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Abstract 

In this paper, moment matching model reduction problem for negative imaginary systems is consid- 
ered. For a given negative imaginary system with poles at the origin, our goal is to find a reduced-order 
negative imaginary system such that a prescribed number of the moments and the poles at the origin 
are preserved. Firstly, the original negative imaginary system is split into an asymptotically stable sub- 
system, a lossless negative imaginary subsystem and an average subsystem. Then, moment matching 
model reduction is implemented on the asymptotically stable subsystem and the lossless negative imag- 
inary subsystem. The resulting reduced-order system preserves the negative imaginary structure and the 
poles at the origin. Also, the proposed model reduction method is extended to the positive real systems. 
Numerical examples demonstrate the effectiveness of the proposed model reduction method. 
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

 

 

 

 

1. Introduction 

Negative imaginary (NI) systems theory has attracted much attention during the last ten 

years ( [1–5] and references therein). It has been widely applied in different areas of control
systems engineering, such as the feedback controller design for a DC machine [6] , the robust
cooperative control of multi-agent networked systems [7] , the decentralized integral control of 
lightly damped flexible structures with collocated position sensors and force actuators [8] . An
overview of NI systems theory and applications is referred to the survey paper [9] . Flexible
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tructures with free body motion often lead to high order NI systems including poles at the
rigin, which arise in areas such as rotating flexible spacecraft [10] , flexible link manipulators
11] . This pose serious difficulties in system analysis and synthesis. Therefore, an important
ssue concerns model reduction for high order NI systems to simplify further analysis and
ynthesis. 

Recently, structure preserving model reduction problems for NI systems has drawn pro-
ound interest [12–15] . For the stable NI systems with minimal state-space realization, the use
f balanced truncation method has been employed in [12] . H ∞ 

model reduction problem for
table NI system has been investigated in [13] . More complicated situations to preserve NI
tructure of the reduced-order system with a prescribed H 2 performance and the mixed H 2 / H ∞
erformance have been handled in [14,15] . However, no results on model reduction for NI
ystems with poles at the origin have been studied in the literature. When approximating a
igh order NI system, it is desired that the NI structure is preserved for reduced-order sys-
ems. Unfortunately, these existing model reduction methods are not applicable to NI systems
ith poles at the origin. Therefore, it is necessary to develop new approaches to solve the
odel reduction problem for NI systems with poles at the origin preserved. This motivates

he research of this paper. 
In the field of model reduction, moment matching model reduction method has been widely

sed to solve the structure preserving model reduction problems ( [16–21] and references
herein). For instance, structure preserving model reduction for second-order time-delay sys-
ems has been presented in [16,17] , moment matching model reduction for port-Hamiltonian
ystems has been addressed in [18,19] , bilinear structure preserving model reduction problem
as been studied in [20,21] . For an overview of moment matching model reduction method,
e refer to literature [22] . The key idea of the moment matching model reduction is to equal-

ze the leading coefficients of the Laurent series expansion of the transfer functions of the
riginal system and the reduced-order system at the selected points. The Partial realization
roblem is solved when the expansion is considered around infinity [23] . The Pad ́e approxi-
ation is a problem of the moment matching at zero [24] . In the general case, the moment
atching model reduction problem is known as the rational interpolation, which is of the

nterest of this paper. 
For a given NI system with poles at the origin, we aim to find a reduced-order NI system

hat achieves moment matching. Firstly, the original system is split into an asymptotically
table subsystem, a lossless NI subsystem and an average subsystem. Then, sufficient condi-
ions for the construction of the reduced-order asymptotically stable subsystem and lossless
I subsystem are derived. It shows that a reduced-order NI system can be obtained by direct

omputation of the projection matrix. It is a big advantage for high order systems because only
atrix-vector multiplications are required. Moreover, the proposed model reduction method

s also extended to the positive real systems with blocking zero at zero frequency. Finally,
he effectiveness of the proposed moment matching model reduction method is illustrated
y several numerical examples. The advantage of the proposed model reduction method is
hat the NI structure as well as the poles at the origin for the reduced-order systems can be
uaranteed. 

