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ABSTRACT
This paper studies interval frequency negative imaginary (IFNI) systems based on minimal state-
space realisations. Firstly, the concept of the IFNI transfer functions is introduced, and the relation-
ship between the IFNI transfer functions and the interval frequency positive real transfer functions
is established. Secondly, based on the generalised KYP lemma, a necessary and sufficient condition
is derived for IFNI transfer functions with minimal state-space realisation in terms of linear matrix
inequalities. Our results coincide with the existing negative imaginary lemma when the interval
frequency set becomes the positive frequency set. Also, a time domain interpretation of the IFNI
property is provided in terms of the system input, output and state. Finally, two examples are used
to illustrate the developed theory.
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1. Introduction

Roughly speaking, negative imaginary (NI) systems are
a class of dynamical systems satisfying negative imagi-
nary property (Ferrante & Ntogramatzidis, 2013; Lan-
zon & Petersen, 2008; Liu & Xiong, 2016; Mabrok,
Kallapur, Petersen, & Lanzon, 2014a; Xiong, Petersen,
& Lanzon, 2010). The negative imaginary property arises
in many practical engineering systems, for example,
lightly damped structures (Lanzon & Petersen, 2008;
Xiong et al., 2010), atomic force microscopes (Das,
Pota, & Petersen, 2014; Mabrok, Kallapur, Petersen,
& Lanzon, 2014b), robotic manipulator arms (Mabrok
et al., 2014a), large vehicles platoons (Cai&Hagen, 2010),
and hard disk drive servo systems (Rahman, Al Mamun,
Yao, & Das, 2015). The negative imaginary property of
dynamical systems was introduced and extended in Lan-
zon and Petersen (2008), Xiong et al. (2010), Mabrok
et al. (2014a) where negative imaginary lemmas were
established to determine the negative imaginary property
based on minimal state-space realisations. Also, neces-
sary and sufficient conditions were derived for the sta-
bility analysis of two interconnected negative imaginary
systems, having potential applications in robust control
(Xiong, Lam, & Petersen, 2016).

The concept of NI systems and the corresponding the-
ory in Lanzon and Petersen (2008), Xiong et al. (2010),
Mabrok et al. (2014a) have been extended in many
directions. Firstly, the authors of Ferrante and Ntogra-
matzidis (2013) extended the concept of NI systems to
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the case where the transfer functions were not necessar-
ily rational and proper. However, the NI transfer func-
tions in Ferrante and Ntogramatzidis (2013) need to be
symmetric. Such a symmetric restriction was removed
in Liu and Xiong (2016). The concepts and results in
Lanzon and Petersen (2008), Xiong et al. (2010) were
also extended to the lossless negative imaginary case in
Xiong, Petersen, and Lanzon (2012b). The concept of the
NI systems and the negative imaginary lemma in Lan-
zon and Petersen (2008), Xiong et al. (2010), Mabrok
et al. (2014a) were further extended to the discrete-time
case in Ferrante, Lanzon, and Ntogramatzidis (2017),
Liu and Xiong (2017). On the other hand, many efforts
have been devoted to the extension of NI systems theory.
Uncertain system control and disturbance attenuation
(Yuan, Wang, & Guo, 2017, 2018) are important con-
trol problems, and Song designed state feedback negative
imaginary controllers for robustly stabilising uncertain
systems with strictly NI systems uncertainty (Song, Lan-
zon, Patra, & Petersen, 2012). The output feedback case
was studied in Xiong et al. (2016) and structural con-
straints were allowed in the designed controllers. The
absolute stability of NI systems interconnected to slope-
restricted nonlinear uncertainties was studied in Dey,
Patra, and Sen (2016). Model reduction problems for NI
systemswere discussed in Yu andXiong (2017) where the
H∞ norm of the error system was minimised.

In practice, many dynamical systems do not satisfy
the NI property over all the positive frequencies. For
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example, it has been shown that the capacitance subsys-
tem of piezoelectric tube scanners in Bhikkaji, Ratnam,
Fleming, andMoheimani (2007) satisfies the NI property
over a finite frequency range (Xiong, Petersen, & Lan-
zon, 2012a). In Patra and Lanzon (2011), the authors
introduced a class of systems satisfying negative imagi-
nary property in a interval frequency range, which need
to be real-rational stable. In this paper, we further extend
by allowing poles on imaginary axis. The introduction of
IFNI systems is also motivated by practical examples. For
example, the transfer function of the piezoelectric tube
scanners (PTSs) model in Das et al. (2014) and Sallen-
key low-pass filter (Pactitis, 2007; Patra & Lanzon, 2011)
are actually IFNI systems (more details are given in the
example section in this paper). Similar to the approach
used in Xiong et al. (2012a), the generalised Kalman-
Yakubovich-Popov lemma in Iwasaki and Hara (2005),
Iwasaki, Hara, and Fradkov (2005) provided us a founda-
tion to study IFNI systems.

The main contributions of this paper can be high-
lighted as follows: (1) the concept of IFNI systems is
defined, and includes low frequency negative imagi-
nary (LFNI) systems, middle frequency negative imagi-
nary (MFNI) systems and high frequency negative
imaginary (HFNI) systems as special cases; (2) the
relationship between IFNI property and IFPR property
of dynamical systems is established according to their
definitions; (3) a necessary and sufficient condition is
derived to test IFNI property of dynamical systems in
terms of linear matrix inequalities, and either when the
upper bound of the low frequency interval approaches
to infinity, or when the lower bound of the high fre-
quency interval approaches to zero, our result reduces
to the generalised NI lemma in Mabrok et al. (2015);
(4) a time domain interpretation of the IFNI property
is provided in terms of the system input, output and
state.

Notation: LetA∗, Ā andAT denote the complex conju-
gate transpose, the complex conjugate and the transpose
of a complex matrix A, respectively.Rn×n denotes the set
of n × n real matrices. The real part and imaginary part
of complex number s, respectively, are denoted by �[s]
and �[s]. The set of square, real-rational, proper transfer
functions is denoted byG.

2. Interval frequency negative imaginary
transfer functions

The section introduces some useful definitions and lem-
mas, which can be used for streaming the main results of
the paper.

Definition 2.1 (Mabrok et al., 2014a): Given a trans-
fer function matrix R(s) ∈ G. R(s) is said to be negative
imaginary if

(1) R(s) has no poles in �[s] > 0;
(2) j[R(jω) − R∗(jω)] ≥ 0 for all ω > 0 where jω is not

a pole of R(s);
(3) if jω0,ω0 > 0, is a pole of R(s), then it is a simple

pole and the corresponding residue matrix of jR(s)
is positive semidefinite Hermitian;

(4) if R(s) has a pole at s=0, then lims→0 s2R(s) is pos-
itive semidefinite Hermitian, and lims→0 skR(s) = 0
for k ≥ 3.

Before defining IFNI transfer functions, we first define
the frequency interval set

� � �L
⋃( N⋃

l=1

�Ml

)⋃
�H , (1)

where

�L = {ω ∈ R : 0 < ω ≤ ω̄0} ,
�Ml = {

ω ∈ R : ωl ≤ ω ≤ ω̄l, ω̄l > ωl > ω̄l−1
}
,

l = 1, . . . ,N,

�H = {
ω ∈ R : ωh ≤ ω,ωh > ω̄N

}
.

