝜌2(|u(t)|)} implies that

ℒV𝜎(t)(t, xt) ≤ −𝜑(V𝜎(t)(t, x(t)));

(A.3) for all t ∈ , V𝜎(t)(t, x(t)) ≤ 𝜙1(V𝜎(t−)(t−, x(t−)));
(A.4) for all t ∈ ∖, V𝜎(t)(t, x(t)) ≤ 𝜙2(V𝜎(t−)(t−, x(t−)));
(A.5) the FDT condition is satisfied, ie,

∫
𝜙1(a)

a

ds
𝜑(s)

+ N ∫
𝜙2(a)

a

ds
𝜑(s)

≤ 𝜃1 − 𝛿, ∀a ∈ R
+, (3)

where N ∈ N+ is the maximal number of the switches in an impulsive interval.

Then, the system (1) is SISS for all the discrete-time sequence pair (,) ∈ ℑ1(𝜃1) × 𝔖(N), where 𝔖(N) is the set of all
the admissible switching time sequences satisfying (A.5).

Proof. We prove the SISS property of the system (1) by constructing the functions 𝛽 and 𝛾 such that the inequal-
ity (2) holds. According to (A.2) to (A.4), the proof is divided into two cases, ie, the case that V𝜎(t)(t, x(t)) ≥
max{𝜌̄1|V𝜎(t)(t, x(t))|𝜏 , 𝜌2(|u(t)|)} and the case that V𝜎(t)(t, x(t)) < max{𝜌̄1|V𝜎(t)(t, x(t))|𝜏 , 𝜌2(|u(t)|)}.

Case 1: V𝜎(t)(t, x(t)) ≥ max{𝜌̄1|V𝜎(t)(t, x(t))|𝜏 , 𝜌2(|u(t)|)} for all t ∈ R
+
t0

. In this case, the conditions (A.2)-(A.4) are
written directly as

ℒV𝜎(t)(t, x) ≤ −𝜑(V𝜎(t)(t, x)), t ∈ R
+
t0
∖ ,

V𝜎(t)(t, x(t)) ≤ 𝜙1(V𝜎(t−)(t−, x(t−))), t ∈ ,
V𝜎(t)(t, x(t)) ≤ 𝜙2(V𝜎(t−)(t−, x(t−))), t ∈ ∖.

(4)

Since 𝜑 ∈  and 𝜙1, 𝜙2 ∈ , it follows from the expectation operator and Jensen's inequality in chapter 2, 18.3 in
the work of Rogers and Williams31 that

E[ℒV𝜎(t)(t, x)] ≤ −𝜑(E[V𝜎(t)(t, x)]), t ∈ R
+
t0
∖ , (5)

E[V𝜎(t)(t, x(t))] ≤ 𝜙1(E[V𝜎(t−)(t−, x(t−))]), t ∈ , (6)

E[V𝜎(t)(t, x(t))] ≤ 𝜙2(E[V𝜎(t−)(t−, x(t−))]), t ∈ ∖. (7)

If there exists a t̄ ∈ [tk, tk+1) such that E[V𝜎(t)(t̄, x(t̄))] = 0, we obtain from (5) to (7) and the equilibrium point x(t) = 0
that E[V𝜎(t)(t, x(t))] ≡ 0 holds for all t > t̄, which is a trivial case. In the following, we just need to study the case that
E[V𝜎(t)(t, x(t))] > 0.

Integrating both sides of (5) yields that

∫
t

tk

E[ℒV𝜎(t)(s, x(s))]ds
𝜑(E[V𝜎(t)(s, x(s))])

≤ −(t − tk), ∀t ∈ [tk, tk+1). (8)

Based on (8), define the following function: for any fixed 𝜈 > 0,

F(𝜚) ∶= ∫
𝜚

𝜈

ds
𝜑(s)

, ∀𝜚 > 0. (9)

Since 𝜑 ∈ ∞, the function F ∶ R
+
0 → R is continuous and strictly increasing, and its inverse F−1 ∶ R → R

+
0 is also

continuous and strictly increasing.
Using Itô's formula in chapter IV, 3 in the work of Rogers and Williams31 and Fubini's Theorem in chapter II, 12.2

in the work of Rogers and Williams,31 the inequality (8) is equivalent to

∫
E[V𝜎(t)(t,x(t))]

E[V𝜎(t)(tk ,x(tk))]

ds
𝜑(s)

≤ −(t − tk), ∀t ∈ [tk, tk+1), (10)

which implies that
F(E[V𝜎(t)(t, x(t))]) − F(E[V𝜎(t)(tk, x(tk))]) ≤ −(t − tk), ∀t ∈ [tk, tk+1).
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For any impulsive interval [ik, ik + 1], k ∈ N, since the switches may occur in the impulsive interval, we obtain from
(6) to (7), (10), and the FDT condition (A.5) that

F(E[V𝜎(ik+1)(ik+1, x(ik+1))]) − F(E[V𝜎(ik)(ik, x(ik))])

≤ F
(
𝜙1

(
E

[
V
𝜎

(
i−k+1

) (i−k+1, x
(

i−k+1
))]))

− F
(
E

[
V
𝜎

(
i−k+1

) (i−k+1, x
(

i−k+1
))])

+ F
(
E

[
V
𝜎

(
i−k+1

) (i−k+1, x
(

i−k+1
))])