Notation : All the matrices are assumed to be compatible dimensions. R 

m×n and R 

m×n de-
ote all the m ×n real matrices and real rational proper transfer function matrices, respectively.
 m ×n denotes an m ×n zero matrix, I n represents identity matrix of order n and e i represents
 column vector with the i -th entry equals to 1, other entries equal to 0. For a matrix A , A 

−1

nd A 

T stand for the inverse and the transpose, σ ( A ) denotes the set of eigenvalues of A ,



2276 L. Yu and J. Xiong / Journal of the Franklin Institute 356 (2019) 2274–2293 

 

 

 

C

 

 

 

 

 

(
(

 

 

 

 

 

respectively. ∅ denotes the empty set. � [ · ] denotes the real part of a complex number. The
notation P > 0 ( ≥0) means that matrix P is positive definite (semi-definite). 

2. Problem statement 

Consider an NI system G ( s ) with the minimal state-space realization 

˙ x (t ) = Ax(t ) + Bu(t ) , 
y(t ) = Cx(t ) , 

(1) 

where x(t ) ∈ R 

n , u(t ) ∈ R , y(t ) ∈ R , A ∈ R 

n×n , B ∈ R 

n , C ∈ R 

1 ×n . The transfer function of
system (1) is G (s) = C(sI − A ) −1 B. The moment of system (1) is defined as follows. 

Definition 1 [25] . The 0-moment of system (1) at s ∗ ∈ C is the complex number η0 (s ∗) =
(s ∗I − A ) −1 B. The m -moment of system (1) at s ∗ is the complex number 

ηm 

(s ∗) = 

(−1) m 

m! 

[
d 

m 

ds m 

(C(sI − A ) −1 B) 

]
s= s ∗

. 

It should be noted that the moments determine the coefficients of the Laurent series ex-
pansion of the transfer function in the neighborhood of s ∗ ∈ C , that is 

G (s) = G (s ∗) + G 

(1) (s ∗) 
s − s ∗

1! 
+ · · · + G 

(m) (s ∗) 
(s − s ∗) m 

m! 

= η0 (s ∗) + η1 (s ∗) 
s − s ∗

1! 
+ · · · + ηm 

(s ∗) 
(s − s ∗) m 

m! 
. 

In this paper, we only consider the case with m = 0. 
A reduced-order system for system (1) is given by 

˙ x r (t ) = A r x r (t ) + B r u(t ) , 
y r (t ) = C r x r (t ) , 

(2) 

where x r (t ) ∈ R 

r , y r (t ) ∈ R , A r ∈ R 

r×r , B r ∈ R 

r , C r ∈ R 

1 ×r , with 1 ≤ r < n . The transfer func-
tion of system (2) is G r (s) = C r (sI − A r ) 

−1 B r . 
Now, we formally state the moment matching model reduction problem for NI systems as

follows. 

Problem 1. Given an NI system (1) and 1 ≤ r < n . Let S = { s i | s i ∈ C , i = 1 , . . . , r} be a set
of interpolation points such that S ∩ { σ (A ) } = ∅ . The moment matching model reduction
problem for NI system (1) is to find the reduced-order system (2) such that 

1) system (2) preserves the NI structure; 
2) G r (s i ) = G (s i ) , s i ∈ S . 

Remark 1. Define the corresponding tangent directions as Q = { b i | b i ∈ C 

q , i = 1 , . . . , r} . For
the multiple-input multiple-output (MIMO) NI system, the goal of Problem 1 is to find the
reduced-order NI system such that G r (s i ) b i = G (s i ) b i , s i ∈ S, b i ∈ Q . Moment matching
model reduction problems for single-input single-output (SISO) systems have been studied 

in numerous works, such as [18,25,26] . These results are easily extended to the case of
MIMO systems [27,28] . Hence, we study and present results for the SISO case without loss
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f generality. Moreover, some necessary remarks about the extension to MIMO case are
roposed in the paper, see Remarks 5 and 9 . 