Definition 2.2: Given a transfer function matrix R(s) ∈
G. R(s) is said to be interval frequency negative imaginary
in the frequency interval set � if

(1) R(s) has no poles in R[s] > 0;
(2) j[R(jω) − R∗(jω)] ≥ 0 for all ω ∈ � where jω is not

a pole of R(s);
(3) if jω0,ω0 ∈ �, is a pole of R(s), then it is a simple

pole and the corresponding residue matrix of jR(s)
is positive semidefinite Hermitian;

(4) if R(s) has a pole at s=0, then lims→0 s2R(s) is pos-
itive semidefinite Hermitian and lims→0 skR(s) = 0
for k ≥ 3;

(5) R(∞) = RT(∞).

Remark 2.3: In Definition 2.2, if � = �L, then the
interval frequency negative imaginary transfer function
R(s) is said to be low frequency negative imaginary
(LFNI), which could be considered as an extension of the
definition of finite frequency negative imaginary transfer
functions (Xiong et al., 2012a) by allowing poles at the
origin. If � = �Ml , then R(s) is said to be middle fre-
quency negative imaginary (MFNI). If � = �H , R(s) is
said to be high frequency negative imaginary (HFNI).
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Figure 1. Positive-frequency Nyquist plot of the G(s).

Example 2.4: Consider the stable transfer function

G(s) = s4 − 2.6s3 + 19s2 − 14s + 23.3
s5 + 15s4 + 85s3 + 225s2 + 274s + 120

.

By letting �[G(jω)] = 0, we found that G(s) was IFNI
over the frequency intervals (0, 0.9983]

⋃
[2.0062, 4.0691]⋃

[11.0191,∞). The Nyquist plot for G(s) is given in
Figure 1.

Next, we introduce the definition of interval frequency
positive real (IFPR) transfer functions. Let us define the
frequency interval set

�̄ � �̄L
⋃( N⋃

l=1

�̄Ml

)⋃
�̄H , (2)

where

�̄L = {ω ∈ R : |ω| ≤ ω̄0} ,
�̄Ml = {

ω ∈ R : ωl ≤ |ω| ≤ ω̄l, ω̄l > ωl > ω̄l−1
}
,

l = 1, . . . ,N,

�̄H = {
ω ∈ R : ωh ≤ |ω| ,ωh > ω̄N

}
.

The following facts deserve to bementioned: 0 
∈ �while
0 ∈ �̄, and hence �̄ = (−�)

⋃ {0}⋃�.

Definition 2.5: Given a transfer function matrix G(s) ∈
G. G(s) is said to be interval frequency positive real if

(1) G(s) has no poles in R[s] > 0;
(2) G(jω) + G∗(jω) ≥ 0 for all ω ∈ �̄ where jω is not a

pole of G(s);
(3) if jω, ω ∈ �̄

⋃ {0}, is pole of G(s), then it is a simple
pole and the corresponding residue matrix ofG(s) is
positive semidefinite Hermitian.

Remark 2.6: In Definition 2.5, if �̄ = �̄L, then G(s)
is said to be low frequency positive real (LFPR), which
is the same definition to that of finite frequency pos-
itive real (FFPR) transfer functions in Iwasaki, Hara,

and Yamauchi (2003). If �̄ = �̄Ml , then G(s) is said to
be middle frequency positive real (MFPR). If �̄ = �̄H ,
G(s) is said to be high frequency positive real (HFPR).

An useful lemma is as follows.

Lemma 2.7 (Xiong et al., 2010): If A = A∗ ≥ 0, then
Ā = (Ā)∗ ≥ 0.

Now, we are ready to establish the relationship
between IFNI transfer functions and IFPR transfer func-
tions. The proof follows the similar spirit as the proof for
Lemma 2 in Xiong et al. (2012a).

Lemma 2.8: Given a transfer function matrix R(s) ∈ G
satisfying R(∞) = RT(∞). Then the following statements
are equivalent:

(1) R(s) is interval frequency negative imaginary.
(2) R̂(s) � R(s) − R(∞) is interval frequency negative

imaginary.
(3) G(s) � sR̂(s) is interval frequency positive real.

Proof: (1 ⇐⇒ 2) Let R̂(s) � R(s) − R(∞). We prove
that R(s) is IFNI if and only if R̂(s) is IFNI accord-
ing to Definition 2.2. Because R(s) and R̂(s) have the
same set of poles, one concludes that R(s) has no
poles in R[s] > 0 if and only if R̂(s) has no poles
in R[s] > 0. When jω is not a pole of R(s), one has
that j[R(jω) − R∗(jω)] = j[R̂(jω) − R̂∗(jω)] for all ω ∈
�. If jω0,ω0 ∈ �, is a simple pole, then lims→jω0(s −
jω0)jR(s) = lims→jω0(s − jω0)jR̂(s). Similarly, if s=0 is
a pole, then lims→0 skR(s) = lims→0 skR̂(s) for k ≥ 1.
Hence, R(s) is IFNI if and only if R̂(s) is IFNI.

(2 ⇒ 3) Note that R̂(s) and G(s) have the same set
of non-zero poles. Suppose R̂(s) is IFNI. Condition 1 in
Definition 2.2 implies that Condition 1 in Definition 2.5
holds.

If jω, ω ∈ �, is not a pole of R̂(s), Condition
2 in Definition 2.2 implies that G(jω) + G∗(jω) =
jω[R̂(jω) − R̂∗(jω)] ≥ 0 for ω ∈ �. According to
Lemma 2.7 and the continuity ofG(jω), we haveG(jω) +
G∗(jω) ≥ 0 for allω ∈ �̄ such that jω is not a pole ofG(s).

If jω0, ω0 ∈ �, is a pole of R̂(s), then ±jω0 are
poles of both R̂(s) and G(s). Note that R̂(s) can be
factored as (1/(s − jω0)(s + jω0))R̂1(s). According to
Definition 2.2, we have that lims→jω0(s − jω0)jR̂(s) =
(1/2ω0)R̂1(jω0), which is positive semidefinite Hermi-
tian; that is, R̂1(jω0) = R̂∗

1(jω0) ≥ 0. It follows from
Lemma 2.7 that R̂1(−jω0) = R̂∗

1(−jω0) ≥ 0. The residue
matrix ofG(s) at jω0 is given by lims→jω0(s − jω0)G(s) =
1
2 R̂1(jω0), and hence is positive semidefinite Hermitian.
Similarly, the residue matrix of G(s) at −jω0 is given by
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1
2 R̂1(−jω0), which is positive semidefinite Hermitian as
well.

When s=0 is a pole of R̂(s), Condition 4 in
Definition 2.2 implies that s=0 is either a simple or
double pole. In the case of a simple pole, one has that
G(s) has no poles at the origin; furthermore, G(0) +
G∗(0) ≥ 0 holds due to the continuity of G(jω). When
zero is a double pole, one has that G(s) has a simple zero
pole. In this case, the residue matrix of G(s) is given by
lims→0 sG(s) = lims→0 s2R̂(s), which is positive semidef-
inite Hermitian. Hence, according to Definition 2.5, G(s)
is IFPR.

