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a b s t r a c t

This paper investigates the parallel-triggered static output feedback stabilization problem for linear
networked control systems. A new parallel-triggered scheme is proposed by using both the relative error
and the absolute error information. The scheme can reduce transmission ratewhilemaintaining the global
asymptotical stability. The linear parallel-triggered networked control system is modeled as a time-delay
system. By employing Lyapunov stability theory, sufficient conditions are established for the closed-loop
system to be globally asymptotically stable in terms of linear matrix inequalities. Moreover, a co-design
algorithm is developed to obtain both the optimal trigger parameters and the output feedback controller
gain in the sense that the transmission rate is minimized. Finally, two examples are given to illustrate the
advantages of the proposed scheme.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Networked control systems (NCSs) are a class of distributed sys-
tems utilizing a communication network to exchange information
among systemcomponents (sensors, actuators and controllers) [1].
NCSs have been widely applied in smart grids [2] andmanufacture
plants [3,4], and fruitful theoretical results of NCSs have been
derived in [5–7].Most of these results are established under a time-
triggered scheme. In time-triggered NCSs, the sampled data are
transmitted under a constant rate. However, the time-triggered
scheme usually leads to over-utilization of the communication
bandwidth. In practice, the communication bandwidth is limited.
To reduce the consumption of communication resources, event-
triggered schemes (ETSs) are adopted for NCSs [8–10].
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In event-triggered NCSs, the control signals are updated only
when event-triggered conditions are satisfied [8,10]. Recently, the
event-triggered control problems have attracted substantial at-
tention, and various ETSs are proposed to reduce the number of
transmitted signals [10–21]. These ETSs can be classified into three
types in terms of triggered conditions: the relative, the absolute
and the mixed ETSs. In the relative ETSs, the event generators
utilize the relative error information. Specifically, a continuous
relative ETS is proposed in [11]. Based on the continuous relative
ETS, the output feedback control problem for distributed NCSs is
addressed in [12]. The continuous relative ETS may lead to Zeno
behavior [22]. To avoid Zeno behavior, a periodic relative ETS for
linear NCSs is proposed in [10]. Based on the periodic relative ETS,
the static output feedback stabilization problem of linear NCSs is
investigated in [13]. In the absolute ETSs, the event generators
use the absolute error information. To be specific, an absolute
ETS is proposed in [14] based on a constant threshold. To reduce
the transmission rate during the transient state, an absolute ETS
is firstly proposed in [15] by using an exponentially decreasing
threshold function. Based on the absolute ETS in [15], an absolute
ETS is presented in [16] by introducing a tuning parameter and
a weighting matrix. Under the absolute ETS, the observer-based
output feedback control problem of linear NCSs is discussed in
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[16]. The relative and the absolute ETSs provide an efficient way
of reducing the number of signal transmissions. In the mixed ETSs,
the triggers use both the relative error and the absolute error
information to further reduce the amount of transmitted signals.
Specifically, a mixed ETS is proposed in [17] by using an additional
threshold function. The advantage of using both the relative error
and the absolute error information is verified in [17,18]. However,
it is observed that stricter triggered conditions may not always
result in the reduction in the amount of data transmissions (see
Fig. 5 in this paper). The reason is that using the strict triggered
condition, the systemperformance is deteriorated at the beginning
of system operation, and hence more signals need to be transmit-
ted in the following time. Motivated by the above discussion, it
is important to develop an alternative scheme to further reduce
transmission rate.

A new parallel-triggered scheme (PTS) is proposed in this paper
by using both the relative error and the absolute error information.
In our PTS, the sampled data are transmitted to the controller only
when the following two conditions hold. One is the relative event-
triggered condition presented in [10], and the other is the abso-
lute event-triggered condition proposed in [16]. Compared with
the event-triggered conditions in [10–21], the proposed parallel-
triggered condition consists of two sub-conditions. Compared to
the continuous triggered schemes in [11,12,14,18,19,23], our PTS
only needs a supervision of the sampled data at discrete time
instants and hence avoids the extra hardware requirements. The
trigger under the PTS in [23] uses the absolute state information,
whereas the trigger under our PTS uses the absolute error informa-
tion.

Based on the proposed PTS, the static output feedback stabiliza-
tion problem of linear NCSs is investigated in this paper. The linear
parallel-triggered NCS is represented by a time-delay system. The
following difficulties are involved: (1) for stability analysis, the
systemunder the proposed PTS stays either in the relative ETS or in
the absolute ETS.Moreover, the dwell time of the system staying in
the relative ETS and the absolute ETS may be unknown. However,
the methods in [10,13,15,16] are applicable to the systems staying
in single ETSs only. (2) for co-design, it is desirable to obtain both
the optimal trigger parameters and the output feedback controller
gain. However, the methods in [10,13,15–17] find the feasible
solutions only. The co-design method in [21] seeks for the optimal
trigger parameters and the state feedback controller gain only.
Besides, the trigger parameters in this paper are more flexible
than those in [10,13,15–17,21]. To overcome the difficulties, we
develop a new Lyapunov function for the system under the two
ETSs. By employing Lyapunov stability theory, sufficient conditions
are derived for global asymptotical stability by means of linear
matrix inequalities (LMIs). Furthermore, a co-design algorithm is
proposed to obtain both the optimal trigger parameters and the
output feedback controller gain to minimize transmission rate.
Finally, the effectiveness of the proposed PTS is illustrated by two
examples.