− F
(
E
[

V𝜎(s𝑗1 )
(

s𝑗1 , x(s𝑗1 )
)])

+ F
(
E
[

V𝜎(s𝑗1 )
(

s𝑗1 , x(s𝑗1 )
)])

− F
(
E

[
V
𝜎

(
s−
𝑗1

) (s−𝑗1
, x

(
s−𝑗1

))])

+ F
(
E

[
V
𝜎

(
s−
𝑗1

) (s−𝑗1
, x

(
s−𝑗1

))])
− F

(
E
[

V𝜎(s𝑗2 )
(

s𝑗2 , x(s𝑗2 )
)])

…

+ F
(
E

[
V
𝜎

(
s−
𝑗N

) (s−𝑗N
, x

(
s−𝑗N

))])
− F

(
E
[
V𝜎(ik) (ik, x(ik))

])
≤ F

(
𝜙1

(
E

[
V
𝜎

(
i−k+1

) (i−k+1, x
(

i−k+1
))]))

− F
(
E

[
V
𝜎

(
i−k+1

) (i−k+1, x
(

i−k+1
))])

+
N∑

p=1

[
F
(
𝜙2

(
E

[
V
𝜎

(
s−
𝑗p

) (s−𝑗p
, x

(
s−𝑗p

))]))
− F

(
E

[
V
𝜎

(
s−
𝑗p

) (s−𝑗p
, x

(
s−𝑗p

))])]
− 𝜃1

≤ −𝛿,

where s𝑗1 , … , s𝑗N are the switching time instants in the impulsive interval [ik, ik + 1], k ∈ N. As a result, for any
impulsive interval [ik, ik + 1], k ∈ N, we have that

E[V𝜎(ik+1)(ik+1, x(ik+1))] ≤ F−1(F(E[V𝜎(ik)(ik, x(ik))]) − 𝛿). (11)

Iterating (11) from i1 to ik + 1, k ∈ N, we obtain that

E[V𝜎(ik+1)(ik+1, x(ik+1))] ≤ F−1(F(E[V𝜎(i1)(i1, x(i1))]) − k𝛿),

which holds for all k ∈ 𝔎 ∶= {k ∈ N|F(E[V𝜎(i1)(i1, x(i1))]) − k𝛿 ≥ lim𝜚↓0F(𝜚)}. Denote k1 ∶= maxk∈𝔎k (if not exists,
k1 ∶= ∞) and r ∶= E[V(t0, x(t0))].

In the following, a class  function 𝛽1 is constructed as a bound of E[V𝜎(t)(t, x(t))]. For all k ∈ {1, … , k1}, define

𝛽1(r, i1 − t0) ∶= max
{
E[V𝜎(i1)(i1, x(i1))], 𝜙1(E[V𝜎(i1)(i1, x(i1))])

}
,

𝛽1(r, ik+1 − t0) ∶= F−1(F(𝛽1(r, ik − t0)) − k𝛿).

In the interval (ik − t0, ik + 1 − t0), 𝛽1(r, s) is required to be continuously decreasing and to lie above every solution of
(5). If i1 > t0, then 𝛽1(r, s) can be constructed to be continuously decreasing in [0, i1 − t0). If k1 < ∞, then 𝛽1(r, s) in
the interval [ik1 − t0,∞) can be defined to decrease continuously to zero as s → ∞. Therefore, from the construction
of 𝛽1(r, s), we have that 𝛽1(r, s) is continuous and decreasing with respect to s, and

E[V𝜎(t)(t, x(t))] ≤ 𝛽1(E[V𝜎(t0)(t0, x(t0))], t − t0), ∀t ∈ R
+
t0
.

If k1 = ∞, then we need to prove that 𝛽1(r, s) → 0 as s → ∞.
Claim that, if 𝛽1(r, ik − t0) → 0 as k → ∞, then 𝛽1(r, s) → 0 as s → ∞. Assume that such a claim is invalid,

and thus, there exists 𝝐 > 0 such that limk→∞𝛽1(r, ik − t0) = 𝝐 > 0, where 𝝐 is related to the choice of r. Denote
𝜗 ∶= min𝝐≤v≤𝛽1(r,0)𝜑(v). From the middle-value theorem, we obtain that

𝛿 ≤ F(𝛽1(r, ik − t0)) − F(𝛽1(r, ik+1 − t0))

≤ 𝛽1(r, ik − t0) − 𝛽1(r, ik+1 − t0)
𝜗

,

which further implies that
𝛽1(r, ik − t0) − 𝛽1(r, ik+1 − t0) ≥ 𝛿𝜗 > 0. (12)
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From (12) and the construction of the function 𝛽1, 𝛽1(r, ik − t0) decreases to zero as k → ∞, which contradicts with
the assumption that limk→∞𝛽1(r, ik − t0) = 𝝐 > 0. Therefore, we conclude that the aforementioned claim is valid. That
is, given r > 0, 𝛽1(r, s) → ∞ as s → ∞.