(3 ⇒ 2) Suppose G(s) is IFPR. Let R̂(s) = (1/s)G(s).
Note that R̂(s) and G(s) have the same non-zero pole set,
which means that Condition 1 in Definition 2.2 holds.
Because j[R̂(jω) − R̂∗(jω)] = j[(1/jω)G(jω) + (1/jω)

G∗(jω)] = (1/ω)[G(jω) + G∗(jω)] ≥ 0 forω ∈ �where
jω is not a pole of R̂(s), Condition 2 in Definition 2.2
holds. If jω0, ω0 ∈ �, is a pole of R̂(s), then it is
a simple pole and G(s) can be factored as G(s) =
(1/(s − jω0)(s + jω0))Ĝ1(s). The residue matrix of G(s)
at s = jω0 can be calculated as lims→jω0(s − jω0)(1/(s−
jω0)(s + jω0))Ĝ1(s) = (1/j2ω0)Ĝ1(jω0) ≥ 0. Then, the
residue matrix of jR̂(s) at the same point is given by
lims→jω0(s − jω0)j(1/s)G(s) = (1/ω0)((1/j2ω0)Ĝ1(jω0))

≥ 0. Condition 3 of Definition 2.2 holds. If s=0 is not
a pole of G(s), then R̂(s) has at most a simple pole at
the origin. Hence lims→0 skR̂(s) = 0 for k ≥ 2. If s=0
is a simple pole of G(s), then it is a double pole of
R̂(s) and lims→0 s2R̂(s) = lims→0 sG(s), which is positive
semidefinite Hermitian. This implies that Condition 4 in
Definition 2.2 holds. According to Definition 2.2, R̂(s) is
IFNI. �

Let ω̄cl = (ωl + ω̄l)/2 be the middle point of each fre-
quency interval �Ml/�̄Ml . We now define � = [ 0 1

1 0
]
,

and�l, shown inTable 1, for each frequency interval. The
matrices � and �l work together to characterise the fre-
quency intervals in (1) and (2); the readers may refer to
Iwasaki and Hara (2005) for more details.

The following lemma gives a version of IFPR lemma,
which can be considered as an extension of Theorem 3 of
Iwasaki et al. (2003).

Lemma 2.9: Consider a transfer function matrix G(s) ∈
G with state-space realisation (A,B,C,D). Suppose (A,B)

is a controllable pair. Also, suppose G(s) has no poles in

Table 1. �l defined for each frequency interval.

�L/�̄L �Ml/�̄Ml �H/�̄H

l 0 1, . . . ,N N+1
�l

[−1 0
0 ω̄2

0

] [ −1 jω̄cl
−jω̄cl −ωlω̄l

] [
1 0
0 −ω2

h

]

the open right-half of the complex plane and the poles
on the imaginary axis, if any, are simple. When A has
eigenvalues jωi (i ∈ {1, . . . , p}) such thatωi ∈ �̄

⋃{0}, the
residue matrix of (sI − A)−1 at s = jωi is given by �i �
lims−jωi(s − jωi)(sI − A)−1. Then the transfer function
matrix G(s) is IFPR if and only if

(1) there exist real symmetric matrices P0 = PT0 , Q0 =
QT
0 ≥ 0,PN+1 = PTN+1, QN+1 = QT

N+1 ≥ 0 andHer-
mitian matrices Pl = P∗

l ,Ql = Q∗
l ≥ 0, l = 1, . . . ,N,

such that[
A B
I 0

]T
(� ⊗ Pl + �l ⊗ Ql)

[
A B
I 0

]

≤
[
0 CT

C D + DT

]
, l = 0, 1, . . . ,N + 1; (3)

(2) C�iB = (C�iB)∗ ≥ 0 for all i ∈ {1, . . . , p} if A has
any eigenvalues on j�̄

⋃{0}.

Proof: Firstly, Condition 1 of Definition 2.5 is assumed
to be true. Secondly, the poles on the imaginary axis are
simple poles and the corresponding residue matrices are
given by C�iB. Therefore, Condition 3 of Definition 2.5
is equivalent to Condition 2 of this lemma. Apply-
ing Theorem 4 in Iwasaki and Hara (2005) with � =
−
[
0 CT

C D+DT

]
, one has that Condition 2 of Definition 2.5

holds if and only if there exist Hermitian matrices Pl
and positive semidefinite Hermitian matrices Ql such
that (3) holds for l = 0, 1, . . . ,N + 1. Finally, according
to Lemma 2.7 and the fact that thematrices�0 and�N+1
in (3) are real matrices, one has that the matrices P0, Q0,
PN+1 and QN+1 take real values. �

Remark 2.10: A generalised KYP lemma was estab-
lished in Iwasaki and Hara (2005), where the frequency
parameter ω may take values on any line segment in
the complex plane. However, the positive real prop-
erty on any line segment of the imaginary axis has not
been studied except the special case studied in Iwasaki
et al. (2003).

3. Interval frequency negative imaginary
lemma

In this section, an interval frequency negative imagi-
nary lemma is first established based on Lemma 2.9.
Then we study the relationship among different fre-
quency negative imaginary lemmas and build up a con-
nection with the existing negative imaginary lemma.
Finally, a time-domain interpretation of IFNI property
is presented in terms of the system input, output and
state.
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Theorem 3.1 (Interval Frequency Negative Imaginary
Lemma): Consider a transfer function matrix R(s) ∈ G
with minimal state-pace realisation (A,B,C,D). Suppose
that R(s) has no poles in the open right-half of the complex
plane and that the pure imaginary poles of R(s), if any, are
simple, and the zero pole, if any, are either a simple or dou-
ble pole. When A has eigenvalues jωi (i ∈ {1, . . . , p}) such
that ωi ∈ �

⋃{0}, the residue matrix of A(sI − A)−1 at
s = jωi is given by �i = lims→jωi(s − jωi)A(sI − A)−1.
Then the following statements are equivalent:

(1) The transfer functionmatrix R(s) is interval frequency
negative imaginary.

(2) D = DT , and the transfer function matrix G(s) with
state-space realisation (A,B,CA,CB) is interval fre-
quency positive real.

(3) D = DT , and C�iB = (C�iB)∗ ≥ 0 for all i ∈
{1, . . . , p} if jωi is an eigenvalue of A. Also, there
exist real symmetric matrices P0 = PT0 , Q0 = QT

0 ≥
0, PN+1 = PTN+1,QN+1 = QT

N+1 ≥ 0 and Hermitian
matrices Pl = P∗

l , Ql = Q∗
l ≥ 0, l = 1, . . . ,N, such

that[
A B
I 0

]T
(� ⊗ Pl + �l ⊗ Ql)

[
A B
I 0

]
+ � ≤ 0

(4)
for all l = 0, . . . ,N + 1,where� := −

[
0 ATCT

CA CB+BTCT

]
.

Proof: (1 ⇔ 2)Note thatG(s) = CA(sI − A)−1B + CB =
s[R(s) − R(∞)]. It follows from Lemma 2.8 that the two
statements are equivalent.

(2 ⇔ 3) The equivalence between Statement 2 and
Statement 3 follows directly from Lemma 2.9. �

In terms of Theorem 3.1, we show that the LFNI
lemma reduces to the generalised negative imaginary
lemma (that is, Lemma 2 ofMabrok et al., 2015) when the
upper bound of the low frequency interval approaches
to infinity. The following results can be considered as a
generalisation of Corollary 1 in Xiong et al. (2012a).

Corollary 3.2: Suppose all the assumptions inTheorem 3.1
are satisfied. Consider the low frequency case � = �L.
When ω̄0 → ∞, the conditions in Theorem 3.1 are equiva-
lent to the conditions in the generalised negative imaginary
lemma in Mabrok et al. (2015).

Proof: This result is readily established by applying Lem-
mas A.4 and A.9 in Appendix. �

Similarly for the HFNI case where � = �H . When
ωh → 0, the conditions in Theorem 3.1 reduce to that of
the existing generalised negative imaginary lemma.