The main contributions of this paper are summarized as fol-
lows: Firstly, a new PTS is proposed for NCSs. The examples show
that the proposed scheme can further reduce the amount of trans-
mitted signals compared to the existing schemes. Secondly, based
on the new Lyapunov function, new sufficient conditions are de-
rived for global asymptotical stability. Besides, new sufficient con-
ditions are established for the output feedback controller design
by using a new lemma. Thirdly, a co-design algorithm is proposed
to obtain both the optimal trigger parameters and the output
feedback controller gain.

Notation: X > 0 (X < 0) is a symmetric and positive (negative)
definitematrix.Rn is the n-dimensional Euclidean space, andRm×n

is the set of allm × n real matrices. The superscripts ‘‘T ’’ and ‘‘−1’’
denote the matrix transposition and the matrix inverse, respec-
tively, and (X + XT ) is denoted by He(X). Im and 0m×n represent

them × m identitymatrix and them × n zeromatrix, respectively.
N and N>0 denote the sets of nonnegative and positive integers,
respectively. The symbol ‘‘⋆’’ denotes the matrix entry implied by
symmetry.

2. Problem statement

Consider the following linear continuous-time system:{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input,
y(t) ∈ Rp is the system output, and A, B and C are system matrices
with appropriate dimensions.

The framework of a linear parallel-triggered NCS is demon-
strated in Fig. 1. The system outputs are sampled periodically. The
releasing signals are determined by the PTS, and are sent out to the
controller through the network with communication delay.

By using both the relative error and the absolute error informa-
tion, a new parallel-triggered condition is proposed as follows:{
eT (jkh)Φe(jkh) ≥ δyT (jkh)Φy(jkh),
eT (jkh)Φe(jkh) ≥ γ (jkh),

(2)

where δ ∈ [0, 1) is a constant, Φ > 0 is a weighting matrix,
γ (t) = cε−αt is the given threshold function with the parameters
c ≥ 0, ε > 1, and α > 0. In addition, e(jkh) ≜ y(tkh) − y(jkh),
h denotes the sampling period, tkh, tk ∈ N, is the latest triggered
time, and jkh = tkh + dh, d ∈ N>0, is the present sampled time.
Assume that t0 = 0.

When the two inequalities in (2) are satisfied, the current sam-
pled data are transmitted to the controller. Consider the triggered
time sequence {t0h, t1h, t2h, . . . }. It follows from (2) that the trig-
gered time under the PTS is determined by

tk+1h = tkh + min
d∈N>0

{dh|eT (jkh)Φe(jkh)

≥ max{δyT (jkh)Φy(jkh), γ (jkh)}}. (3)

When γ (jkh) ≤ δyT (jkh)Φy(jkh), the system is under the relative
ETS, otherwise the system is under the absolute ETS. The two sub-
conditions of PTS (3)work together, then PTS (3) canprovide longer
inter-event intervals than the ETSs in [9,10,15,16] (see Theorem 3).

Remark 1. The proposed PTS (3) is characterized by the parame-
ters δ,Φ , c , ε andα, which affect the number of transmitted signals.
Moreover, PTS (3) is a generalization of the relative ETSs [9,10] and
the absolute ETSs [15,16]. Specifically, if 0 < δ < 1 and c = 0, then
PTS (3) is reduced to the relative ETS in [9,10]. If δ = 0 and c > 0,
then PTS (3) is simplified as the absolute ETS in [15,16].

Remark 2. From (3), one has tk+1h − tkh ≥ h > 0, k ∈ N,
which means that there is no Zeno behavior under the proposed
PTS. In engineering applications, a logic ‘‘AND’’ gate can be used to
implement PTS (3).

At triggered time tkh, the system output y(tkh) is transmitted
to the controller via the network and suffers transmission delay
τtk . Assume that τt0 = 0 and τ̄ = suptk∈N{τtk}. Thus, the time
sequence of the controller receiving the systemoutput information
is {t0h + τt0 , t1h + τt1 , t2h + τt2 , . . . }.

A zero-order holder (ZOH) is introduced with the holding time
interval Ωk ≜ [tkh + τtk , tk+1h + τtk+1 ). Then the output feedback
controller is

u(t) = Ky(tkh), t ∈ Ωk, (4)

where K is the controller gain to be designed.
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Fig. 1. Framework of a parallel-triggered NCS.

Similar with the method in [13], the holding time interval Ωk

is divided into subsets: Ωk =
⋃tk+1−tk−1

l=0 Ω l
k, where Ω l

k = [ikh +

τik , (ik + 1)h + τik+1), ikh = tkh + lh, l = 0, 1, . . . , tk+1 − tk − 1.
Define τik+1 = τtk for l = 0, 1, . . . , tk+1−tk−2 and τik+1 = τtk+1 for
l = tk+1 − tk − 1. Denote τ (t) ≜ t − ikh and e(ikh) ≜ y(tkh)− y(ikh)
for t ∈ Ω l

k. Note that 0 ≤ τ (t) ≤ h + τ̄ ≜ τm. Therefore, the
closed-loop system is

ẋ(t) = Ax(t) + BKCx(t − τ (t)) + BKe(ikh), t ∈ Ω l
k, (5)

where the initial state is x(t) = ϕ(t), t ∈ [−τm, 0], ϕ(t0) = x0 and
ϕ(t) is continuous on [−τm, 0].

The goal of this paper is to design the output feedback con-
troller (4) such that system (5) is globally asymptotically stable
under the proposed PTS (3). To this end, some technical lemmas
are presented as follows.

Lemma 1 ([24]). Given a matrix W > 0, for any continuously
differentiable function ω in [a, b] ↦→ Rm, the following inequality
holds:∫ b

a
ω̇T (s)W ω̇(s)ds ≥

1
b − a

(ω(b) − ω(a))TW (ω(b) − ω(a))

+
3

b − a
υTWυ, (6)

where υ = ω(b) + ω(a) −
2

b−a

∫ b
a ω(s)ds.