Define the functions 𝛽2(r, t) ∶= sup0≤v≤r𝛽1(v, t) and 𝛽3(r, t) ∶= 1
r
∫ 2r

r 𝛽2(s, t)ds + re−t. From the construction of the
function 𝛽1, we have that 𝛽3(r, t) ≥ 𝛽2(r, t) ≥ 𝛽1(r, t) for all r, t > 0 and that 𝛽3(r, t) ∈ . As a result,

E[V𝜎(t)(t, x(t))] ≤ 𝛽3(E[V𝜎(t0)(t0, x(t0))], t − t0), ∀t ∈ R
+
t0
. (13)

Case 2: V𝜎(t)(t, x(t)) ≤ max{𝜌̄1|V𝜎(t)(t, x(t))|𝜏 , 𝜌2(|u(t)|)} for all t ∈ R
+
t0

. In this case, by taking expectation, we
have that

E[V𝜎(t)(t, x(t))] ≤ 𝜌̄1E[|V𝜎(t)(t, x(t))|𝜏] + 𝜌2(|u(t)|). (14)

Using lemma 1 in the work of Mazenc and Malisoff,32 we obtain from (14) that

E[V𝜎(t)(t, x(t))] ≤ e
ln 𝜌̄1
𝜏

(t−t0)E[|V𝜎(t0)(t0, x(t0))|𝜏] + (1 − 𝜌̄1)−2𝜌2(||u||)
=∶ 𝛽4(E[|V𝜎(t0)(t0, x(t0))|𝜏], t − t0) + 𝛾1(||u||), (15)

where ln 𝜌̄1 < 0 holds from the fact that 𝜌̄1 ∈ (0, 1), 𝛽4(v, t) ∶= e
ln 𝜌̄1
𝜏

tv, and 𝛾1(v) ∶= (1 − 𝜌̄1)−2𝜌2(v).
In aforementioned two cases, multiple Lyapunov functions are decreasing and convergent along the time line. In the

following, we consider the combination of such two cases. Because of the decrease of multiple Lyapunov functions,
there exists a time instant t∗ ∈ R

+
t0

such that V𝜎(t)(t, x(t)) ≤ max{𝜌̄1|V𝜎(t)(t, x(t))|𝜏 , 𝜌2(|u(t)|)} holds for all t ≥ t∗,
which thus implies that (15) holds for all t ≥ t∗. In the interval [t0, t∗], both aforementioned cases may hold in certain
bounded subintervals. We divide the interval [t0, t∗] into finite subintervals [Tk,Tk + 1) with k ∈ {0, … , 2K} and finite
K ∈ N. That is, [t0, t∗] =

⋃
k∈{0,… ,2K}[Tk,Tk+1) with T0 = t0 and T2K + 1 = t∗. Without loss of generality, assume that

the first case holds in [T2j,T2j + 1) with j ∈ {0, … ,K} and the second case holds in [T2j + 1,T2j + 2) with j ∈ {0, … ,K}.
Hence, for all j ∈ {0, … ,K}, we have that

E[V𝜎(t)(t, x(t))] ≤ 𝛽3(E[V𝜎(T2𝑗 )(T2𝑗 , x(T2𝑗))], t − T2𝑗), ∀t ∈ [T2𝑗 ,T2𝑗+1), (16)

E[V𝜎(t)(t, x(t))] ≤ 𝛽4(E[|V𝜎(T2𝑗+1)(T2𝑗+1, x(T2𝑗+1))|𝜏], t − T2𝑗+1) + 𝛾1(||u||), ∀t ∈ [T2𝑗+1,T2𝑗+2), (17)

where T2K + 2 ∶= ∞. Since E[V𝜎(t)(t, x(t))] decreases in the intervals [Tk,Tk + 1] with k ∈ {0, … , 2K}, and the upper
bound functions depend on the starting instants, we can follow (16) and (17) and construct the functions 𝛽 ∶ R

+
0 ×

R
+
0 → R

+
0 and 𝛾̄ ∶ R

+
0 → R

+
0 such that

• at the time instant t = Tk and k ∈ {0, … , 2K + 1},

𝛽(E[V𝜎(t)(t0, x(t0))],Tk − t0) ≥ 𝛽(E[V𝜎(t)(t0, x(t0))],Tk+1 − t0); (18)

• at the time instant t = T2j and j ∈ {0, … ,K},

𝛽(E[V𝜎(t)(t0, x(t0))], t − t0) + 𝛾̄(||u||) ≥ 𝛽3(E[V𝜎(T2𝑗 )(T2𝑗 , x(T2𝑗))], t − T2𝑗); (19)

• at the time instant t = T2j + 1 and j ∈ {0, … ,K},

𝛽(E[V𝜎(t)(t0, x(t0))], t − t0) + 𝛾̄(||u||) ≥ 𝛽4(E[|V𝜎(T2𝑗+1)(T2𝑗+1, x(T2𝑗+1))|𝜏], t − T2𝑗+1) + 𝛾1(||u||). (20)

Such functions 𝛽 and 𝛾̄ exist due to (16) and (17) and finite K ∈ N. In the interval [Tk,Tk + 1] with k ∈ {0, … , 2K}, we
require 𝛽(v, s) to be continuously decreasing and larger than 𝛽3(v, s) and 𝛽4(v, s) in the corresponding intervals. Since
(20) holds for the time instant t = T2K + 1, we have that (20) holds for all t > T2K + 1 = t∗.