Corollary 3.3: Suppose all the assumptions inTheorem 3.1
are satisfied, and consider the high frequency case � =
�H. If ωh → 0, then the conditions in Theorem 3.1 are
equivalent to the conditions in the generalised negative
imaginary lemma in Mabrok et al. (2015).

Proof: This result can be obtained by applying Lem-
mas A.7 and A.9 in Appendix. �

Consider stable IFNI transfer function matrices. The
following theorem provides a time-domain interpreta-
tion of the IFNI property with the system input, output
and state.

Theorem 3.4: Consider a stable transfer function matrix
R(s) ∈ Gwith minimal state-space realisation (A,B,C,D)

and D = DT. Let the system input, output and state of
R(s) be denoted by u(t), y(t) and x(t), respectively; suppose
the system has zero initial conditions. Then, the following
statements are equivalent:

(1) R(s) is interval frequency negative imaginary in �.
(2) The inequality∫ ∞

0
[ẏ(t) − Du̇(t)]Tu(t) dt ≥ 0 (5)

holds for all differentiable and square integrable inputs
u(t) such that∫ ∞

0

[
ẋ(t) x(t)

]
�̄l
[
ẋ(t) x(t)

]T dt ≥ 0,

l = 0, 1, . . . ,N + 1, (6)

where �̄l is the complex conjugate of �l.

Proof: Note that R(s) is a stable transfer function.
In view of Definition 2.2, R(s) is IFNI if and only
if j[R(jω) − R∗(jω)] ≥ 0 holds for ω ∈ �. Let G(s) =
s[R(s) − R(∞)] = CA(sI − A)−1B + CB. Then one has
that R(s) is IFNI if and only if

G(jω) + G(jω)∗ = jω[R(jω) − R∗(jω)]

= −
[
(jωI − A)−1B

I

]∗
�

[
(jωI − A)−1B

I

]
≥ 0 (7)

holds for ω ∈ �, where

� = −
[
0 ATCT

CA CB + BTCT

]
. (8)

Next we will use Theorem 3 of Iwasaki et al. (2005) to
complete the proof.

For ω ∈ �L, it follows from Theorem 3 in Iwasaki
et al. (2005) with the parameters −ω̄0, ω̄0, τ = 1 and
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� in (8) that the inequality (7) holds, if and only if, the
inequality (5) holds for all u(t) such that

∫ ∞

0
[−ω̄0x(t) + jẋ(t)][ω̄0x(t) + jẋ(t)]∗ dt ≤ 0. (9)

Note that the left side of the above inequality is a matrix.
Because the system state x(t) ≡ 0, t ≤ 0, it follows from
Lemma A.10 that

∫ ∞

0
[ẋ(t)xT(t) + x(t)ẋT(t)] dt

=
∫ ∞

−∞
[ẋ(t)xT(t) + x(t)ẋT(t)] dt = 0. (10)

Hence, the inequality (9) becomes the inequality (6) with
l=0.

For ω ∈ �Ml , l = 1, . . . ,N, it follows from Theorem 3
in Iwasaki et al. (2005) with the parameters ωl, ω̄l, τ = 1
and � in (8) that the inequality (7) holds, if and only if,
the inequality (5) holds for all u(t) such that

Sl =
∫ ∞

0
[ωlx(t) + jẋ(t)][ω̄lx(t) + jẋ(t)]∗ dt ≤ 0. (11)

Due to the fact that x(t) ≡ 0, t ≤ 0, one has that

Sl =
∫ ∞

−∞
[ωlx(t) + jẋ(t)][ω̄lx(t) + jẋ(t)]∗ dt

= 1
2π

∫ ∞

−∞
(ωl − ω)(ω̄l − ω)X(jω)X∗(jω) dω.

That is, one has that Sl = S∗
l . Therefore, the inequal-

ity (11) can be written as

Sl = 1
2
(Sl + S∗

l )

=
∫ ∞

0

1
2
{
[ωlx(t) + jẋ(t)][ω̄lx(t) + jẋ(t)]∗

+[ω̄lx(t) + jẋ(t)][ωlx(t) + jẋ(t)]∗
}
dt

=
∫ ∞

0
(ωlω̄lx(t)xT(t) − jω̄clx(t)ẋT(t)

+ jω̄clẋ(t)xT(t) + ẋ(t)ẋT(t)) dt

= −
∫ ∞

0

[
ẋ(t) x(t)

]
�̄l
[
ẋ(t) x(t)

]T dt ≤ 0,

which is the inequality in (6) for l = 1, . . . ,N.
For ω ∈ �H , it follows from Theorem 3 in Iwasaki

et al. (2005) with the parameters −ωh, ωh, τ = −1 and
� in (8) that the inequality (7) holds, if and only if, the

inequality (5) holds for all u(t) such that
∫ ∞

0
{−[−ωhx(t) + jẋ(t)][ωhx(t) + jẋ(t)]∗} dt ≤ 0.

(12)
In view of the equality (10), one has that the inequal-
ity (12) becomes the inequality

∫ ∞

0
[ω2

hx(t)x
T(t) − ẋ(t)ẋT(t)] dt ≤ 0,

which is the same inequality in (6) with l=N+1. This
completes the proof. �

Remark 3.5: Based on Theorem 3.1, the second state-
ment in Theorem 3.4 can be directly derived from the
first statement. The idea is the same as that in Remark 5
of Xiong et al. (2012a).

4. Illustrative examples

In this section, we consider two transfer functions from
the piezoelectric tube scanner model in Das et al. (2014)
and Sallen-key low pass filter in Pactitis (2007), respec-
tively.

Example 4.1: In Das et al. (2014), the transfer function
of the piezoelectric tube scanner (Das et al., 2014) from
the voltage input Vx+ to the displacement output dx is
given by

G(s) = −186.6s2 + 1.348 × 106s − 2.412 × 1010

s3 + 1755s2 + 3.452 × 107s + 4.459 × 1010
,

which is shown to be MFNI based on Theorem 3.1. Note
that the transfer functionG(s) has no poles on imaginary
axis. By letting the imaginary part of G(jω) be zero, we
can find that �[G(jω)] ≤ 0 for ω ∈ (5784, 11958). The
Nyquist plot of G(s) is shown in Figure 2. Next, we use
the developed result in Theorem 3.1 to verify this fact.

Figure 2. Nyquist plot of the transfer function (ω ≥ 0).
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A minimal state-space realisation of G(s) returned by
MATLAB is given by

A =
⎡
⎣−1755.0 −4213.9 −2657.8

8192.0 0 0
0 2048.0 0

⎤
⎦ , B =

⎡
⎣320
0

⎤
⎦ ,

C = [−5.8312 5.1422 −44.9270
]
, D = 0.

Let ω1 = 5784 and ω̄1 = 11958. To apply Theorem 3.1,
we only need to check whether there exist Hermitian
matrices P1 andQ1 ≥ 0 satisfying (4). Using the YALMIP
toolbox, a solution to (4) can be found and given by

P =
⎡
⎣ −1660 −7898 + 6187i

−7898 − 6187i −14187
11381 − 9583i −26061 − 27622i

Figure 3. Sallen-key low-pass filter cascaded with a multiplier
circuit.

11381 + 9583i
−26061 + 27622i

−56942

⎤
⎦ ,

Q =
⎡
⎣ 12.93 0.21 − 21.67i

0.21 + 21.67i 45.09
−33.25 + 0.68i 0.61 + 85.85i

−33.25 − 0.68i
0.61 − 85.85i

192.19

⎤
⎦ ≥ 0.