Lemma 2 ([25]). Given scalars m, n ∈ N>0, µ ∈ (0, 1), matrices M1,
M2 ∈ Rn×m and positive definite matrix R ∈ Rn×n, for any vector
φ ∈ Rm, define the function Ξ (µ, R) as:

Ξ (µ, R) =
1
µ

φTMT
1 RM1φ +

1
1 − µ

φTMT
2 RM2φ. (7)

If there exists a matrix X ∈ Rn×n such that
[
R X
XT R

]
> 0, then the

following inequality holds:

min
µ∈(0,1)

Ξ (µ, R) ≥

[
M1φ

M2φ

]T [
R X
XT R

][
M1φ

M2φ

]
. (8)

Lemma 3. The following two statements are equivalent:

(i) There exist matrices P > 0 and X ≥ 0 satisfying

− P + ATXA < 0, (9)

(ii) There exist matrices P > 0, X ≥ 0 and a matrix Y satisfying[
−P (YA)T

YA −Y − Y T
+ X

]
< 0. (10)

Proof. Firstly, because inequality (9) is a strict inequality, state-
ment (i) is equivalent to

(iii) There exist matrices P > 0, X ≥ 0 and a sufficiently small
positive number a satisfying

− P + AT (X + aI)A < 0. (11)

Then, similar to the proof of Theorem 1 in [26], statement
(iii) holds if and only if

(iv) There exist matrices P > 0, X ≥ 0, a matrix Y and a
sufficiently small positive number a satisfying[

−P (YA)T

YA −Y − Y T
+ X + aI

]
< 0. (12)

Next, because inequality (12) is also a strict inequality, statement
(iv) is equivalent to statement (ii). Thus, statements (i) and (ii) are
equivalent. The proof is completed. □

Remark 3. Lemma 3 is an extension of Theorem 1 in [26]. If let
P = X > 0, then Lemma 3 is reduced to Theorem 1 in [26].

3. Parallel-triggered control

In this section, sufficient conditions are firstly established for
the closed-loop system (5) to be globally asymptotically stable.
Then, sufficient conditions are derived for the output feedback
controller design.

3.1. Stability analysis

Theorem 1. Consider the closed-loop system (5) under PTS (3). For
given δ, τm, σ and K , if there exist n × n matrices P > 0, Q > 0,
S > 0, R > 0, Xi(i = 1, 2, 3, 4), and a p × p matrix Φ > 0 such that

Ψ > 0, (13)[
Π Υ T

Υ −R

]
< 0, (14)
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where

Ψ =

⎡⎢⎣R 0 X1 X2
⋆ 3R X3 X4
⋆ ⋆ R 0
⋆ ⋆ ⋆ 3R

⎤⎥⎦ ,

Π =

⎡⎢⎢⎢⎢⎢⎣
Π11 Π12 6ϕR Π14 Π15 PBK
⋆ −12ϕR −4ϕX4 6ϕR Π25 0
⋆ ⋆ −12ϕR 2ϕ(−XT

2 + XT
4 ) Π35 0

⋆ ⋆ ⋆ −ϕ(4R + Q ) Π45 0
⋆ ⋆ ⋆ ⋆ Π55 0
⋆ ⋆ ⋆ ⋆ ⋆ −Φ

⎤⎥⎥⎥⎥⎥⎦ ,

ϕ = e−στm , Π11 = He(PA) + Q + S − 4ϕR + σP,

Π12 = 2ϕ(XT
3 + XT

4 ), Π14 = ϕ(XT
1 + XT

2 − XT
3 − XT

4 ),

Π15 = −ϕ(XT
1 + XT

2 + XT
3 + XT

4 + 2R) + PBKC,

Π25 = ϕ(6R − 2X3 + 2X4), Π35 = ϕ(6R + 2XT
2 + 2XT

4 ),
Π45 = −ϕ(2R + X1 − X2 − X3 + X4),

Π55 = −ϕ
[
8R + S + He(−X1 + X2 − X3 + X4)

]
+ δCTΦC,

Υ =
[
τmRA 0 0 0 τmRBKC τmRBK

]
,

then the closed-loop system (5) is globally asymptotically stable.

Proof. Choose a Lyapunov candidate function as

V (t) = xT (t)Px(t) + τm

∫ t

t−τm

∫ t

ν

eσ (s−t)ẋT (s)Rẋ(s)dsdν

+

∫ t

t−τm

eσ (s−t)xT (s)Qx(s)ds +

∫ t

t−τ (t)
eσ (s−t)xT (s)Sx(s)ds,

t ∈ Ω l
k. (15)

For t ∈ Ω l
k, the error e(ikh) caused by PTS (3) satisfies

eT (ikh)Φe(ikh) < max{δyT (ikh)Φy(ikh), γ (ikh)}. (16)

According to PTS (3), system (5) stays either in the relative ETS
or in the absolute ETS. Thus, the proof is divided into two cases.