From (A.1) and the construction of the functions 𝛽 and 𝛾̄ , we obtain that

E[V𝜎(t)(t, x(t))] ≤ 𝛽(𝛼2(E[||𝜉||𝜏]), t − t0) + 𝛾̄(||u||), ∀t ∈ R
+
t0
. (21)
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Furthermore, we can majorize the functions 𝛽 and 𝛾̄ to be of classes  and ∞, respectively. It follows from (21)
and Markov's inequality in chapter II, 18.1 in the work of Rogers and Williams31 that, for any 𝜀 ∈ (0, 1), there exist
𝛽(v, t) ∶= 𝛼−1

1 (2𝛽(𝛼2(v), t))∕𝜀 and 𝛾(v) ∶= 𝛼−1
1 (2𝛾̄(v))∕𝜀 such that

P {|x(t)| ≤ 𝛽(E[||𝜉||𝜏], t − t0) + 𝛾(||u||)} ≥ 1 − 𝜀, ∀t ∈ R
+
t0
.

Thus, the proof is completed.

Remark 2. In this section, we define the set ℑ1(𝜃1) with some constant 𝜃1 > 0, which thus implies that the impulsive
intervals are not less than 𝜃1. In addition, we assume that 0 < N < ∞, which implies that the maximal number
of the switches is finite in any impulsive interval, and is reasonable due to the fact that the sequence  is strictly
increasing. From 0 < N < ∞ and the FDT condition (A.5), the switching intervals are positive. As a result, the Zeno
and chattering phenomena are ruled out in this paper.

Remark 3. In Theorem 1, the conditions (A.2) to (A.4) are the nonlinear version, ie, the functions 𝜓, 𝜙1, 𝜙2 are non-
linear. Therefore, the obtained conditions are more general than the existing results in other works13,16,22 based on
exponential Lyapunov functions. The derived stability conditions in Theorem 1 can be applied to study dynamic sys-
tems that cannot be analyzed via exponential Lyapunov functions; see the numerical example in Section 5. As a result,
Theorem 1 extends the existing results in the works of Liu et al13 and Teel33 to the case of stochastic impulsive switched
time-delay systems, and can be applied to control systems that cannot be studied via exponential Lyapunov functions.

Remark 4. In comparison with the result obtained in the work of Ren and Xiong,24 the FDT condition (A.5) implies
that the sequences  and  are coupled. In the left-hand side of the inequality (3), the first item is for the impulses
and the second item is for the switches. If the functions 𝜓, 𝜙1, 𝜙2 are linear, then the FDT condition (A.5) is reduced
to the average dwell-time condition, which is also a coupled version for the sequences  and  . The scenarios that
 and  overlap or are disjoint are also included in Theorem 1, and the constant N is to constraint the number of
the switches in the impulsive intervals. If the sequences  and  are the same, then N ≡ 1, and the FDT condition
(A.5) is reduced to ∫ 𝜙(a)

a 𝜓−1(s)ds ≤ 𝜃1 − 𝛿 for all a > 0, where 𝜙(a) = max{𝜙1(a), 𝜙2(a)}. On the other hand,
if both the continuous dynamics and the impulsive dynamics in (1) are stable, then 𝜓 ≤ Id, which implies that
∫ 𝜙1(a)

a 𝜓−1(s)ds ≤ 0. Therefore, the FDT condition (A.5) is relaxed as

N ∫
𝜙2(a)

a

ds
𝜑(s)

≤ 𝜃1 − 𝛿, ∀a > 0,

which only constrains the switching time sequence, and implies that the switching intervals are smaller than 𝜃1∕N.

In Theorem 1, the Razumikhin condition is linear with respect to the time-delay item, which can be further relaxed.
In the following, based on the relation between Razumikhin-type theorem and small gain theorem,33 the next theorem
provides an alternative for SISS of the system (1), and relaxes the Razumikhin condition in Theorem 1.

Theorem 2. Consider the system (1). Assume that there exist 1,2 Lyapunov functions Vl ∶ R
+
t0−𝜏

× Rnx → R
+
0 , l ∈ 𝔏,

𝛼1, 𝜑 ∈ ∞, 𝛼2, 𝜙1, 𝜙2 ∈ ∞, 𝜌1, 𝜌2 ∈ ∞ with𝜙1 > Id, 𝜙2 ≥ Id, 𝜌1 < Id, and constants 𝜃1 > 𝛿 > 0, 0 < N < ∞
such that (A.1) and (A.3) to (A.5) hold, and

(A.2′) for all t ∈ R
+
t0
∖ , V𝜎(t)(t, x(t)) ≥ max{𝜌1(|V𝜎(t)(t, x(t))|𝜏), 𝜌2(|u(t)|)} implies that

ℒV𝜎(t)(t, xt) ≤ −𝜑(V𝜎(t)(t, x(t))).

Then, the system (1) is SISS for all the discrete-time sequence pair (,) ∈ ℑ1(𝜃1) × 𝔖(N), where 𝔖(N) is defined in
Theorem 1.