Some preliminaries about NI systems are presented. 

efinition 2 [29] . A square real-rational proper transfer function matrix G (s) ∈ R 

q×q is NI
f 

) G ( s ) has no poles in � [ s ] > 0; 
) j [ G ( j ω) − G 

∗( jω)] ≥ 0 for all ω ∈ (0, ∞ ) except values of ω where j ω is a pole of G ( s );
) if j ω 0 , ω 0 > 0 is a pole of G ( s ), it is at most a simple pole, and the residue matrix

K 0 � lim s→ jω 0 (s − j ω 0 ) j G (s) is positive semi-definite Hermitian; 
) if s = 0 is a pole of G ( s ), then lim s→ 0 s k G (s) = 0 for all k ≥3 and lim s → 0 s 2 G ( s ) is Her-

mitian and positive definite. 

emark 2. Note that when the system G ( s ) is asymptotically stable, Definition 2 coincides
ith the definition of stable NI systems in [1] . 

efinition 3 [30] . A square real-rational proper transfer function matrix G (s) ∈ R 

q×q is loss-
ess NI if 

) G ( s ) is NI; 
) j [ G ( j ω) − G 

∗( jω)] = 0 for all ω ∈ (0, ∞ ) except values of ω where j ω is a pole of G ( s ).

The following lemma provides a necessary and sufficient condition to test the NI structure.

emma 1 [31] . Let ( A , B , C , D ) be a minimal state-space realization of G (s) ∈ R 

q×q , where
 ∈ R 

n×n , B ∈ R 

n×q , C ∈ R 

q×n , D ∈ R 

q×q , q ≤n. Then G ( s ) is NI if and only if D = D 

T and
here exist matrices X ∈ R 

n×n , X = X 

T ≥ 0, L , W such that 

X A + A 

T X X B − A 

T C 

T 

B 

T X − CA −(C B + B 

T C 

T ) 

]
= −

[
L 

T L L 

T W 

W 

T L W 

T W 

]
≤ 0. (3)

The following result gives a characterization for the NI structure of a system with no poles
t the origin. 

emma 2 [1] . Let ( A , B , C , D ) be a minimal state-space realization of G (s) ∈ R 

q×q , where
 ∈ R 

n×n , B ∈ R 

n×q , C ∈ R 

q×n , D ∈ R 

q×q , q ≤n. Then G ( s ) is NI if and only if det (A ) � = 0,

 = D 

T and there exists a matrix Y ∈ R 

n×n , Y = Y 

T > 0, such that 

Y + Y A 

T ≤ 0 and B + AY C 

T = 0. (4)

emark 3. By replacing the “≤” sign with the “= ” sign in the inequality of (4) , we obtain
he lossless NI Lemma, see Theorem 1 in [30] . Also, the strongly strict NI Lemma obtained
y replacing the “≤” sign with the “< ” sign (Theorem 3.3 in [32] ). Note that Eq. (3) is
quivalent to Eq. (4) when G ( s ) is asymptotically stable. 

. Moment matching with preservation of the NI structure 

In this section, we first split the NI system into an asymptotically stable subsystem, a
ossless NI subsystem and an average subsystem. Sufficient conditions are derived for the
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construction of the reduced-order asymptotically stable subsystem and the reduced-order loss- 
less NI subsystem that matches prescribed moments of the original system. 

Given an NI system (1), the minimal state-space realization can be transformed into the
following block diagonal form [29] ⎡ 

⎢ ⎢ ⎣ 

˙ x 1 (t ) 
˙ x 2 (t ) 
˙ x 3 (t ) 
˙ x 4 (t ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

A 1 0 0 0 

0 A 2 0 0 

0 0 A 3 0 

0 0 0 A 4 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

x 1 (t ) 
x 2 (t ) 
x 3 (t ) 
x 4 (t ) 

⎤ 

⎥ ⎥ ⎦ 

+ 

⎡ 

⎢ ⎢ ⎣ 

B 1 

B 2 

B 3 

B 4 

⎤ 

⎥ ⎥ ⎦ 

u(t ) , 

y(t ) = 

[
C 1 C 2 C 3 C 4 

]
⎡ 

⎢ ⎢ ⎣ 

x 1 (t ) 
x 2 (t ) 
x 3 (t ) 
x 4 (t ) 