Case 1: γ (ikh) ≤ δyT (ikh)Φy(ikh). In this case, system (5) stays
in the relative ETS, and we have

eT (ikh)Φe(ikh) < δyT (ikh)Φy(ikh)
= δxT (t − τ (t))CTΦCx(t − τ (t)). (17)

The time derivative of V (t) is

V̇ (t) = −σV (t) + σxT (t)Px(t) + 2xT (t)Pẋ(t)

+ xT (t)Qx(t) + xT (t)Sx(t)

+ τ 2
mẋ

T (t)Rẋ(t) − τm

∫ t

t−τm

eσ (s−t)ẋT (s)Rẋ(s)ds

− e−στmxT (t − τm)Qx(t − τm)

− e−στ (t)xT (t − τ (t))Sx(t − τ (t))

+ eT (ikh)Φe(ikh) − eT (ikh)Φe(ikh). (18)

It follows from (17) and (18) that

V̇ (t) + σV (t) ≤ σxT (t)Px(t) + 2xT (t)Pẋ(t)

+ xT (t)Qx(t) + xT (t)Sx(t)

+ τ 2
mẋ

T (t)Rẋ(t) − τme−στm

∫ t

t−τm

ẋT (s)Rẋ(s)ds

− e−στmxT (t − τm)Qx(t − τm)

− e−στmxT (t − τ (t))Sx(t − τ (t))

+ δxT (t − τ (t))CTΦCx(t − τ (t))

− eT (ikh)Φe(ikh). (19)

According to Lemma 1, we have

− τme−στm

∫ t

t−τm

ẋT (s)Rẋ(s)ds

≤ −e−στm
τm

τm − τ (t)
χ T (t)

[
eT1 eT2

] [
R 0
0 3R

][
e1
e2

]
χ (t)

− e−στm
τm

τ (t)
χ T (t)

[
eT3 eT4

] [
R 0
0 3R

][
e3
e4

]
χ (t), (20)

where

χT (t) =

[
xT (t)

∫ t−τ (t)
t−τm xT (s)ds

τm − τ (t)

∫ t
t−τ (t) x

T (s)ds

τ (t)
xT (t − τm) xT (t − τ (t))

]
,

e1 =
[
0 0 0 −In In

]
, e2 =

[
0 −2In 0 In In

]
,

e3 =
[
In 0 0 0 −In

]
, e4 =

[
In 0 −2In 0 In

]
.

Notice that (13) holds, it follows from Lemma 2 that

− τme−στm

∫ t

t−τm

ẋT (s)Rẋ(s)ds ≤ −e−στmχ T (t)Γ TΨ Γ χ (t), (21)

where Γ T
=

[
eT1 eT2 eT3 eT4

]
, and Ψ is given in (13).

Substituting (21) into (19) gives

V̇ (t) + σV (t) ≤ ξ T (t)
[
Π + Υ TR−1Υ

]
ξ (t), (22)

where ξ T (t) =
[
χ T (t) eT (ikh)

]
, and Υ and Π are given in (14).

Applying Schur complement, inequality (14) is equivalent to

Π + Υ TR−1Υ < 0. (23)

Therefore, we have

V̇ (t) < −σV (t), t ∈ Ω l
k. (24)

Case 2: γ (ikh) > δyT (ikh)Φy(ikh). In this case, system (5) stays
in the absolute ETS, and we have

eT (ikh)Φe(ikh) < γ (ikh) = γ (t − τ (t)). (25)

Replacing inequality (17) by inequality (25), and adopting the
similar derivation in Case 1, we obtain[

Π̄ Υ T

Υ −R

]
≤

[
Π Υ T

Υ −R

]
< 0, (26)

where Π̄ = Π |δ=0.

Therefore, we have

V̇ (t) ≤ −σV (t) + γ (t − τ (t))

≤ −σV (t) + γ (t − τm), t ∈ Ω l
k. (27)

In view of (24) in Case 1 and (27) in Case 2, we have

V̇ (t) ≤ max{−σV (t), −σV (t) + γ (t − τm)}

= −σV (t) + γ (t − τm), t ∈ Ω l
k. (28)

Integrating (28) from Tik to t , we have

V (t) ≤ e−σ (t−Tik )V (Tik ) +

∫ t

Tik

e−σ (t−s)γ (s − τm)ds

= e−σ (t−Tik )V (Tik ) + c1e−σ t
∫ t

Tik

e(σ−α ln ε)sds, (29)

where c1 = cεατm and Tik = ikh + τik .
Notice that a Lyapunov function is used in the two cases, and

γ (t) is continuous for all t ≥ 0. Using the comparison lemma in
[27], we have

V (t) ≤ e−σ tV (0) +

∫ t

0
e−σ (t−s)γ (s − τm)ds

= e−σ tV (0) + c1e−σ t
∫ t

0
e(σ−α ln ε)sds. (30)
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The following two situations are considered.

(1) If σ − α ln ε = 0, then inequality (30) becomes

V (t) ≤ e−σ t
[V (0) + c1t]. (31)

(2) If σ − α ln ε ̸= 0, then inequality (30) becomes

V (t) ≤ e−σ t
[
V (0) −

c1
σ − α ln ε

]
+

c1ε−αt

σ − α ln ε
. (32)

Therefore, for any σ −α ln ε, limt→+∞ V (t) = 0. As a result, the
closed-loop system (5) is globally asymptotically stable. The proof
is completed. □

Remark 4. Compared with the Lyapunov functions in [10,13], the
term eσ (s−t) is introduced in this paper. This additional term plays
an essential role in deriving the condition limt→+∞ V (t) = 0. Com-
pared with the Lyapunov functions in [15,16], the double-integral
term τm

∫ t
t−τm

∫ t
ν
eσ (s−t)ẋT (s)Rẋ(s)dsdν is added to our Lyapunov

function. This double-integral term reduces the conservatism of
the results.

Remark 5. The Wirtinger-based integral inequality is utilized
in this paper to reduce the conservatism of the results, whereas
Jensen’s inequality is used in [16]. The Wirtinger-based integral
inequality and the reciprocally convex method are utilized in this
paper to reduce the computation complexity, whereas the free
weighting matrix approach is used in [10,15].