If we set ω1 to be a slightly smaller number or ω̄1 to
be a larger number, the LMI in (4) has no feasible solu-
tion. Hence, we can conclude that G(s) is MFNI in the
frequency set (ω1, ω̄1).

Example 4.2: In Figure 3, a Sallen-key low pass filter
(Pactitis, 2007) is cascaded with a gain multiplier circuit
and the transfer function from Vi(s) to Vo(s) is given by

G(s) =
(1 + R4

R5 )
1

R1R2R3C1C2C3

s3 + ( 1
R1C1

+ 1
R2C1

+ 1
R2C2

+ 1
R3C2

)s2

+(C3R3+R1C3+C1R1+C3R2
R1R2R3C1C2C3

)s
+ 1

R1R2R3C1C2C3

which is shown to be LFNI based on Theorem 3.1. Con-
sidering R1 = 11K�, R2 = 110K�, R3 = 33K�, R4 =
1K�, R5 = 1K�, C1 = 15μF, C2 = 6.8μF and C3 =
1μF, and the Nyquist plot of the above transfer function
is shown in Figure 4. Setting the imaginary part of G(jω)

into zero, we can directly compute ω̄0 = 8.85. One has
that �[G(jω)] ≤ 0 for ω ∈ (0, ω̄0).

To verify the result in Theorem 3.1, we first found a
minimal state realisation of G(s) with

A =
⎡
⎣−12.4599 −9.7904 −7.6727

8 0 0
0 4 0

⎤
⎦ , B =

⎡
⎣40
0

⎤
⎦ ,

Figure 4. Nyquist plot of the transfer function Vo(s)/Vi(s).
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C = [
0 0 3.8364

]
, D = 0.

Now solving the inequality (4), we have a feasible solution
given by

P0 =
⎡
⎣0.0546 2.9333 0
2.9333 5.9083 0

0 0 7.3589

⎤
⎦ ,

Q0 =
⎡
⎣0.0922 0.0068 0
0.0068 0.8462 0

0 0 0

⎤
⎦ .

Also, we have Q0. If we set the frequency ω̄0 to be a
slightly larger number, the LMI in (4) have no feasible
solution. Hence, we can conclude thatG(s) is LFNI in the
frequency set(0, ω̄0).

5. Conclusions

The paper studied the interval frequency negative imag-
inary property of dynamical linear systems. Firstly, we
proposed the concept of interval frequency negative
imaginary transfer functions and established a con-
nection between interval frequency negative imaginary
transfer functions and interval frequency positive real
transfer functions. Base on this connection, a neces-
sary and sufficient condition was proposed to deter-
mine the interval frequency negative imaginary prop-
erty under the minimal state-space realisation assump-
tion. Also, a time-domain interpretation of IFNI prop-
erty was presented. When the interval frequency set
becomes the whole positive frequency set, the developed
IFNI lemma reduces to the normal negative imaginary
lemma. Finally, two practical examples were provided
to illustrate the interval frequency negative imaginary
lemma. Future work might focus on the following two
research problems. The first one is to generalise the
interval frequency negative imaginary theory to discrete-
time systems, the second is to develop a stability result
for interconnected interval frequency negative imaginary
systems.
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Appendix

The following lemma extends the NI lemma in Xiong
et al. (2010) to the case where the transfer functions allow poles
at the origin.

Lemma A.1 (Lemma 2 of Mabrok et al., 2015): Consider a
transfer functionmatrix R(s) ∈ Gwithminimal state-space real-
isation (A,B,C,D). Then, R(s) is negative imaginary if and only
if D = DT and there exist matrices P = PT ≥ 0, L and W such
that the following linear matrix inequality is satisfied:[

PA + ATP PB − ATCT

BTP − CA −CB − BTCT

]
= −

[
LTL LTW
WTL WTW

]
≤ 0.

(A1)

Remark A.2: In Lemma A.1, if s= 0 is not a pole of R(s), then
P = PT ≥ 0 can be replaced by P = PT > 0 (e.g. see.Lemma 7
in Xiong et al., 2010).

Given a square real-rational proper transfer functionmatrix
R(s) with at most double pole at the origin, one of its minimal
state-space realisations can be of the form

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(A2)

where

A =
⎡
⎣A1 0 0

0 A2 0
0 0 A3

⎤
⎦ , B =

⎡
⎣B1B2
B3

⎤
⎦ , C = [

C1 C2 C3
]
.

(A3)
Here A1 ∈ R

n1×n1 is nonsingular, A2 = 0 ∈ R
n2×n2 , A3 =[

0 Ik×k
0k×k 0

]
∈ R

2k×2k, B1 ∈ R
n1×m, B2 ∈ R

n2×m, B3 =
[
B3a
B3b

]
,

B3a ∈ R
k×m, B3b ∈ R

k×m, C1 ∈ R
m×n1 , C2 ∈ R

m×n2 , C3 =
[ C3a C3b ], C3a ∈ R

m×k, C3b ∈ R
m×k. Then n1 + n2 + 2k = n.

The particular values of n1, n2 and k depend on the transfer
function R(s). Therefore, the transfer function matrix R(s) can
be expressed as

R(s) = C1(sI − A1)
−1B1 + C2(sI − A2)

−1B2

+ C3(sI − A3)
−1B3 + D

= C1(sI − A1)
−1B1 + C2B2 + C3B3

s
+ C3aB3b

s2
+ D.

Remark A.3: It follows fromLemma 2 ofMabrok et al. (2014a)
that the matrix [C2 C3a] is of full column rank, and
the matrix

[
B2
B3b

]
is of full row rank; also m ≥ k + n2 and

(A1,B1,C1) is a minimal state-space realisation.

Lemma A.4: Suppose all the assumptions in Theorem 3.1 are
satisfied, where a minimal state-pace realisation of R(s) is given
by (A2) and (A3). Consider the low frequency case � = �L. If
ω̄0 → ∞, then the equivalent conditions in Theorem 3.1 reduce
to the conditions thatD = DT and there exist symmetricmatrices
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P1 ∈ R
n1×n1 , P3b ∈ R

k×k, P1 > 0, P3b > 0, and matrices L1 ∈
R

(n1+k)×n1 ,W ∈ R
(n1+k)×m such that

P1A1 + AT
1 P1 = −LT1 L1, (A4)

P1B1 − AT
1C

T
1 = −LT1W, (A5)

P3bB3b = CT
3a, (A6)

C1B1 + BT1C
T
1 + C2B2 + BT2C

T
2 + C3B3 + BT3C

T
3 = WTW.

(A7)

Proof: Consider the low frequency case � = �L where
the transfer function matrix R(s) is LFNI. Condition 2 of
Theorem 3.1 implies that D = DT . In terms of Lemma 2.8, the
transfer function matrix Gr(s) = s[R(s) − D] is LFPR. A mini-
mal state-space realisation of Gr(s) is given by (see the proof to
Lemma 3 of Mabrok et al., 2014a)

Ar =
[
A1 0
0 0k×k

]
, Br =

[
B1
B3b

]
, Cr = [

C1A1 C3a
]
,

Dr = C1B1 + C2B2 + C3B3.

It follows from Lemma 2.9 that there there exist symmetric
matrix Pr = PTr and Qr ≥ 0 such that[

PrAr + AT
r Pr − AT

r QrAr + ω̄2
0Qr PrBr − CT

r − AT
r QrBr

BTr Pr − Cr − BTr QrAr −Dr − DT
r − BTr QrBr

]

≤ 0. (A8)

and that Cr�riBr = (Cr�riBr)∗ ≥ 0 for all i ∈ {1, . . . , p} if
Ar has eigenvalues on j�̄L, where �ri = lims→jωi(s − jωi)

(sI − Ar)
−1.