⎤ 

⎥ ⎥ ⎦ 

, 

(5) 

where A 1 ∈ R 

n 1 ×n 1 , A 2 ∈ R 

2n 2 ×2n 2 , B 1 ∈ R 

n 1 , B 2 ∈ R 

2n 2 , B 3 ∈ R 

n 3 , B 4a ∈ R 

n 4 , B 4b ∈ R 

n 4 ,

 1 ∈ R 

1 ×n 1 , C 2 ∈ R 

1 ×2n 2 , C 3 ∈ R 

1 ×n 3 , C 4a ∈ R 

1 ×n 4 , C 4b ∈ R 

1 ×n 4 , A 3 = 0 n 3 , n 3 + n 4 = 1 , n 1 +
2n 2 + n 3 + 2n 4 = n, 

A 4 = 

[
0 I n 4 
0 0 n 4 

]
, B 4 = 

[
B 4a 

B 4b 

]
, C 4 = 

[
C 4a C 4b 

]
. 

The eigenvalues of A 1 have strictly negative real parts, A 2 is a diagonalizable matrix with
nonzero purely imaginary eigenvalues. Then, the transfer function of system (1) can be rewrit-
ten as 

G (s) = 

2 ∑ 

i=1 

G i (s) + 

C 3 B 3 + C 4 B 4 

s 
+ 

C 4a B 4b 

s 2 
, 

where G i (s) = C i (sI − A i ) 
−1 B i , (i = 1 , 2) . Let ( A i , B i , C i ), (i = 1 , 2) denote the subsystems

in Eq. (5) . Here, the subsystem ( A 1 , B 1 , C 1 ) is asymptotically stable, the subsystem ( A 2 , B 2 ,
C 2 ) is lossless NI. 

Remark 4. According to Theorem 2.1.2 in [33] , for the given NI system with the mini-
mal state-space realization (1) , there always exist a nonsingular transformation T such that
(T −1 AT , T −1 B, CT ) be the real Jordan canoncial form. Moreover, the transformation T can
be obtained using some numerically algorithms such as the real Schur decomposition, see 
[33] . Similarly, we can choose this transformation such that the real Jordan blocks of T −1 AT 
are ordered according to the eigenvalues of the matrix A . Following the proof of Lemma 7
in [29] , the zero eigenvalues of A only have Jordon blocks of order one or two. Thus, we
can obtain that the real Jordan canoncial form (T −1 AT , T −1 B, CT ) is of the form in Eq. (5) .
Moreover, it follows from Lemma 2 in [29] that the matrix 

[
C 3 C 4a 

]
is of full column rank,

the matrix [ B 3 
B 4b 

] is of full row rank. In addition, the subsystems with realizations ( A i , B i , C i ),

(i = 1 , 2) are minimal realizations. 

Let S 1 = { s k | s k ∈ C , k = 1 , . . . , r 1 } be a set of interpolation points such that S 1 ∩
{ σ (A 1 ) } = ∅ , S 2 = { s j | s j ∈ C , j = 1 , . . . , 2r 2 } be a set of interpolation points such that
S 2 ∩ { σ (A 2 ) } = ∅ . According to Definition 1 , the moments of subsystems ( A i , B i , C i ),
(i = 1 , 2) in Eq. (5) at the selected interpolation points are given by 

η0 (s k ) = C 1 (s k I − A 1 ) 
−1 B 1 , s k ∈ S 1 , 

η0 (s j ) = C 2 (s j I − A 2 ) 
−1 B 2 , s j ∈ S 2 . 
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A reduced-order system that matches the moments of system (5) at the selected interpola-
ion points s k ∈ S 1 , s j ∈ S 2 is given by ⎡ 

⎢ ⎢ ⎣ 

˙ x r 1 (t ) 
˙ x r 2 (t ) 
˙ x 3 (t ) 
˙ x 4 (t ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

A r 1 0 0 0 

0 A r 2 0 0 

0 0 A 3 0 

0 0 0 A 4 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

x r 1 (t ) 
x r 2 (t ) 
x 3 (t ) 
x 4 (t ) 

⎤ 

⎥ ⎥ ⎦ 

+ 

⎡ 

⎢ ⎢ ⎣ 

B r 1 
B r 2 
B 3 

B 4 

⎤ 

⎥ ⎥ ⎦ 

u(t ) , 

y r (t ) = 

[
C r 1 C r 2 C 3 C 4 

]
⎡ 

⎢ ⎢ ⎣ 

x r 1 (t ) 
x r 2 (t ) 
x 3 (t ) 
x 4 (t ) 