Remark 6. From Theorem 1, the stability of the closed-loop
system (5) is related to the parameters δ andΦ of the first parallel-
triggered condition in (2), and is independent of the parameters c ,
ε and α of the second parallel-triggered condition in (2). However,
all these parameters affect the number of transmitted signals and
hence can be designed to reduce transmission rate (see Algorithm
1).

3.2. Controller design

Based on Theorem 1, now we design an output feedback con-
troller under the proposed PTS (3).

Theorem 2. Consider the closed-loop system (5) under PTS (3). For
given δ, τm and σ , if there exist n × n matrices P > 0, Q > 0, S > 0,
R > 0, Xi(i = 1, 2, 3, 4), a 5n × 5n matrix H > 0, a p × p matrix
Φ > 0, an m × mmatrix Y , and an m × p matrix U such that

Ψ > 0, (33)⎡⎢⎣Λ11 + H Λ12 0 0
⋆ Λ22 Λ23 0
⋆ ⋆ He(−BTBY ) Λ34
⋆ ⋆ ⋆ −H

⎤⎥⎦ < 0, (34)

where

Λ11 =

⎡⎢⎢⎢⎣
Π11 Π12 6ϕR Π14 τm(RA)T
⋆ −12ϕR −4ϕX4 6ϕR 0
⋆ ⋆ −12ϕR 2ϕ(−XT

2 + XT
4 ) 0

⋆ ⋆ ⋆ −ϕ(4R + Q ) 0
⋆ ⋆ ⋆ ⋆ −R

⎤⎥⎥⎥⎦ ,

ϕ = e−στm ,

Λ12 =

⎡⎢⎢⎢⎣
BU Π̃15
0 Π25
0 Π35
0 Π45

τmBU τmBUC

⎤⎥⎥⎥⎦ , Λ22 =

[
−Φ 0
0 Π55

]
,

Λ23 =

[
(BTBU)T

(BTBUC)T

]
,

Λ34 =
[
(PB − BY )T 0 0 0 τm(RB − BY )T

]
,

Π̃15 = −ϕ(XT
1 + XT

2 + XT
3 + XT

4 + 2R) + BUC,

Ψ is defined in (13), and Π11, Π12, Π14, Π25, Π35, Π45 and Π55 are
given in (14), then the closed-loop system (5) is globally asymptoti-
cally stable with output feedback controller gain K = Y−1U.

Proof. Applying Schur complement, inequality (34) becomes⎡⎣Λ11 + H Λ12 0
⋆ Λ22 ΣTY TBTB
⋆ ⋆ He(−BTBY ) + Λ34H−1ΛT

34

⎤⎦ < 0, (35)

where Σ =
[
Y−1U Y−1UC

]
.

According to Lemma 3, inequality (35) is equivalent to[
Λ11 + H Λ12

⋆ Λ22 + ΣTΛ34H−1ΛT
34Σ

]
< 0. (36)

Note that

He
{[

I5n
0(p+n)×5n

]
ΛT

34Σ
[
0(p+n)×5n Ip+n

]}
≤

[
I5n

0(p+n)×5n

]
H

[
I5n 05n×(p+n)

]
+

[
05n×(p+n)

Ip+n

]
ΣTΛ34H−1ΛT

34Σ
[
0(p+n)×5n Ip+n

]
. (37)

Based on (36) and (37), we have[
Λ11 Λ12
⋆ Λ22

]
+ He

{[
I5n

0(p+n)×5n

]
ΛT

34Σ
[
0(p+n)×5n Ip+n

]}
< 0.

(38)

Then, inequality (38) can be expressed as[
Λ11 Λ̃12
⋆ Λ22

]
< 0, (39)

where Λ̃12 = Λ12 + ΛT
34Σ .

Pre-multiply and post-multiply (39) with⎡⎢⎢⎢⎢⎢⎢⎣

In 0 0 0 0 0 0
0 In 0 0 0 0 0
0 0 In 0 0 0 0
0 0 0 In 0 0 0
0 0 0 0 0 0 In
0 0 0 0 0 Ip 0
0 0 0 0 In 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
and its transpose, inequality (39) becomes inequality (14). Thus,
condition (34) ensures condition (14) in Theorem1 holds. Based on
Theorem 1, system (5) is globally asymptotically stable. The proof
is completed. □

Remark 7. For given δ, one can first obtain K and Φ by applying
Theorem 2. Then the parameters c , ε and α can be tuned to reduce
transmission rate (see Algorithm 2).

Remark 8. Similar sufficient conditions have been derived for the
output feedback controller design in [13]. The differences are as
follows: (1) Lemma 3 is used in this paper, whereas Theorem 1 in
[26] is used in [13]. From Remark 3, Theorem 1 in [26] is not ap-
plicable to our results. (2) The relative ETS is used in [13], whereas
the proposed PTS (3) is utilized in this paper.Moreover, the present
sampled output y(jkh) is utilized in the relative threshold function
δyT (jkh)Φy(jkh) in this paper. In [13], the latest triggered output
y(tkh) is used in the relative threshold function δyT (tkh)Φy(tkh).
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Remark 9. Using LMIs is better than using Lyapunov equality
in this paper. The reasons are as follows: (1) If using Lyapunov
equality, the Lyapunov equality will contain the integral term
−τm

∫ t
t−τm

eσ (s−t)ẋT (s)Rẋ(s)ds. As a result, the Lyapunov equality is
hard to be solved. Besides, the matrices of Lyapunov equality are
required to be given in advance. (2) If using LMIs, this integral term
can be magnified by applying Lemmas 1 and 2. Moreover, solving
inequalities is generally easier than solving equalities.