If ω̄0 → ∞, the (1, 1) block of the LMI (A8) implies that
Qr → 0. Letting Qr = 0 in (A8) results in[

PrAr + AT
r Pr PrBr − CT

r
BTr Pr − Cr −Dr − DT

r

]
= −

[
LTL LTW
WTL WTW

]
. (A9)

The (2, 2) block in (A9) is the equality in (A7). By consider-
ing the partitioned forms in the realisation (Ar ,Br ,Cr ,Dr), the
matrices Pr and L are partitioned accordingly as

Pr =
[
P1 P12
PT12 P3b

]
, L = [

L1 L2
]
.

Then, the (1, 1) block of (A9) can be written as[
P1A1 + AT

1 P1 AT
1 P12

PT12A1 0

]
= −

[
LT1 L1 LT1 L2
LT2 L1 LT2 L2

]
. (A10)

The (1, 1) block in (A10) is the equality in (A4). Because the
(2, 2) block of the matrix on the left side of (A10) is zero, one
has that L2 = 0. Furthermore, AT

1 P12 = 0 holds. Because A1 is
nonsingular, one has that P12 = 0.

The (1, 2) block in (A9) can be written as[
P1B1 − AT

1C
T
1

P3bB3b − CT
3a

]
= −

[
LT1W
0

]
.

Therefore, the equalities in (A5) and (A6) hold. To complete
the proof, we only need to prove that P1 > 0 andP3b > 0.

It follows fromRemarkA.3 that rank(C3a) = k = rank(B3b).
Hence, it follows from (A6) that P3b is nonsingular. By directly

computing the residuematrix ofGr(s) at the origin, one has that

lim
s→0

sGr(s) = lim
s→0

sCr(sI − Ar)
−1Br = C3aB3b = BT3bC

T
3a ≥ 0.

Again, it follows from (A6) that BT3bP3bB3b = BT3bC
T
3a ≥ 0.

Because B3b is of full row rank, one has that P3b ≥ 0. Hence,
the matrix P3b is positive definite.

Similarly, we will prove P1 > 0 by showing both P1 being
nonsingular and P1 ≥ 0. Suppose P1 is singular. Without loss
of generality, we can assume that the matrices P1, A1, B1, C1,
L1 in (A4) and (A5) are of the following forms (see the proof to
Corollary 1 of Xiong et al., 2012a)

P1 =
[
P11 0
0 0

]
, A1 =

[
A11 A12
A13 A14

]
, B1 =

[
B11
B12

]
,

C1 = [
C11 C12

]
, L1 = [

L11 L12
]
,

where P11 = PT11 is nonsingular. Hence, (A4) can be rewritten
as [

P11A11 + AT
11P11 P11A12

AT
12P11 0

]
= −

[
LT11L11 LT11L12
LT12L11 LT12L12

]
,

which implies that L12 = 0 and P11A12 = 0. Because P11 is
nonsingular, we have A12 = 0. Hence, A1 =

[
A11 0
A13 A14

]
and

L1 = [L11 0]. Also, the equality (A5) can be rewritten as[
P11B11 − AT

11C
T
11 − AT

13C
T
12

−AT
14C

T
12

]
= −

[
LT11W
0

]
,

which implies that AT
14C

T
12 = 0. Hence, C1A1 = [C11A11 +

C12A13 0]. Because A1 is nonsingular, one has that

rank

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

C1
C1A1
...

C1An1−1
1

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ = rank

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
C1A1
C1A2

1
...

C1An1
1

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ < n1,

which means that the pair (A1,C1) is not observable. This con-
tradicts the observability of (A1,C1). Hence P1 is nonsingular.

Next, we prove that P1 is positive definite. The equalities
in (A4) and (A5) can be rewritten as

A1Y1 + Y1AT
1 = −L̂T1 L̂1, (A11)

B1 − Y1AT
1C

T
1 = −L̂T1W, (A12)

where Y1 = P−1
1 is nonsingular and L̂1 = L1P−1

1 . Note that
P1 > 0 if and only if Y1 > 0.

Note that the purely imaginary poles of G(s) are simple
poles. The real Jordan canonical form of A1 is of the form

A1 ∼
[
A11 0
0 A12

]
,

where A11 ∈ R
n11×n11 has eigenvalues in �[s] < 0, A12 =

diag{A121, . . . ,A12i, . . . ,A12g} ∈ R
n12×n12 , A12i =[

0 −ωiIqi×qi
ωiIqi×qi 0

]
∈ R

2qi×2qi ,ωi > 0, i ∈ {1, . . . , g} and g ≤ p;
also n12 = 2q1 + · · · + 2qi + · · · + 2qg , and n11 + n12 = n1.
Let us assume that matrices Y1, A1, B1, C1 and L̂1 in (A11)
and (A12) are of the following forms without loss of generality:

Y1 =
[
Y11 Y13
YT
13 Y12

]
, A1 =

[
A11 0
0 A12

]
, B1 =

[
B11
B12

]
,

C1 = [
C11 C12

]
, L̂1 = [

L̂11 L̂12
]
.
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Then, (A11) can be rewritten as[
A11Y11 + Y11AT

11 A11Y13 + Y13AT
12

A12YT
13 + YT

13A
T
11 A12Y12 + Y12AT

12

]
≤ 0. (A13)

Because all eigenvalues of A11 are in the open left-half plane,
it follows from the (1, 1) block of (A13) that Y11 ≥ 0. In the
following, we will prove that Y13 = 0 and Y12 ≥ 0.

Let us partition the matrices Y12 and A12 as follows:

Y12 =
[
Ỹ121 Y123
YT
123 Y12g

]
, A12 =

[
Ã121 0
0 A12g

]
,

Ỹ121 ∈ R
(n12−2qg )×(n12−2qg ), Y12g ∈ R

2qg×2qg , Ã121 =
diag{A121, . . . ,A12i, . . . ,A12(g−1)}. The (2, 2) block of (A13)
can be written as

A12Y12 + Y12AT
12

=
[
Ã121Ỹ121 + Ỹ121ÃT

121 Ã121Y123 + Y123AT
12g

A12gYT
123 + YT

123Ã
T
121 A12gY12g + Y12gAT

12g

]
≤ 0.

(A14)

Let Y12g =
[ Y12g1 Y12g3
YT
12g3 Y12g2

]
, Y12g1 ∈ R

qg×qg , Y12g2 ∈ R
qg×qg . The

(2, 2) block of the above inequality can be rewritten as

A12gY12g + Y12gAT
12g

=
[
−ωg(Y12g3 + YT

12g3) ωg(Y12g1 − Y12g2)

ωg(Y12g1 − Y12g2) ωg(Y12g3 + YT
12g3)

]
≤ 0.

By noting that the (1, 1) block and the (2, 2) block of the
above inequality have opposite signs, we conclude that Y12g3 +
YT
12g3 = 0. Hence, the (1, 2) block must satisfy Y12g1 − Y12g2

= 0. In the other words, we have that Y12g =
[

Y12g2 Y12g3
−Y12g3 Y12g2

]
and A12gY12g + Y12gAT

12g = 0. Hence, the (1, 2) block of (A14)
must satisfy

Ã121Y123 + Y123AT
12g = 0. (A15)

Because the matrices Ã121 and −AT
12g have no common eigen-

values, the Sylvester (A15) has a unique solution Y123 = 0.
Hence, the matrix Y12 is of the form Y12 =

[
Ỹ121 0
0 Y12g

]
.