Proof. Similar to the proof of Theorem 1, the stability analysis is divided into two cases, ie, the case that V𝜎(t)(t, x(t)) ≥
max{𝜌1(|V𝜎(t)(t, x(t))|𝜏), 𝜌2(|u(t)|)} and the case that V𝜎(t)(t, x(t)) < max{𝜌1(|V𝜎(t)(t, x(t))|𝜏), 𝜌2(|u(t)|)}. The proof for
Case 1 is the same as that of Theorem 1 and (12) holds. For Case 2, by taking expectation, we have that

E[V𝜎(t)(t, x(t))] ≤ max{𝜌1(E[||V𝜎(t)(t, x(t))||𝜏]), 𝜌2(|u(t)|)},
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combining which with (13) yields that, for all t ∈ R
+
t0

,

E[V𝜎(t)(t, x(t))] ≤ max{𝜌1(E[||V𝜎(t)(t, x(t))||𝜏]), 𝜌2(||u||𝜏),
𝛽3(E[V𝜎(t0)(t0, x(t0))], t − t0)}, (22)

E[|V𝜎(t)(t, x(t))|𝜏] ≤ max{Υ(t − t0)E[|V𝜎(t)(t0, x(t0))|𝜏],E[||V𝜎(t)(t, x(t))||𝜏]}, (23)
where ||V𝜎(t)(t, x(t))||𝜏 ∶= supt≥t0

|V𝜎(t)(t, x(t))|𝜏 and Υ(t) ∶ = 0.5(1 − sgn(t − 𝜏)).
According to (A.2′), (22) and (23), and along the similar fashion as the proof of Theorem 1 in the work of Teel,33 we

obtain that there exist 𝛽(v, t) ∶= 𝛼−1
1 (𝛽3(𝛼2(v), t)) and 𝛾̄(v) ∶= 𝛼−1

1 (𝜌2(v)) such that

E[||x(t)||𝜏] ≤ 𝛽(E[||𝜉||𝜏], t − t0) + 𝛾̄(||u||), ∀t ∈ R
+
t0
. (24)

Note that E[||x(t)||𝜏] ≥ E[|x(t)|] for all t ∈ R
+
t0

. From (24) and Markov's inequality in chapter II, 18.1 in the work of
Rogers and Williams,31 we have that, for any 𝜀 ∈ (0, 1), there exist 𝛽(v, t) ∶= 𝛽(v, t)∕𝜀 and 𝛾(v) ∶= 𝛾̄(v)∕𝜀 such that

P {|x(t)| ≤ 𝛽(E[||𝜉||𝜏], t − t0) + 𝛾(||u||)} ≥ 1 − 𝜀, ∀t ∈ R
+
t0
.

Thus, the proof is completed.

Remark 5. The difference between Theorems 1 and 2 lies in the Razumikhin condition. In particular, the function
𝜌1 in Theorem 2 is allowed to be arbitrary function satisfying the small gain condition, which is a relaxation of the
Razumikhin condition in Theorem 1. Note that 𝜌1 in Theorem 2 can be linear, and the SISS property is still established.
However, if the Razumikhin condition in Theorem 1 is relaxed, then lemma 1 in the work of Mazenc and Malisoff32

cannot be applied; see remark 1 in the work of the aforementioned authors32 for more details.

4 STABLE IMPULSIVE DYNAMICS CASE

In this section, we study the stable impulsive dynamics case, which means that the impulsive dynamics in (1) is stable,
whereas the continuous dynamics is not. For such case, Razumikhin-type stability conditions are established. Before
presenting the main results, define the set 𝔖1(𝜃2) ∶= { = {s1, s2, …}| ⊆ R

+
t0
, 0 < sk+1 − sk ≤ 𝜃2,∀k ∈ N} for some

constant 𝜃2 > 0. That is, all the switching intervals are less than 𝜃2. With the set𝔖1(𝜃2), the following theorem establishes
sufficient conditions for the system (1) in the stable impulsive dynamics case.

Theorem 3. Consider the system (1). Assume that there exist 1,2 Lyapunov functions Vl ∶ R
+
t0−𝜏

× Rnx → R
+
0 , l ∈ 𝔏,

𝛼1 ∈ ∞, 𝛼2, 𝜑, 𝜙1, 𝜙2 ∈ ∞, 𝜌2 ∈ ∞ with 𝜙1 < Id, 𝜙2 ≥ Id, and constants 𝜌̄1 ∈ (0, 1), 𝜃2 > 𝛿 > 0, 0 < M < ∞
such that (A.1) holds, and

(B.1) for all t ∈ R
+
t0
∖ , V𝜎(t)(t, x(t)) ≥ max{𝜌̄1|V𝜎(t)(t, x(t))|𝜏 , 𝜌2(|u(t)|)} implies that

ℒV𝜎(t)(t, xt) ≤ 𝜑(V𝜎(t)(t, x(t)));

(B.1) for all t ∈ , V𝜎(t)(t, x(t)) ≤ 𝜙1(V𝜎(t−)(t−, x(t−)));
(B.3) for all t ∈ ∖, V𝜎(t)(t, x(t)) ≤ 𝜙2(V𝜎(t−)(t−, x(t−)));
(B.4) the FDT condition is satisfied, ie,

M ∫
a

𝜙1(a)

ds
𝜑(s)

+ ∫
𝜙2(a)

a

ds
𝜑(s)

≥ 𝜃2 − 𝛿, ∀a > 0,

where M ∈ N+ is the maximal number of the impulses in an switching interval; then, the system is SISS for all the
time sequence pair (,) ∈ ℑ(M) × 𝔖1(𝜃2), where ℑ(M) denotes the set of all the admissible impulsive time sequences
satisfying (B.4).