3.3. Analysis of the minimum inter-event interval

The main character of PTS (3) is the potential reduction of the
number of transmitted signals, which are analyzed in the following
theorem.

Theorem3. Consider the closed-loop system (5). The lower bound on
theminimum inter-event interval under PTS (3) is not smaller than the
ones obtained in [9,10,15,16].

Proof. Firstly, we derive that tPTSk+1h ≥ tAETSk+1 h holds for a given
state x(tkh), where tPTSk+1h and tAETSk+1 h denote the next triggered
time instant judged by PTS (3) and the absolute ETSs in [15,16],
respectively. On the contrary, assume that tPTSk+1h < tAETSk+1 h. Then
according to the event-triggered conditions in [15,16], we obtain

eT (tPTSk+1h)Φe(tPTSk+1h) < γ (tPTSk+1h). (40)

Moreover, noticing (3), we have

eT (tPTSk+1h)Φe(tPTSk+1h) ≥ max{δyT (tPTSk+1h)Φy(tPTSk+1h), γ (tPTSk+1h)}, (41)

which contradicts (40). Therefore, we can draw that tPTSk+1h ≥ tAETSk+1 h,
i.e. tPTSk+1h − tkh ≥ tAETSk+1 h − tkh.

Similar with the above proof, we can derive that tPTSk+1h ≥ tRETSk+1 h
holds for a given state x(tkh), where tRETSk+1 h denotes the next trig-
gered time instant determined by the relative ETSs in [9,10]. This
completes the proof. □

Remark 10. The obtained lower bound of the inter-event interval
is not smaller than those in [9,10,15,16]. Enlarging the minimum
inter-event interval is helpful to reduce the number of transmitted
signals. The advantage is shown in the examples.

4. Numerical algorithms

In this section, an algorithm is proposed to design the optimal
parameters of PTS (3) for the given controller. Similar to this
algorithm, a co-design algorithm is developed to obtain both the
optimal trigger parameters and the controller gain in the sense that
the transmission rate is minimized.

4.1. Design of the optimal trigger parameters

From Remark 6, the parameters δ and Φ of PTS (3) achieved
by Theorem 1 are only feasible solutions, and the parameters c , ε
and α of PTS (3) cannot be calculated by Theorem 1. Therefore, it
is necessary to propose an algorithm to obtain the optimal trigger
parameters δ∗, Φ∗, c∗, ε∗ and α∗ to minimize transmission rate.

For this purpose, we choose the transmission rate [21]

r =
NT

NS
(42)

as an index, where NT and NS are the numbers of transmitted
signals and sampled signals, respectively. Based on Theorem 1, the
following minimization problem is formulated:{
min r
subject to: (13) and (14).

(43)

It is noted that γ (t) = cε−αt
= ce−(ln ε)αt

= ce−ᾱt , where
ᾱ = (ln ε)α. Therefore, we search for the optimal value ᾱ∗ instead
of ε∗ and α∗ to reduce the computation complexity. After ᾱ∗ is
found, the optimal values of ε and α can be chosen as ε∗

= e and
α∗

= ᾱ∗. Therefore, the proposed numerical algorithm sets ε∗
= e

and searches for α∗ directly.
Now the following numerical algorithm is given to obtain the

optimal solution to problem (43).

Algorithm 1 Design of the optimal trigger parameters δ∗, Φ∗, c∗,
ε∗ and α∗

Step 1: Given scalars τm, σ , controller gain K , sampling period h
and initial state x0. Set sufficiently small scalar α0, suf-
ficiently large scalars cmax, αmax, sufficiently small step
increments∆δ ,∆c ,∆α and terminal time of the simulation
Tf . Set ε∗

= ε = e. Initialize r∗
= 1.

Step 2: Obtain the optimal parameters δ∗, Φ∗, c∗ and α∗ as fol-
lows:

for δ = 0 : ∆δ : 1 do
Obtain Φ by solving LMIs (13) and (14) in Theorem 1.
if Feasible Φ is found then

for c = 0 : ∆c : cmax do
for α = α0 : ∆α : αmax do

Calculate r during t ∈ [0, Tf ] via numerical
simulations.
if r < r∗ then
Update r∗

= r , δ∗
= δ, Φ∗

= Φ , c∗
= c and

α∗
= α.

else
Keep r∗, δ∗, Φ∗, c∗ and α∗.

end if
end for

end for
else
Go to Step 3.

end if
end for

Step 3: Output the parameters δ∗, Φ∗, c∗, ε∗, α∗ and the index r∗.

Remark 11. No methods are provided in [23] to seek for the op-
timal trigger parameters of the PTS. The algorithm in [21] obtains
the optimal trigger parameters of the relative ETS. Inspired by [21],
Algorithm 1 in this paper seeks for the optimal trigger parameters
of PTS (3).

4.2. Co-design of the optimal trigger parameters and the controller
gain

Similar to Algorithm 1, a co-design algorithm is proposed to
obtain both the optimal trigger parameters δ∗, Φ∗, c∗, ε∗, α∗ and
the controller gain K ∗:

Algorithm2Co-design of the trigger parameters and the controller
gain

Step 1: Given scalars τm, σ , sampling period h and initial state x0.
Set sufficiently small scalar α0, sufficiently large scalars
cmax, αmax, sufficiently small step increments ∆δ , ∆c , ∆α

and terminal time of the simulation Tf . Set ε∗
= ε = e.

