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ABSTRACT
This paper is concerned with the H! model reduction for negative imaginary (NI) systems. For a given lin-
ear time-invariant system that is stable and NI, our goal is to find a stable reduced-order NI system satis-
fying a pre-specified H! approximation error bound. Sufficient conditions in terms of matrix inequalities
are derived for the existence and construction of an H! reduced-order NI system. Iterative algorithms are
provided to solve the matrix inequalities and to minimise the H! approximation error. Finally, a numerical
example is used to demonstrate the effectiveness of the proposed model reduction method.

1. Introduction
A negative imaginary (NI) system is a stable system with equal
number of inputs and outputs, having a real-rational, proper
transfer functionmatrixG(s) that satisfies the frequency domain
condition j[G(jω) − G*(jω)] " 0 for all ω # (0, !) (Lanzon
& Petersen, 2008). Many practical systems can be modelled as
NI systems by appropriately choosing the system inputs and
outputs. For example, such systems arise when considering the
transfer functions from force inputs to collocated position out-
puts in lightly damped structures (Lanzon & Petersen, 2008;
Xiong, Petersen, & Lanzon, 2010), from voltage inputs to capac-
itance charge outputs in RLC circuit networks (Petersen, 2015;
Xiong, Lanzon, & Petersen, 2016), from voltage inputs to shaft
rotational velocity outputs in DC servo motor (Song, Lanzon,
Patra, & Petersen, 2012). Recently, NI systems theory has been
extended and emerged as an useful theory with practical appli-
cations. In Xiong et al. (2010), the definition of NI systems has
been extended by allowing poles on the imaginary axis except
at the origin. A further extension allowing poles at the origin
has been proposed in Mabrok, Kallapur, Petersen, and Lanzon
(2014). A more general definition about NI transfer functions
which were not necessarily proper has been given in Liu and
Xiong (2016). Furthermore, NI lemma has been generalised by
removing the minimality assumption in Song, Lanzon, Patra,
and Petersen (2012) and has been extended to descriptor sys-
tems in Xiong et al. (2016). These results have been well applied
to the stability analysis of NI systems ((Liu & Xiong, 2015);
Xiong et al., 2010) and to the controller synthesis of NI sys-
tems (Song, Lanzon, Patra, & Petersen, 2010; Song et al., 2012;
Xiong, Lam, & Petersen, 2016). In addition, NI theory has been
widely used in engineering, such as resonant controller design
for piezoelectric tube scanner (Das, Pota, & Petersen, 2014),
damping controller design for nanopositioners (Das, Pota, &
Petersen, 2015) and feedback resonance compensator design for
hard disk drive servo system (Rahman, Al Mamun, Yao, & Das,
2015).
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Model reduction is recognised as one of the cornerstones
of control theory and still a topic of active research. Efficient
approaches have been developed for model reduction prob-
lems over past decades, such as the classical balanced truncation
method (Moore, 1981), Hankel-norm approximation (Glover,
1984) andH! model reduction (Kavranoglu & Bettayeb, 1993).
Given an nth-order linear time-invariant system G(s), the H!

model reduction problem is to find a lower-order system Gr(s)
satisfying ∥G(s) − Gr(s)∥! < γ . H! model reduction method
based on linear matrix inequalities (LMIs) has attracted much
attention in recent years (Li, Yin, & Gao, 2014; Li, Yu, & Gao,
2015; Shen&Lam, 2015;Wei,Qiu, Karimi,&Wang, 2014, 2015).
The passivity-preservingmodel reductionmethod has been pre-
sented in Li et al. (2014).H! model reduction method has been
applied to the frequency-limited model reduction for linear sys-
tems in Shen and Lam (2015). A more complicated situation to
preserve positivity of the reduced-order system over a limited
frequency interval has been handled in Li et al. (2015). In prac-
tical applications, many large-scale systems can be modelled as
NI systems, such as the RLC network in Li et al. (2014), the
tapered bar with force actuators and collocated position sensors
in Geromel, Egas, and Kawaoka (2005). For these systems, it is
often desirable to preserve the NI property when the order is
reduced. Unfortunately, the existing model reduction methods
are not applicable to NI systems, because they cannot guarantee
the NI property of the reduced-order systems. Tu, Du, and Fan
(2014) considered the model reduction problem for NI systems,
where the balanced truncationmethod has been used. However,
the method proposed in Tu et al. (2014) is not applicable to the
NI systems with non-minimal realisations and the approxima-
tion error cannot be minimised. Hence, the model reduction
problem for NI systems is still open and remains challenging.
This motivates the research of this paper.