Proof. For the case that V𝜎(t)(t, x(t)) ≥ max{𝜌̄1|V𝜎(t)(s, x(s))|𝜏 , 𝜌2(|u(t)|)} for all t ∈ R
+
t0

, since 𝜑, 𝜙1, 𝜙2 ∈ , it follows
from (B.1) to (B.3) and Jensen's inequality that

E[ℒV𝜎(t)(t, x(t))] ≤ 𝜑(E[V𝜎(t)(t, x(t))]), t ∈ R
+
t0
∖ , (25)

E[V𝜎(t)(t, h(x,u))] ≤ 𝜙1(E[V𝜎(t)(t, x(t))]), t ∈ , (26)
E[V𝜎(t)(t, x(t))] ≤ 𝜙2(E[V𝜎(t−)(t−, x(t−))]), t ∈ ∖. (27)
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Integrating (25) implies that, for any t ∈ [tk, tk + 1),

∫
t

tk

E[ℒV𝜎(t)(s, x(s))]ds
𝜑(E[V𝜎(t)(s, x(s))])

≤ t − tk.

Similar to the proof of Theorem 1, we define the following function: for any fixed 𝜈 > 0,

F(𝜚) ∶= ∫
𝜚

𝜈

ds
𝜑(s)

, ∀𝜚 > 0.

Thus, F ∶ R
+
0 → R and its inverse F−1 ∶ R → R

+
0 are continuous and strictly increasing.

Along the similar fashion as in the proof of Theorem 1, it follows from the FDT condition (B.4) and (26) and (27)
that, for the switching time instants sk, sk+1 ∈  , k ∈ N,

F(E[V𝜎(sk+1)(sk+1, x(sk+1))]) − F(E[V𝜎(sk)(sk, x(sk))])
≤ F

(
𝜙2

(
E
[
V𝜎(sk)

(
s−k+1, x

(
s−k+1

))]))
− F

(
E
[
V𝜎(sk)

(
s−k+1, x

(
s−k+1

))])
+ F

(
E
[
V𝜎(sk)

(
s−k+1, x

(
s−k+1

))])
− F(E[V𝜎(sk)(i𝑗1 , x(i𝑗1 ))])

+ F(E[V𝜎(sk)(i𝑗1 , x(i𝑗1))]) − F
(
E
[

V𝜎(sk)

(
i−𝑗1
, x

(
i−𝑗1

))])
+ F

(
E
[

V𝜎(sk)

(
i−𝑗1
, x

(
i−𝑗1

))])
− F(E[V𝜎(sk)(i𝑗2 , x(i𝑗2 ))])

…

+ F
(
E
[

V𝜎(sk)

(
i−𝑗M
, x

(
i−𝑗M

))])
− F(E[V𝜎(sk)(sk, x(sk))])

≤ 𝜃2 − 𝛿 − 𝜃2 = −𝛿, (28)

where i𝑗1 , … , i𝑗M are the impulsive time instants in the switching interval [sk, sk + 1), k ∈ N. As a result, we obtain from
(28) that

E[V𝜎(sk+1)(sk+1, x(sk+1))] ≤ F−1(F(E[V𝜎(sk)(sk, x(sk))]) − 𝛿).

According to the similar construction of the function 𝛽1(r, s) as in the proof of Theorem 1, one has that

E[V𝜎(t)(t, x(t))] ≤ 𝛽1(V𝜎(t0)(t0, x(t0)), t − t0), ∀t ∈ R
+
t0
. (29)

The remaining is the same as the proof of Theorem 1, and hence, the inequality (13) holds for all t ∈ R
+
t0

.
For the second case that V𝜎(t)(t, x(t)) ≤ max{𝜌̄1|V𝜎(t)(t, x(t))|𝜏 , 𝜌2(|u(t)|)} for all t ∈ R

+
t0

, along the same fashion as
Case 2 in Theorem 1, it obtains that

E[V𝜎(t)(t, x(t))] ≤ e
ln 𝜌̄1
𝜏

(t−t0)𝛼2(E[||𝜉||𝜏]) + (1 − 𝜌̄1)−2𝜌2(||u||). (30)

The remaining is the same as the proof of Theorem 1, and thus, we can conclude that the system (1) is SISS for all the
time sequence pair (,) ∈ ℑ(M) ×𝔖1(𝜃2).

Remark 6. Since the stable impulsive dynamics is studied in this section, we define the set 𝔖1(𝜃2) with some constant
𝜃2 > 0, which implies that the switching intervals are positive and not larger than 𝜃1. In Theorem 3, the FDT condition
(B.4) indicates that the number of the impulses is finite in any switching interval. In addition, the impulsive intervals
are positive since the sequence  is strictly increasing. Similar to Remark 2, the Zeno and chattering phenomena are
excluded in this paper.

Remark 7. From the proofs of Theorems 1 and 3, we observe that the sequence  is used as the beacons to construct
the function 𝛽3 in the proof of Theorem 1, whereas the sequence  is treated as the beacons to construct the function
𝛽3 in the proof of Theorem 3. The essential reason lies in that the impulsive dynamics is assumed to be stable in
Section 4, whereas the continuous dynamics is assumed to be stable in Section 3. In addition, the switches do not
bring about the changes of the system state. As a result, in the proof of Theorem 3, we first construct a function to
decrease along the switching times, and then make such a function decrease along the whole time line. From the FDT
condition (B.4), the larger the number of the impulses in the switching intervals is, the faster the convergence of the
system state is, which implies the effects of impulses on system stability and can be treated as a criterion in impulsive
control of stochastic switched systems; see the works of Sun et al6 and Rivadeneira and Moog.8
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The counterpart of Theorem 2 is provided as follows.