Initialize r∗
= 1.
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Step 2: Obtain the optimal trigger parameters δ∗, Φ∗, c∗, α∗ and
the controller gain K ∗ as follows:

for δ = 0 : ∆δ : 1 do
Obtain K and Φ by solving LMIs (33) and (34) in
Theorem 2.
if Feasible K and Φ are found then
for c = 0 : ∆c : cmax do
for α = α0 : ∆α : αmax do

Calculate r during t ∈ [0, Tf ] via numerical
simulations.
if r < r∗ then

Update r∗
= r , δ∗

= δ, Φ∗
= Φ , c∗

= c ,
α∗

= α and K ∗
= K .

else
Keep r∗, δ∗, Φ∗, c∗, α∗ and K ∗.

end if
end for

end for
else

Go to Step 3.
end if

end for
Step 3: Output the parameters δ∗, Φ∗, c∗, ε∗, α∗ of PTS (3) and the

controller gain K ∗, and the index r∗.

Remark 12. Similar co-design methods have been used in [10,
13,15–17] to obtain both the feasible trigger parameters and the
controller gain. In this paper, Algorithm 2 tries to find the optimal
trigger parameters and the controller gain.

5. Illustrative examples

In this section, two examples are used to show the validity
of our results. One is to illustrate that the proposed PTS can fur-
ther reduce the number of transmitted signals compared with the
schemes in [10,17,19,28–30] for the given controller. The other is
to show that the co-designmethod ismore effective than the result
in [13].

Example 1. Consider an inverted pendulum on a cart investigated
in [10,19,28–30]. The state equations of the plant can be described
by system (1) with the following parameters:

A =

⎡⎢⎣0 1 0 0
0 0 mg

M 0
0 0 0 1
0 0 g

l 0

⎤⎥⎦ , B =

⎡⎢⎣
0
1
M
0

−
1
Ml

⎤⎥⎦ , C =

⎡⎢⎣1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ ,

where m = 1 kg denotes the mass of the pendulum bob, M = 10
kg is the cart mass, and l = 0.3 m is the length of the pendulum
arm and g = 10 m/s2 is the gravitational acceleration. The state
x = [ x1 x2 x3 x4 ]

T , where xi(i = 1, 2, 3, 4) are the cart’s
position, the cart’s velocity, the pendulum bob’s angle and the
pendulum bob’s angular velocity, respectively.

We set K = [ 2 12 378 210 ], τtk = τ̄ = 0, h = 0.12
s, Tf = 30 s, and the initial state x0 = [ 0.98 0 0.2 0 ]

T ,
which are the same as those in [10]. It follows from τm = h + τ̄

that τm = 0.12. Let α0 = 0.05, cmax = αmax = 10, ∆δ = 0.01,
∆c = ∆α = 0.05 and σ = 0.2.

By running Algorithm 1 in Matlab, the minimal transmission
rate r∗ is obtained as 20%, and the optimal parameters of PTS (3)

Table 1
Average inter-event interval under different triggered schemes.
Triggered scheme Average inter-event interval

The proposed PTS (3) 0.6098
The scheme in [19] 0.5769
The scheme in [10] 0.5131
The scheme in [28] 0.4816
The scheme in [29] 0.3917
The scheme in [30] < 10−5

are obtained as follows: δ∗
= 0.23, c∗

= 0.60, ε∗
= e, α∗

= 0.25
and

Φ∗
=

⎡⎢⎣0.0002 0.0010 0.0310 0.0170
0.0010 0.0060 0.1838 0.1029
0.0310 0.1838 5.8170 3.2116
0.0170 0.1029 3.2116 1.7946

⎤⎥⎦ .

Table 1 shows the average inter-event interval under our PTS (3)
and the schemes in [10,19,28–30]. From Table 1, our PTS (3) pro-
vides a larger average inter-event interval than the existing trig-
gered schemes in [10,19,28–30]. Therefore, our PTS (3) further
reduces the amount of transmitted signals compared with the
existing triggered schemes in [10,19,28–30]. Moreover, the ETS in
[19] needs a continuous supervision of the sampled data, whereas
our PTS (3) only needs a supervision of the sampled data at discrete
time instants and hence avoids the extra hardware requirements.

Next, the comparison between the mixed ETSs and our PTS (3)
is given. The mixed ETS proposed in [17] is implemented:

tk+1h = tkh + min
d∈N>0

{dh|eT (jkh)Φe(jkh)

≥ δyT (tkh)Φy(tkh) + γ (jkh) ≜ η1(jkh)}. (44)

By replacing y(tkh) by y(jkh), a newmixed ETS is also implemented:

tk+1h = tkh + min
d∈N>0

{dh|eT (jkh)Φe(jkh)

≥ δyT (jkh)Φy(jkh) + γ (jkh) ≜ η2(jkh)}. (45)

The parameters δ, Φ , c , ε and α are set as mentioned above. The
simulation results are illustrated in Figs. 2–4. From Fig. 2, the
system responses under the proposed PTS (3) are similar to that
under the mixed ETS in [17] (that is, (44)) and the mixed ETS (45).
According to Fig. 3, the mixed ETS in [17], the mixed ETS (45) and
our PTS (3) have transmitted 73, 55 and 50 signals, respectively.
Therefore, compared to the mixed ETS in [17] and the mixed
ETS (45), our PTS (3) can further reduce the amount of transmitted
signals while maintaining the global asymptotical stability. From
Fig. 4(c), the system stays in the absolute ETS during t ∈ [0, 3.24 s],
and stays in the relative ETS during t ∈ [3.24 s, 30 s], which verifies
the advantages of using both the relative error and the absolute
error information.