In this paper, we investigate theH! model reduction problem
for NI systems. For a given stable NI system G(s), the objective
of the paper is to find a stable reduced-order NI system Gr(s)
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so that ∥G(s) − Gr(s)∥! < γ , where γ is a prescribed positive
number. Sufficient conditions in terms of matrix inequalities are
derived for the existence of an H! reduced-order NI system.
In these new conditions, the reduced-order system matrices are
decoupled with the matrix variables induced by the bounded
real lemma (Gahinet & Apkarian, 1994) and NI lemma (Song
et al., 2012). Moreover, the desired reduced-order system is con-
structed by using the feasible solutions. Iterative algorithms are
provided to solve the matrix inequalities and to minimise the
H! approximation error. Finally, an RLC network example is
given to demonstrate the effectiveness of the proposed model
reduction method. The main challenge of this research is how
to transform the H! model reduction problem for NI systems
into a convex optimisation problem. The conservatism of our
results is that only a sub-optimal reduced-order NI system can
be found. The contribution of this paper is that an H! model
reduction method for NI systems is developed.

Notation: All the matrices are assumed to be compatible
dimensions and the symbol $ within a square matrix repre-
sents the symmetric part. Rm×n and Rm×n denote all the m
× n real matrices and real-rational proper transfer matrices,
respectively. 0m × n denotes an m × n zero matrix and In rep-
resents identity matrix of order n.H denotes the set of matrices
defined byH ! {U : U = [ 0(r+m)×n # ],where# ∈ R(r+m)×r}.
For amatrixA,A−1 andAT stand for the inverse and transpose of
A, respectively.ℜ[ · ] denotes the real part of a complex number.
The notation P > 0 (" 0) means that matrix P is positive def-
inite (semi definite). For a matrix X ∈ Rn×n, sym(X) indicates
XT + X .

2. Problem formulation
Consider a stable linear time-invariant NI system

ẋ(t ) = Ax(t ) + Bu(t ),
y(t ) = Cx(t ),

(1)

where x(t ) ∈ Rn, u(t ) ∈ Rm, y(t ) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rm×n. The transfer function of (1) is given by G(s) =
C(sI − A)−1B.

A reduced-order system for (1) is

ẋr(t ) = Arxr(t ) + Bru(t ),
yr(t ) = Crxr(t ),

(2)

where xr(t ) ∈ Rr, yr(t ) ∈ Rm,Ar ∈ Rr×r ,Br ∈ Rr×m,Cr ∈ Rm×r

with 1 % r < n. The transfer function of (2) is Gr(s) = Cr(sI −
Ar)−1Br.

From (1) and (2), the approximation error system is given by

ẋe(t ) = Aexe(t ) + Beu(t ),
e(t ) = Cexe(t ),

(3)

where xe(t ) = [ xT(t ) xTr (t ) ]T is the augmented state vector,
e(t) = y(t) − yr(t) is the output error and

Ae =
[

A 0n×r
0r×n Ar

]
, Be =

[
B
Br

]
, Ce =

[
C −Cr

]
.

The transfer function of the approximation error system (3) is
Ge(s) = Ce(sI − Ae)−1Be.

Note that the stability of systems (1) and (2) is equivalent to
that of system (3). Hence, the H! model reduction problem for
NI systems can be formulated as follows.

Problem 2.1: Given γ > 0 and r (1 % r < n). The H! model
reduction problem for NI system (1) is to find a reduced-order sys-
tem (2), such that

(1) the reduced-order system Gr(s) in (2) is stable NI;
(2) the approximation error system Ge(s) in (3) satisfies

∥Ge(s)∥! < γ .