Theorem 4. Consider the system (1). Assume that there exist 1,2 Lyapunov functions Vl ∶ R
+
t0−𝜏

× Rnx → R
+
0 , l ∈ 𝔏,

𝛼1 ∈ ∞, 𝛼2, 𝜑, 𝜙1, 𝜙2 ∈ ∞, 𝜌1, 𝜌2 ∈ ∞ with 𝜙1 > Id, 𝜙2 ≥ Id, 𝜌1 ≤ Id and constants 𝜃 > 𝛿 > 0, 0 < M < ∞
such that (A.1), (B.2)-(B.4) hold, and

(B.1′) for all t ∈ R
+
t0
∖ , V𝜎(t)(t, x(t)) ≥ max{𝜌1(|V𝜎(t)(t, x(t))|𝜏), 𝜌2(|u(t)|)} implies that

ℒV𝜎(t)(t, xt) ≤ 𝜑(V𝜎(t)(t, x(t))).

Then, the system (1) is SISS for all the discrete-time sequence pair (,) ∈ ℑ(M) × 𝔖1(𝜃2), where ℑ(M) is defined in
Theorem 3.

The proof is a combination of the strategies of the proofs of Theorems 2 and 3, and hence omitted here.

5 NUMERICAL EXAMPLE

In this section, a numerical example is presented to illustrate the developed results in the previous sections. Consider the
following stochastic switched delayed neural system (see also the work of Yang et al18):

dx(t) =
[
− C𝜎(t)x(t) + A𝜎(t)𝑓𝜎(t)(x(t)) + B𝜎(t)𝑓𝜎(t)(x(t − 𝜏)) + D𝜎(t) ∫

t

−∞
p𝜎(t)(t − s)𝑓𝜎(t)(x(s))ds + I𝜎(t)(t) + u(t)

]
dt

+ g𝜎(t)(x(t), x(t − 𝜏))dB(t), (31)

where x(t) ∈ Rn is the neural system state, 𝑓𝜎(t)(x(t)) ∈ Rn is the neuron activation function, p𝜎(t)(t) is the scalar function
to describe the delay kernel, and u(t) ∈ Rnu is the external input. B(t) ∈ Rnw is Brownian motion and g𝜎(t)(x(t), x(t − 𝜏))
is the noise perturbation, which is Borel-measurable. The switching function 𝜎(t) ∶ R

+
0 → 𝔏 = {1, … ,L} is piecewise

continuous and the switching time sequence is denoted by  . In addition, the weight matrices in (31) are of appropriate
dimensions.

Let the system (31) be the driving system and assume that the switching signal is known to the receiver in priori. In the
sequel, the controlled response systems with the same switching rule as in the system (31) can be designed as follows:

d𝑦(t) = (−C𝜎(t)𝑦(t) + A𝜎(t)𝑓𝜎(t)(𝑦(t)) + B𝜎(t)𝑓𝜎(t)(𝑦(t − 𝜏))

+ D𝜎(t) ∫
t

−∞
p𝜎(t)(t − s)𝑓𝜎(t)(𝑦(s))ds + I𝜎(t)(t) + U𝜎(t))dt

+ G𝜎(t)(𝑦(t), 𝑦(t − 𝜏))dB(t), (32)

where 𝑦(t) ∈ Rn is the response neural system state. For each l ∈ 𝔏, Ul(t) =
∑∞

k=1 Elk(𝑦(t) − x(t))𝛿(t − ik) are the impulsive
controllers, where Elk ∈ Rn×n are constant matrices, and 𝛿(t − ik) is the Dirac impulse function with discontinuous time
sequence . That is, the control input is implemented in the impulsive time sequence . In addition, let Elk = El.

Define the synchronization error z(t) ∶ = y(t) − x(t). Based on (31) and (32), the stochastic impulsive switched error
dynamical system  is obtained as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dz(t) =
[
−C𝜎(t)z(t) + A𝜎(t)H𝜎(t)(z(t)) + B𝜎(t)H𝜎(t)(z(t − 𝜏))

+ D𝜎(t) ∫ t
−∞ p𝜎(t)(t − s)H𝜎(t)(z(s))ds − u(t)

]
dt

+ G𝜎(t)(z(t), z(t − 𝜏))dB(t), t ∈ R
+
t0
∖ ,

z(t) = (I + E𝜎(t−))z(t−), t ∈ ,
z(t) = z(t−), t ∈ ∖,

where H𝜎(t)(z(t)) ∶ = f𝜎(t)(y(t)) − f𝜎(t)(x(t)) and G𝜎(t)(z(t), z(t − 𝜏)) ∶= g𝜎(t)(𝑦(t), 𝑦(t − 𝜏)) − g𝜎(t)(z(t), z(t − 𝜏)). Assume that
there exists constants Jl > 0 such that |Hl(z(t))| ≤ Jl|z(t)| for all l ∈ 𝔏.