Fig. 5 shows the number of transmitted data under the mixed
ETS in [17], themixed ETS (45) and the proposed PTS (3) during dif-
ferent time periods. In the interval [0, 2.5 s], 6, 6 and 7 signals have
been transmitted under themixed ETS [17], themixed ETS (45) and
the proposed PTS (3), respectively. It can be seen that the number
of transmitted signals under our PTS (3) is larger than that under
the mixed ETS in [17] and the mixed ETS (45). In this case, the
system performance is maintained and fewer signals need to be
sent during t ∈ [2.5 s, 30 s]. Therefore, the transmission rate under
our PTS (3) is smallest during thewhole operation, even though the
triggered condition under the mixed ETS (45) is stricter than that
under our PTS (3).
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Fig. 2. Comparison of the system states under three different triggered schemes
both with δ = 0.23, c = 0.6, ε = e and α = 2.5.

Example 2. Consider system (1) with the following parameters
borrowed from [13]:

A =

[
−1 0.1
0.2 0.2

]
, B =

[
1
1

]
, C =

[
1 1

]
.

Fig. 3. Comparison of the inter-event intervals under three different triggered
schemes both with δ = 0.23, c = 0.6, ε = e and α = 2.5.

We set τm = 0.5, h = 0.01 s, Tf = 30 s, and the initial state x0 =

[ 3 −4 ]
T , which are the same as those in [13]. Let α0 = 0.05,

cmax = αmax = 20, ∆δ = 0.01, ∆c = ∆α = 0.05 and σ = 0.02.
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Fig. 4. Comparison of the error signals under three different triggered schemes
both with δ = 0.23, c = 0.6, ε = e and α = 2.5.

To compare with the controller designmethod in [13], set τtk =

0. By employing Theorem 1 in [13] and Theorem 2 in this paper,
the corresponding controller gains K and the weighting matrices

Fig. 5. Comparison of the number of transmitted data under three different trig-
gered schemes both with δ = 0.23, c = 0.6, ε = e and α = 2.5.

Table 2
Controller gain K and weighting matrix Φ .
δ 0.1 0.2 0.3

Theorem 1 in [13] K −0.4317 −0.4039 −0.3754
Φ 3.1604 1025.9678 732.9611

Theorem 2 K −0.4743 −0.5049 −0.5402
Φ 3.8522 751.2036 3.1411

Φ for different δ are listed in Table 2. For the case δ = 0.1 in
Table 2, the controller gain K = −0.4743 and theweightingmatrix
Φ = 3.8522 are obtained by using Theorem 2. From Remark 7,
the other parameters of the proposed PTS (3) are obtained as
follows: c = 1, ε = e and α = 0.2. With the above controller
gains K and the weighting matrices Φ for the case δ = 0.1, the
simulation results are shown in Figs. 6 and7. According to Fig. 6, the
global asymptotical stability performance achieved by Theorem 2
is better than that by Theorem 1 in [13]. Hence, the controller
designmethod in this paper ismore effective than the result in [13].
Fig. 7 illustrates that the relative ETS in [13] and our PTS (3) have
transmitted 19 and 14 data, respectively. Therefore, our PTS (3)
reduces 26.32% signal transmission compared to the relative ETS
in [13], which validates the effectiveness of the proposed PTS (3).

Next, the co-design issue is addressed. By applying Algorithm
2, the transmission rate r∗ is minimized to 0.2%, the optimal
parameters of the proposed PTS (3) and the controller gain are
obtained as follows: δ∗

= 0.25, Φ∗
= 2.5293, c∗

= 8.35, ε∗
= e,

α∗
= 0.15 and K ∗

= −0.5239. Note that τm = h + τ̄ , we have
τ̄ = 0.49. The transmission delay τtk is uniformly generated on the
interval [0, 0.49]. Both the delay-free and the time-delay cases are
performed. The simulation results are shown in Figs. 8 and 9. From
Fig. 8, the system performances are deteriorated in the two cases.
Fig. 9 shows that 6 and 8 data have been transmitted in the delay-
free case and the time-delay case, respectively. Therefore, a trade-
off needs to be conducted between the transmission rate and the
system performance. More signals need to be transmitted while
the system performance needs to be maintained.

6. Conclusions

This paper studied the parallel-triggered static output stabiliza-
tion problem of linear networked control systems. A new parallel-
triggered scheme was proposed by using both the relative error
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Fig. 6. Comparison of the state responses achieved by Theorem 1 in [13] and
Theorem 2 in this paper.

Fig. 7. Comparison of the inter-event intervals under the relative ETS in [13] and
the proposed PTS (3).

Fig. 8. State responses under the co-design algorithm.

Fig. 9. Inter-event intervals under the co-design algorithm.

and the absolute error information. The linear parallel-triggered
networked control system was modeled as a time-delay system.
Based on the model, sufficient conditions were derived for global
asymptotical stability in terms of linear matrix inequalities. A co-
design algorithmwas developed to obtain both the optimal trigger
parameters and the output feedback controller gain. Finally, two
examples were given to show the effectiveness of the proposed
scheme.

The advantage of the proposed scheme is that it can reduce
the number of transmitted signals while maintaining the global
asymptotical stability. Moreover, the proposed parallel-triggered
scheme is a generalization of the relative and the absolute event-
triggered schemes. Compared with the previous methods, the co-
design algorithm developed in this paper obtains both the optimal
trigger parameters and the output feedback controller gain. How-
ever, the proposed co-design algorithm is a bit time-consuming
according to our computations. Therefore, searching for more effi-
cient algorithms could be a potential research direction. Moreover,
this work will be extended to nonlinear control systems in the
future.
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