Some preliminaries are presented. First, the definition of sta-
ble NI system is given.

Definition 2.1 (Lanzon & Petersen, 2008): A square real-
rational proper transfer function matrix G(s) ∈ Rm×m is stable
NI if

(1) G(s) has no poles in ℜ[s] " 0.
(2) j[G(jω) − G*(jω)] " 0 for all ω # (0, !).

The following definition of NI systems is a generalisation of
Definition 2.1.
Definition 2.2 (Xiong et al., 2010): A square real-rational
proper transfer function matrix G(s) ∈ Rm×m is NI if

(1) G(s) has no poles at the origin and in ℜ[s] > 0.
(2) j[G(jω)−G*(jω)]" 0 for allω # (0,!) except values of

ω where jω is a pole of G(s).
(3) If jω0 is a pole of G(s), it is at most a simple pole, and the

residue matrix K0 ! lims→ jω0 (s − jω0) jG(s) is positive
semi-definite Hermitian.

The NI lemma without minimality assumption is given as
follows.
Lemma 2.1 (Song et al., 2012): Let (A, B, C, D) be a state-space
realisation of G(s) ∈ Rm×m, where A ∈ Rn×n,B ∈ Rn×m,C ∈
Rm×n,D ∈ Rm×m, m % n. If det(A) ̸= 0, D = DT, and there
exists a matrix R ∈ Rn×n, R = RT > 0, such that the following
conditions

AR + RAT ≤ 0 and B + ARCT = 0

hold, then G(s) is NI.

The following lemma is known as the bounded real lemma.

Lemma 2.2 (Gahinet & Apkarian, 1994): The error system in
(3) is stable and satisfies ∥G(s)e∥! < γ if and only if there exists
a matrix Q ∈ R(n+r)×(n+r), Q = QT > 0, such that

$ !

⎡

⎣
sym(QAe) QBe CT

e
BT
eQ −γ Im 0m×m
Ce 0m×m −γ Im

⎤

⎦ < 0. (4)
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To facilitate the presentation, some useful matrices are
defined as

Ā !
[

A 0n×r
0r×n 0r×r

]
, F̄ !

[
0n×r 0n×m
Ir 0r×m

]
,

B̄ !
[

B
0r×m

]
, M̄ !

[
0n×r
Ir

]
,

C̄ !
[
C 0m×r

]
, H̄ !

[
0m×r −Im

]
, N̄ !

[
0m×r Im

]
.

The system matrices of system (3) can be rewritten as

Ae = Ā + F̄U, Be = B̄ + F̄V, Ce = C̄ + H̄U, (5)

where

U =
[
0r×n Ar
0m×n Cr

]
∈ H, V =

[
Br

0m×m

]
.

3. H ! negative imaginarymodel reduction
In this section, the main results of this paper are presented. Suf-
ficient conditions in terms of matrix inequalities are derived
for the existence of a solution to Problem 2.1. It is shown that
the reduced-order NI system can be found by solving matrix
inequalities. Iterative algorithms are provided to solve thematrix
inequalities and to minimise the H! approximation error.

First, a necessary and sufficient condition is proposed for the
existence of an H! reduced-order system.

Lemma 3.1: Given γ > 0, r (1 % r < n), and a stable sys-
tem G(s) in (1). There exists a reduced-order system (2) such
that the approximation error system (3) is stable and satisfies
∥Ge(s)∥! < γ if and only if there exist matrices Û ∈ H, L ∈ H,
V ∈ R(r+m)×m, Q ∈ R(n+r)×(n+r), Q = QT > 0 and a diagonal
matrix X ∈ R(r+m)×(r+m), X > 0, such that

⎡

⎢⎢⎣

sym(QĀ − Û TL) + Û TXÛ Q(B̄ + F̄V ) C̄T QF̄ + LT
⋆ −γ Im 0m×m 0m×(m+r)
⋆ ⋆ −γ Im H̄
⋆ ⋆ ⋆ −X

⎤

⎥⎥⎦ < 0.