After applying the same techniques as above to i = g −
1, . . . , 1, we derive that the matrix Y12 is of the following form

Y12 = diag(Y121,Y122, . . . ,Y12g), Y12i =
[
Y12i2 Y12i3

−Y12i3 Y12i2

]
,

(A16)
and that

A12YT
12 + Y12AT

12 = 0. (A17)
Hence, the (1, 2) block of (A13) satisfies

A11Y13 + Y13AT
12 = 0. (A18)

Again, because the matrices A11 and −AT
12 have no common

eigenvalues, the Sylvester (A18) has a unique solution Y13 = 0.
Hence, the matrix Y1 is of the form Y1 =

[
Y11 0
0 Y12

]
.

In the following, we will prove that Y12 ≥ 0 by using the
positive semidefinite property of the residue matrices; that is,
Cr�riBr = (Cr�riBr)∗ ≥ 0, i ∈ {1, . . . , p}. Let us first consider
the residue matrix at s = jωg ; that is, Cr�rgBr = (Cr�rgBr)∗
≥ 0.

It follows from (A17) that the (2, 2) block of (A13) is zero.
Hence the matrix L̂1 in (A11) is of the form

L̂1 = [
L̂11 0

]
.

The equality (A12) can be rewritten as
[
B11
B12

]
−
[
Y11AT

11C
T
11

Y12AT
12C

T
12

]
= −

[
L̂T11W
0

]
,

which implies that

B12 = Y12AT
12C

T
12. (A19)

On the other hand, it follows from direct calculations that

�12g = lim
s→jωg

(s − jωg)(sI − A12g)
−1 = 1

2

[
I jI

−jI I

]
,

�1g = lim
s→jωg

(s − jωg)(sI − A12)
−1

= diag
(
02q1×2q1 , . . . , 02qg−1×2qg−1 ,�12g

)
,

�g = lim
s→jωg

(s − jωg)(sI − A1)
−1 =

[
0n11×n11 0

0 �1g

]
,

�rg = lim
s→jωg

(s − jωg)(sI − Ar)
−1 =

[
�g 0
0 0k×k

]
. (A20)

Let C12 = [C̃121 C12g] and C12g = [C12g1C12g2]. Now, we are
ready to compute the residue matrix at s = jωg ; that is,

lim
s→jωg

(s − jωg)G(s)

= Cr�rgBr = [
C1A1 C3a

] [�g 0
0 0

] [
B1
B3b

]

= C1A1�gB1 = [
C11 C12

] [A11 0
0 A12

] [
0 0
0 �1g

] [
B11
B12

]

= C12A12�1gB12 = C12A12�1gY12AT
12C

T
12

= [
C̃121 C12g

] [Ã121 0
0 A12g

] [
0 0
0 �12g

] [
Ỹ121 0
0 Y12g

]

×
[
ÃT
121 0
0 AT

12g

] [
C̃T
121

CT
12g

]

= C12gA12g�12gY12gAT
12gC

T
12g

= 1
2
[
C12g1 C12g2

] [ 0 −ωgI
ωgI 0

] [
I jI

−jI I

]

×
[
Y12g2 Y12g3

−Y12g3 Y12g2

] [
0 ωgI

−ωgI 0

][
CT
12g1

CT
12g2

]

= ω2
g

2
[
C12g1 C12g2

]

×
[
Y12g2 − jY12g3 Y12g3 + jY12g2

−Y12g3 − jY12g2 Y12g2 − jY12g3

][
CT
12g1

CT
12g2

]

= ω2
g

2
(C12g1 − jC12g2)(Y12g2 − jY12g3)(C12g1 − jC12g2)

∗ ≥ 0.

(A21)
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It follows from Remark A.3 that the pair (A1,C1) is observ-
able. Hence, the observibility matrix⎡
⎢⎢⎢⎣

C1
C1A1
...

C1An1−1
1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

C11 C̃121 C12g
C11A11 C̃121Ã121 C12gA12g

...
...

...
C11An1−1

11 C̃121Ãn1−1
121 C12gAn1−1

12g

⎤
⎥⎥⎥⎥⎦

is of full column rank, which means that⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C12g
C12gA12g
C12gA2

12g
C12gA3

12g
C12gA4

12g
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C12g1 C12g2
ωgC12g2 −ωgC12g1

−ω2
gC12g1 −ω2

gC12g2
−ω3

gC12g2 ω3
gC12g1

ω4
gC12g1 ω4

gC12g2
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is of full column rank. Right-multiplying the above matrix by[ I 0−jI I
]
, one has that the matrix⎡

⎢⎢⎢⎢⎢⎢⎢⎣

C12g1 − jC12g2 C12g2
ωgC12g2 + jωgC12g1 −ωgC12g1

−ω2
gC12g1 + jω2

gC12g2 −ω2
gC12g2

−ω3
gC12g2 − jω3

gC12g1 ω3
gC12g1

ω4
gC12g1 − jω4

gC12g2 ω4
gC12g2

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is of full column rank. Therefore, the matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C12g1 − jC12g2
ωgC12g2 + jωgC12g1

−ω2
gC12g1 + jω2

gC12g2
−ω3

gC12g2 − jω3
gC12g1

ω4
gC12g1 − jω4

gC12g2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is of full column rank. Left-multiplying the above matrix by⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 · · ·
−jωgI I 0 0 0 · · ·

0 −jωgI I 0 0 · · ·
0 0 −jωgI I 0 · · ·
0 0 0 −jωgI I · · ·
...

...
...

...
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦
,

one has that the matrix⎡
⎢⎢⎢⎢⎢⎢⎣

C12g1 − jC12g2
0
0
0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎦

is of full column rank. Hence, the matrix C12g1 − jC12g2 is of
column full rank. It follows from (A21) thatY12g2 − jY12g3 ≥ 0,

which is equivalent to Y12g =
[

Y12g2 Y12g3
−Y12g3 Y12g2

]
≥ 0.

Similarly, the residue matrix Cr�riBr = (Cr�riBr)∗ ≥ 0
implies that Y12i ≥ 0 for i = g − 1, . . . , 1. Therefore, Y12 =
diag(Y121,Y122, . . . ,Y12g) ≥ 0.Noting thatwe have proved that
Y1 is nonsingular, we conclude that Y1 > 0, which implies that
P1 > 0. This completed the proof. �

Remark A.5: In the proof to Lemma A.4, we have shown
that the positive semidefiniteness of the residue matrices guar-
antees the positive semidefiniteness of the matrices P1 and
P3b. The inverse is true as well. That is, the positive semidef-
initeness of the matricex P1 and P3b also implies the positive
semidefiniteness of the residue matrices.

Remark A.6: When s= 0 is not a double pole of R(s), a min-
imal state-space realisation of Gr(s) is given by (A1,B1,C1A1,
Dr). The conditions in Lemma A.4 reduce to that D = DT

and there exist a symmetric matrix P1 > 0 and matrices L1,W
satisfying (A4), (A5) and (A7).

Lemma A.7: Suppose all the assumptions in Theorem 3.1 are
satisfied, where a minimal state-pace realisation of R(s) is given
in (A2) and (A3). Consider the high frequency case � = �H.
If ωh → 0, then the conditions in Theorem 3.1 reduce to the
conditions in Lemma A.4.