3998 REN AND XIONG

Choose the LRFs as Vl(t, z(t)) = z⊤(t)z(t) for all l ∈ 𝔏. Thus, the condition (A.1) holds with 𝛼1(v) = 𝛼2(v) ∶ = |v|2. For
all t ∈ ,

V𝜎(t)(t, z(t)) ≤ 𝜆2
max(I + E𝜎(t−))V𝜎(t−)(t−, z(t−)),

and for all t ∈ ∖, there exists 𝜇2 ≥ 1 such that

V𝜎(t)(t, z(t)) ≤ 𝜇2)V𝜎(t−)(t−, z(t−)).

In the continuous interval, it obtains from detailed computation that, for all t ∈ R
+
t0
∖ , the differentials of the LRFs satisfy

ℒVl(t, z(t)) = 2z⊤(t)
[
−Ciz(t) + A𝜎𝑓i(z(t)) + Bl𝑓i(z(t − 𝜏)) + Dl ∫

t

−∞
pl(t − s)𝑓l(z(s))ds − u(t)

]
+ tr

[
G⊤

l (z(t), z(t − 𝜏))Gl(z(t), z(t − 𝜏))
]

≤ [
−2𝜆min(Cl) + 𝜚−1

l + 𝜉l𝜆max
(

A⊤

l Al
)
+ 𝜉−1

l +𝜛−1
l + 𝜖−1

l
]

Vl(t, z(t))

+ 𝜚l𝜆max
(

B⊤l Bl
)

Vl(t − 𝜏, z(t − 𝜏)) +𝜛lJ2
l Kl𝜆max

(
D⊤

l Dl
)
∫

t

−∞
pi(t − s)Vl(s, z(s))ds

+ tr
[
G⊤

l (z(t), z(t − 𝜏))Gl(z(t), z(t − 𝜏))
]
+ 𝜖lu⊤(t)u(t),

where 𝜚l, 𝜉l, 𝜖l, 𝜛 l are positive constants and Kl = ∫ ∞
0 pl(s)ds.

Assume there are two subsystems, ie, l ∈ {1, 2}. Set El = −0.3I, 𝜇2 = 1.02, p1(t) = exp(−0.5t), p2(t) = exp(−0.2t), and

C1 =
[

7 0
0 6

]
, A1 =

[
3 −0.3
6 5

]
, B1 =

[
−1.4 1
0.4 −8

]
,

C2 =
[

0.7 0
0 1

]
, A2 =

[
2 −0.3
5 4.5

]
, B2 =

[
−1.4 1
0.3 −6

]
,

D1 =
[
−1.2 −1
−2.8 −1

]
, D2 =

[
−1.2 −1
−2.8 −1.2

]
, u(t) =

[
4 sin(0.4t)
5 cos(0.5t)

]
,

g1(x(t), x(t − 𝜏)) = a
[

2x1(t) + x1(t − 𝜏)
x1(t − 𝜏) + x2(t) + x2(t − 𝜏)

]
,

g2(x(t), x(t − 𝜏)) = c
[

x1(t) + x2(t − 𝜏)
x1(t − 𝜏) + x2(t)

]
.

Let a = c = 0.5, and it follows from Figure 1 that all the subsystems are unstable. If the condition V𝜎(t)(t, z(t)) ≥
max{0.5|V𝜎(t)(t, z(t))|𝜏 , 0.5|u(t)|2} holds, then we have that

ℒVl(t, z(t)) ≤ 32.0409Vl(t, z(t)) + 9.4014∫
t

−∞
Vl(s, z(s))ds, ∀t ∈ R

+
t0
∖ ,

FIGURE 1 State trajectories of two subsystems with initial condition x(t) = (0.7, 0.8)⊤ for t ∈ [−1, 0] [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 2 State response of the system  . Both the impulsive time sequence and switching time sequence are periodic and overlapped, ie,
M = 3 and 𝜃2 = 0.03843 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 State response of the system  . Both the impulsive time sequence and switching time sequence are periodic with the same
period but not overlapped, ie, M = 1 and 𝜃2 = 0.0134 [Colour figure can be viewed at wileyonlinelibrary.com]

which implies that Lyapunov functions are not exponential. As a result, it obtains from Theorem 3 that 𝜃2 − 𝛿 ≤
0.0202M + 0.0126, under which SISS of the error dynamical system  is guaranteed. Under the initial state z(t) = [ −2, 5]⊤
for t ∈ [−1, 0], 𝜏 = 0.05, the Gaussian white noise with zero-mean and variance of 40, and the periodic impulsive time
sequence and switching time sequence with M = 3 and 𝜃2 = 0.03843, the state response of the estimate error system 
is given in Figure 2. If the impulsive intervals are the same as the switching intervals but the impulsive time sequence and
the switching time sequence are not overlapped (M = 1), then we have from Theorem 3 that M = 1 and 𝜃2 = 0.0134.
In the sequel, under the same conditions, the state response of the estimate error system  is given in Figure 3.

6 CONCLUSION

In this paper, stochastic input-to-state stability was studied for a general class of stochastic impulsive switched time-delay
systems, where the impulses and switches are allowed to occur asynchronously. Both the stable continuous dynamics
case and the stable impulsive dynamics case were investigated. For such two cases, Razumikhin-type conditions were
derived to guarantee system stability. Furthermore, the obtained results were illustrated via a numerical example. Future

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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research can be directed to controller/observer design for stochastic impulsive systems and stability analysis for impulsive
switched systems with state-dependent switching and impulses.
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