(6)

Proof: In view of Lemma 2.2, Ge(s) is stable and satis-
fies ∥Ge(s)∥! < γ if and only if there exists a matrix Q ∈
R(n+r)×(n+r), Q = QT > 0, such that (4) holds. Now we prove
that (4) is equivalent to (6).

(⇒) Suppose that there exists amatrixQ ∈ R(n+r)×(n+r),Q =
QT > 0 such that (4) holds. There always exists a real diagonal
matrix X > 0 such that −X −W$−1W T < 0, where

W =
[
F̄TQ 0(m+r)×m H̄T

]
.

Using the Schur complement, −X −W$−1W T < 0 is equiva-
lent to

[
$ W T

W −X

]
=

⎡

⎢⎢⎣

sym(QAe) QBe CT
e QF̄

⋆ −γ Im 0m×m 0m×(m+r)
⋆ ⋆ −γ Im H̄
⋆ ⋆ ⋆ −X

⎤

⎥⎥⎦ < 0.

(7)

Let

T !

⎡

⎢⎢⎣

In+r 0(n+r)×m 0(n+r)×m 0(n+r)×(m+r)
0m×(n+r) Im 0m×m 0m×(m+r)
0m×(n+r) 0m×m Im 0m×(m+r)

−U 0(m+r)×m 0(m+r)×m Im+r

⎤

⎥⎥⎦ .

Multiplying (7) to the right by T and to the left by TT, one
obtains
⎡

⎢⎢⎣

sym(QAe − QF̄U ) −U TXU QBe CT
e −U TH̄T QF̄ +U TX

⋆ −γ Im 0m×m 0m×(m+r)
⋆ ⋆ −γ Im H̄
⋆ ⋆ ⋆ −X

⎤

⎥⎥⎦ < 0.

(8)
Substituting (5) into (8), we have that

⎡

⎢⎢⎣

sym(QĀ) −U TXU Q(B̄ + F̄V ) C̄T QF̄ +U TX
⋆ −γ Im 0m×m 0m×(m+r)
⋆ ⋆ −γ Im H̄
⋆ ⋆ ⋆ −X

⎤

⎥⎥⎦ < 0.

(9)
Let Û = U and L = XU, we arrive at (6).

(⇐) Suppose that there exist matrices Û ∈ H, L ∈ H, V ∈
R(r+m)×m, Q ∈ R(n+r)×(n+r), Q = QT > 0 and diagonal matrix
X ∈ R(r+m)×(r+m), X > 0, such that (6) holds. Using the Schur
complement, the inequality (6) is equivalent to

sym(QĀ) − Û TL − LTÛ + Û TXÛ − &12&
−1
22 &T

12 < 0, (10)

where

&12 =
[
Q(B̄ + F̄V ) C̄T QF̄ + LT

]
,

&22 =

⎡

⎣
−γ Im 0m×m 0m×(m+r)

⋆ −γ Im H̄
⋆ ⋆ −X

⎤

⎦ .

It follows from

(L − XÛ )TX−1(L − XÛ ) ≥ 0

that

− Û TL − LTÛ + Û TXÛ ≥ −LTX−1L. (11)

Combing (10) with (11), we have that

sym(QĀ) − LTX−1L − &12&
−1
22 &T

12 < 0,

which is equivalent to

⎡

⎢⎢⎣

sym(QĀ) − LTX−1L Q(B̄ + F̄V ) C̄T QF̄ + LT
⋆ −γ Im 0m×m 0m×(m+r)
⋆ ⋆ −γ Im H̄
⋆ ⋆ ⋆ −X

⎤

⎥⎥⎦ < 0.

Let U = X−1L, we arrive at (9).



1518 L. YU AND J. XIONG

Multiplying (9) to the right by T−1 and to the left by T−T, we
obtain (7), which implies that the inequality (4) holds. The proof
is completed. "
Remark 3.1: Multiplier relaxation technique is widely used for
H! model reduction problems, such as Li, Lam,Wang, andDate
(2011), Li et al. (2014), Shen and Lam (2015), Wei et al. (2014,
2015). It is also a commonly used technique forH! control syn-
theses, such as Feng and Yagoubi (2013), Shen and Lam (2014),
Qiu, Ding, Gao, and Yin (2016).