Proof: The proof is similar to that of Lemma A.4. Let
us define the same transfer function Gr(s) = s[R(s) − D] =
Cr(sI − Ar)

−1Br + Dr . It follows from Lemma 2.9 that there
there exist symmetric matrices Pr = PTr and Qr ≥ 0 such
that[
PrAr + AT

r Pr + AT
r QrAr − ω2

hQr PrBr − CT
r + AT

r QrBr
BTr Pr − Cr + BTr QrAr −Dr − DT

r + BTr QrBr

]

≤ 0, (A22)

and that Cr�riBr = (Cr�riBr)∗ ≥ 0 for all i ∈ {1, . . . , p} if Ar
has eigenvalues on j�̄L, where �ri = lims→jωi(s − jωi)(sI −
Ar)

−1.
When ωh → 0, the inequality (A22) becomes[
PrAr + AT

r Pr PrBr − CT
r

BTr Pr − Cr −Dr − DT
r

]
+
[
AT
r

BTr

]
Qr
[
Ar Br

] ≤ 0.

(A23)
Therefore, the condition that there exist symmetric matrices
Pr and Qr ≥ 0 satisfying (A23) is equivalent to the condition
that there exists a symmetric matrix Pr satisfying the equal-
ity (A9). Then, the rest of proof follows the same lines as in that
of Lemma A.4. �

Remark A.8: Note that the derived conditions (A4)–(A7)
in Lemma A.4 are the same as the conditions proposed in
Lemma 3 of Mabrok et al. (2014a). However, Lemma 3 of
Mabrok et al. (2014a) only states that these conditions are a nec-
essary condition for the transfer function R(s) in (A2) and (A3)
being negative imaginary. In the following, wewill further show
that these conditions are further equivalent to the conditions
given in Lemma A.1 (that is, Lemma 2 of Mabrok et al., 2015).
Hence, these conditions are also a sufficient condition.

Lemma A.9: Given a transfer function R(s) with the minimal
state-space realisation (A2) and (A3) and D = DT. Then the
conditions in Lemma A.4 are equivalent to the conditions in
Lemma A.1.

Proof: Note that any negative imaginary transfer function
matrix R(s) has at most a double pole at the origin. Hence
one can assume that R(s) has a minimal state-space realisa-
tion being the form in (A2) and (A3) without introducing any
conservatism.
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(⇒) One can directly verify that the conditions in
Lemma A.1 hold by letting

P =
⎡
⎣P1 0 0
0 0n2×n2 0
0 0 P3

⎤
⎦ , P3 =

[
0k×k 0
0 P3b

]
,

L = [
L1 0n×n2 0n×2k

]
. (A24)

Suppose that there exit matrices P ≥ 0, L andW satisfying[
PA + ATP PB − ATCT

BTP − CA −CB − BTCT

]
= −

[
LTL LTW
WTL WTW

]
≤ 0.

(A25)
The (2, 2) block of (A25) is actually (A7). By considering the
partitioned form in (A3), the matrices P and L are partitioned
accordingly as

P =
⎡
⎣ P1 P12 P13
PT12 P2 P23
PT13 PT23 P3

⎤
⎦ , P3 =

[
P3a P3c
PT3c P3b

]
,

L = [
L1 L2 L3

]
.

To complete the proof, we firstly prove that the equalities
in (A4)–(A6) hold, and that the matrices P and L are of
the form given in (A24); then, we show that P1 > 0 and
P3b > 0.

By noting the forms in (A3), the (1, 1) block of (A25) can be
written as⎡

⎣ P1A1 + AT
1 P1 AT

1 P12 AT
1 P13 + P13A3

PT12A1 0 P23A3
PT13A1 + AT

3 P
T
13 AT

3 P
T
23 P3A3 + AT

3 P3

⎤
⎦

= −
⎡
⎣LT1 L1 LT1 L2 LT1 L3
LT2 L1 LT2 L2 LT2 L3
LT3 L1 LT3 L2 LT3 L3

⎤
⎦ . (A26)

The (1, 1) block of the above equality is (A4). Because the (2, 2)
block of the matrix on the left side of (A26) is zero, one has that
L2 = 0. Furthermore,

AT
1 P12 = 0, P23A3 = 0.

Note that A1 is nonsingular. Hence, the equality AT
1 P12 = 0

implies that P12 = 0. Let P23 = [P23a P23b]. Then

P23A3 = [
P23a P23b

] [0 I
0 0

]
= [

0 P23a
] = 0,

which implies that P23a = 0.
On the other hand, the (3, 3) block of (A26) implies

that

P3A3 + AT
3 P3 =

[
P3a P3c
PT3c P3b

] [
0 I
0 0

]
+
[
0 0
I 0

] [
P3a P3c
PT3c P3b

]

=
[
0 P3a
P3a PT3c + P3c

]
≤ 0,

which implies that P3a = 0. Because P3 =
[

0 P3c
PT3c P3b

]
≥ 0, one

has that P3c = 0, which implies that P3A3 + AT
3 P3 = 0 and

L3 = 0. It follows from (A26) that

P13A3 + AT
1 P13 = 0.

Because thematricesA3 and−AT
1 has no common eigenvalues,

the above Sylvester equation has a unique solution P13 = 0. In
a summary, we have that

P =
⎡
⎣P1 0 0
0 P2 P23
0 PT23 P3

⎤
⎦ , P23 = [

0 P23b
]
,

P3 =
[
0 0
0 P3b

]
, L = [

L1 0 0
]
.

It follows from the (1, 2) block of (A25) that⎡
⎣ P1B1 − AT

1C
T
1

P2B2 + P23B3
PT23B2 + P3B3 − AT

3C
T
3

⎤
⎦ = −

⎡
⎣LT1W0

0

⎤
⎦ . (A27)

The (1, 1) block in the above equality implies that (A5). The
(2, 1) block in (A27) implies that

P2B2 + P23B3 = P2B2 + [
0 P23b

] [B3a
B3b

]

= [
P2 P23b

] [ B2
B3b

]
= 0. (A28)

It follows from Remark A.3 that the matrix
[

B2
B3b

]
is of full row

rank. Therefore, it follows from (A28) that [P2 P23b] = 0, which
further implies that P23 = 0. Therefore, the matrix P has the
form in (A24). Also, the (3, 1) block in (A27) becomes

P3B3 − AT
3C

T
3 =

[
0 0
0 P3b

] [
B3a
B3b

]
−
[
0 0
I 0

] [
CT
3a

CT
3b

]

=
[

0
P3bB3b − CT

3a

]
= 0,

which implies that (A6) holds.
We already know that P1 ≥ 0 and P3b ≥ 0. By following

the similar lines as in the proof to Lemma A.4, one has that
the matricesP1 and P3b are nonsingular. Therefore, P1 > 0 and
P3b > 0 hold. This completes the proof. �

Lemma A.10: Provided that the integrals exist, the following
relation holds:∫ ∞

−∞
[ẋ(t)x(t)T + x(t)ẋ(t)T] dt = 0. (A29)

Proof: By the Parseval’s theorem (Brogliato, Lozano, Maschke,
& Egeland, 2006), we have∫ ∞

−∞
[ẋ(t)x(t)T + x(t)ẋ(t)T] dt = 1

2π

∫ ∞

−∞
[jωX(jω)X∗(jω)

+ X(jω)(jωX(jω))∗] dw = 0.

The last equality holds because the integrand is always
zero. �
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