The following result provides sufficient conditions for the
existence of a solution to Problem 2.1 and the construction of
the desired reduced-order system.

Theorem 3.1: Given γ > 0, r (1 % r < n), and consider the sta-
ble NI system (1). If there exist matrices P ∈ Rr×r, P = PT > 0,
Q ∈ R(n+r)×(n+r), Q = QT > 0, '̄ ∈ R2r×r, Ār ∈ Rr×r, L ∈ H,
Cr ∈ Rm×r, nonsingular matrix Y ∈ Rr×r and diagonal matrix
X ∈ R(r+m)×(r+m), X> 0, such that the following matrix inequal-
ities hold:

( + sym('̄)̄T) ≤ 0, (12)

⎡

⎢⎢⎣

sym(QĀ − Û TL) + Û TXÛ Q(B̄ + F̄V ) C̄T QF̄ + LT
⋆ −γ Im 0m×m 0m×(m+r)
⋆ ⋆ −γ Im H̄
⋆ ⋆ ⋆ −X

⎤

⎥⎥⎦ < 0,

(13)
where

)̄ =
[
Ār
−Y

]
, ( =

[
0r×r P
P 0r×r

]
, Û =

[
0r×n ĀrY−1

0m×n Cr

]
,

V =
[

−ĀrY−1PCT
r

0m×m

]
.

Then, Problem 2.1 is solvable and the desired reduced-order sys-
tem matrices are given by Ar = ĀrY−1, Br = −ArPCT

r , Cr.

Proof: Suppose that there exist matrices P = PT > 0, Q =
QT > 0, L ∈ H, '̄, Ār, Cr, nonsingular matrix Y and diagonal
matrix X > 0, such that the inequalities (12), (13) hold. The
reduced-order system Gr(s) is

Gr(s) =
[
ĀrY−1 −ArPCT

r
Cr 0m×m

]
.

Let ) = )̄Y−1 and ' = '̄Y T, (12) becomes

( + sym(')T) ≤ 0. (14)

Substituting Ar = ĀrY−1 and )̄ = [ Ār
−Y ] into ) = )̄Y−1, we

have ) = [ Ar
−Ir ]. Selecting * ! [ Ir

AT
r
], one has that *T) = 0.

Pre- and post-multiplying (14) by *T and * , we have

*T(( + sym(')T))* = *T(* = ArP + PAT
r ≤ 0.

The reduced-order system matrix Br is Br = −ArPCT
r . Accord-

ing to Lemma 2.1, Gr(s) is NI.
Based on Lemma 3.1, the inequality (13) implies that the

approximation error system (3) is stable and satisfies ∥Ge(s)∥!

< γ . Hence, Problem 2.1 is solvable. The proof is completed. "
Remark 3.2: Compared to the conditions in Lemmas 2.1 and
2.2, the matrices Q, P in Theorem 3.1 are not coupled with the
reduced-order system matrices Ar, Br, Cr. This characteristic is
beneficial for solving Problem 2.1. The inequalities (12), (13) are
not LMIs with respect to the parameters P, Q, '̄, Ār, L, Cr, Y,
X. However, if the parameters '̄, Cr are fixed, these inequalities
become LMIs. These LMIs can be solved efficiently by available
numerical software.

An iterative LMIs algorithm is provided to solve the condi-
tions in Theorem 3.1.

Algorithm 1. Iterative Algorithm for NI Model Reduction

1: Input A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×m, γ > 0, 1 ≤ r < n,
ε > 0.

2: Output Ar ∈ Rr×r , Br ∈ Rr×m,Cr ∈ Rm×r.
3: Initilization

Use the existing methods, such as balanced trunca-
tion method, to get a reduced-order system Kr =[
Ar Br
Cr 0m×m

]
.

Fix '̄ =
[
AT

r −Ir
]T, solve (12) for P, Y , Ār. Let Ar =

ĀrY−1.
Set i = 0. Choose C(i)

r = Cr, B(i)
r = −ArP(Cr)T,

µ(−1) = −1.

4: repeat

5: Let Û (i) =
[
0r×n Ar
0m×n C(i)

r

]
and V (i) =

[
−B(i)

r
0m×m

]
, solve the

following optimisation problem for Q, L, X , µ :

min µ

s.t.

⎡

⎢⎢⎢⎢⎣

sym(QĀ − Û TL)

+ Û TXÛ − µIn+r Q(B̄ + F̄V ) C̄T QF̄ + LT
⋆ −γ Im 0m×m 0m×(m+r)
⋆ ⋆ −γ Im H̄
⋆ ⋆ ⋆ −X

⎤

⎥⎥⎥⎥⎦
< 0.

(15)
6: if µ ≤ 0 then
7: Output Ar, B(i)

r andC(i)
r .

8: else
9: Fix µ(i) = µ, solve the following optimisation problem for Q,

L, X :

min trace(X )

s.t.

⎡

⎢⎢⎢⎢⎣

sym(QĀ − Û TL)

+ Û TXÛ − µ(i)In+r Q(B̄ + F̄V ) C̄T QF̄ + LT
⋆ −γ Im 0m×m 0m×(m+r)
⋆ ⋆ −γ Im H̄
⋆ ⋆ ⋆ −X

⎤

⎥⎥⎥⎥⎦
< 0.

(16)
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10: UpdateC(i+1)
r and B(i+1)

r according to

C(i+1)
r = N̄X−1LM̄, B(i+1)

r = −ArP(C(i+1)
r )T.

Set i = i + 1.
11: end if
12: until |µ(i) − µ(i−1)| ≤ ε.

Remark 3.3 The optimisation problems (15), (16) are convex
and can be solved effectively. If a solutionµ % 0 to (15) is found,
then the obtained reduced-order system is a solution to Prob-
lem 2.1. If a solution µ % 0 cannot be found, then we con-
clude that there may not exist a reduced-order NI system such
that ∥Ge(s)∥! < γ . For the H! model reduction problem, it is
desired that the approximation error is as small as possible. To
minimise the H! approximation error, the following optimisa-
tion algorithm is provided.

Algorithm 2.Minimisation of H∞ approximation error

1: Input A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, 1 ≤ r < n, ε > 0,
,γ > 0.

2: Output Ar ∈ Rr×r, Br ∈ Rr×m,Cr ∈ Rm×r, γ ∗.
3: Initilization

Use the existing methods, such as balanced trunca-
tion method, to get a reduced-order system Kr =[
Ar Br
Cr 0m×m

]
.

Fix '̄ =
[
AT

r −Ir
]T, solve (12) for P, Y , Ār. Let Ar =

ĀrY−1.
Set i, j = 0 and γ ( j) to be a sufficiently large number.
ChooseC(i)

r = Cr, B(i)
r = −ArP(Cr)T, µ(−1) = −1.

4: repeat

5: print Let Û (i) =
[
0r×n Ar
0m×n C(i)

r

]
andV (i) =

[
−B(i)

r
0m×m

]
, solve

(15) for Q, L, X , µ.
6: if µ ≤ 0 then
7: Denote the obtained B(i)

r and C(i)
r as B( j)

r and C( j)
r . Set

γ ( j+1) = γ ( j) − ,γ , j = j + 1.
8: else
9: Fix µ(i) = µ, solve (16) for Q, L, X .
10: UpdateC(i+1)

r and B(i+1)
r according to

C(i+1)
r = N̄X−1LM̄, B(i+1)

r = −ArP(C(i+1)
r )T.

Set i = i + 1.
11: end if
12: until |µ(i) − µ(i−1)| ≤ ε, outputAr, B

( j−1)
r ,C( j−1)

r and γ ∗ =
γ ( j−1).

4. Illustrative example
In this section, an example is provided to illustrate the effec-
tiveness of the proposed method. The optimisation problems
are solved by YALMIP (Löfberg, 2004). The performance of the
proposed method is compared with the NI balanced truncation
method (Tu et al., 2014).

V (t) −
+

R0

C0 Q0(t)

R1 L1

C1 Q1(t)

R2 L2

C2 Q2(t)

Rn Ln

Cn Qn(t)

Figure . RLC network.

RLC networks as an illustrative example are widely used in
numerous works, such as Li et al. (2014), Petersen (2015) and
Xiong et al. (2016). In this paper, we choose the n-stage RLCnet-
work in Figure 1 as an illustrative example. The input is the volt-
age V(t) and the output is the total charge on the capacitances

Q(t ) =
n∑

k=0

Qk(t ).

The input–output relationship from u(t)= V(t) to y(t)=Q(t) is
given by

ẋ(t ) =Ax(t ) + Bu(t ),
y(t ) =Cx(t ),

where x(t ) =
[
u0(t ) iL1 (t ) u1(t ) · · · iLn (t ) un(t )

]T, uk(t) is the
voltage across capacitor Ck and iLk (t ) represent the current
through inductor Lk,

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
C0R0

− 1
C0

0 0 0 · · · 0
1
L1 −R1

L1 − 1
L1 0 0 · · · 0

0 1
C1

0 − 1
C1

0 · · · 0
0 0 1

L2 −R2
L2 − 1

L2 · · · 0
...

...
...

. . . . . . . . .
...

0 0 0 · · · 1
Ln −Rn

Ln − 1
Ln

0 0 0 · · · 0 1
Cn

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =
[ 1
C0R0

0 0 0 0 · · · 0
]T

,

C =
[
C0 0 C1 0 C2 · · · Cn

]
.

It can be verified that the system is a stable NI system by
either Definition 2.1 or Lemma 2.1. Here, we considered an 11-
dimensional RLC network with Ck = 1F, Lk = 1H, Rk = 0.5'.
The goal of this example is to find the reduced-order NI systems
with as small as possible H! approximation error.

The reduced-order systems returned by Algorithm 2 are
given in Table 1. For r = 3, the sub-optimal approximation
error is γ * = 0.262, which is smaller than 0.355 obtained by
NI balanced truncation method in Tu et al. (2014). For r = 2,
the sub-optimal approximation error is γ * = 0.494, which is
smaller than 0.975 obtained by NI balanced truncation method
in Tu et al. (2014). For r = 1, the sub-optimal approximation
error is γ * = 0.614, which is smaller than 2.8412 obtained by
NI balanced truncation method in Tu et al. (2014). The bode
plot of the original and the reduced-order systems are shown in
Figure 2. It can be seen from Figure 2 that the reduced-order
system Gr(jω) satisfies &Gr(jω) # (− π , 0) for all ω # (0, !).



1520 L. YU AND J. XIONG

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−90

−45

0

P
ha

se
 (

de
g)

Frequency  (rad/s)

11th−order(original)

3rd−order

2nd−order

1st−order
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Table . Reduced-order systems obtained by Algorithm .

Order Gr γ *

Third

⎡

⎢⎣

−0.5311 0.1309 −0.5378 −4.467
0.0353 −0.5093 0.1103 −6.665
−0.1188 −0.0366 −0.3283 −3.922
0.368 1.037 −2.492 0

⎤

⎥⎦ .

Second

⎡

⎣
−1.9671 −1.0663 −1.429
1.0314 0.4560 0.256

−0.9808 −1.5377 0

⎤

⎦ .

First
[

−0.1612 −0.432
−2.010 0

]
.

This means that Gr(jω) has non-positive imaginary part, that
is, j[Gr( jω) − G∗

r ( jω)] ≥ 0. In addition, the reduced-order sys-
tem matrix Ar is stable. It follows from Definition 2.1 that the
reduced-order system Gr(s) is stable NI.

5. Conclusions
TheH! model reduction problem forNI systems has been stud-
ied in this paper. To preserve the NI property of the reduced-
order systems, sufficient conditions have been established for
the construction of an H! reduced-order NI system. Iterative
numerical algorithms have been provided to find the desired
reduced-order system and to minimise the H! approximation
error. Finally, the efficiency of the proposed method has been
illustrated by an RLC network example. The limitation of this
paper is that the developed method can only find a sub-optimal
reduced-orderNI system.How to extend the results of this paper
to find the optimal reduced-order NI system is worth future
research.
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