⎤ 

⎥ ⎥ ⎦ 

, 

(6)

here A r 1 ∈ R 

n 1 ×n 1 , A r 2 ∈ R 

2n 2 ×2n 2 , B r 1 ∈ R 

r 1 , B r 2 ∈ R 

2r 2 , C r 1 ∈ R 

1 ×r 1 , C r 2 ∈ R 

1 ×2r 2 , A 3 , A 4

re defined in Eq. (5) , r 1 + 2r 2 + n 3 + 2n 4 = r. The eigenvalues of A r 1 have strictly negative
eal parts, A r 2 is a diagonalizable matrix with nonzero purely imaginary eigenvalues. The
oments of the reduced-order system (6) satisfy the following equations 

˜ η0 (s k ) = C r 1 (s k I − A r 1 ) 
−1 B r 1 = η0 (s k ) , s k ∈ S 1 , 

˜ η0 (s j ) = C r 2 (s j I − A r 2 ) 
−1 B r 2 = η0 (s j ) , s j ∈ S 2 . 

In terms of the block diagonal form (5) , a new condition is proposed to test the NI structure.

emma 3. Let Eq. (5) be a minimal state-space realization of G ( s ), where A ∈ R 

n×n , B ∈ R 

n ,

 ∈ R 

1 ×n . Then G ( s ) is NI if and only if there exist matrices X 1 ∈ R 

n 1 ×n 1 , X 1 = X 

T 

1 > 0,

 2 ∈ R 

2n 2 ×2n 2 , X 2 = X 

T 

2 > 0, X 4 = diag{ 0 n 4 , X 4b } , X 4b ∈ R 

n 4 ×n 4 , X 4 b > 0, L 1 , W such that 

 1 A 1 + A 

T 

1 X 1 = −L 

T 

1 L 1 , (7)

 2 A 2 + A 

T 

2 X 2 = 0, (8)

 1 B 1 − A 

T 

1 C 

T 

1 = −L 

T 

1 W , (9)

 2 B 2 − A 

T 

2 C 

T 

2 = 0, (10)

 4b B 4b − C 

T 

4a = 0, (11)

ˆ 
 + 

ˆ D 

T = W 

T W , (12)

here ˆ D = C 1 B 1 + C 2 B 2 + C 3 B 3 + C 4 B 4 . 

roof. The proof is similar to Lemma A.4 in [34] , hence it is omitted here. �

.1. Moment matching model reduction: NI systems with no poles at the origin 

In this subsection, we show how to achieve moment matching and structure preserving for
he NI systems with no poles at the origin. 



2280 L. Yu and J. Xiong / Journal of the Franklin Institute 356 (2019) 2274–2293 

 

 

 

 

 

 

U

 

 

U  

Y

Consider the case when the NI system (5) having no poles at the origin, that is, n 3 =
n 4 = 0, n 1 , n 2 � = 0, n 1 + n 2 = n. Then, the minimal state-space realization of system (5) can
be rewritten as 

ˆ A = 

[
A 1 0 

0 A 2 

]
, ˆ B = 

[
B 1 

B 2 

]
, ˆ C = 

[
C 1 C 2 

]
. (13) 

In this case, the conditions in Lemma 3 reduced to the following result. 

Lemma 4. Let Eq. (13) be a minimal state-space realization of G ( s ), where ˆ A ∈ R 

n×n , ˆ B ∈
R 

n , ˆ C ∈ R 

1 ×n . Then G ( s ) is NI if and only if there exists a block diagonal matrix Y =
diag{ Y 1 , Y 2 } ∈ R 

n×n , Y = Y 

T > 0 such that 

A 1 Y 1 + Y 1 A 

T 

1 ≤ 0 and B 1 + A 1 Y 1 C 

T 

1 = 0, (14) 

A 2 Y 2 + Y 2 A 

T 

2 = 0 and B 2 + A 2 Y 2 C 

T 

2 = 0. (15) 

Proof. The proof is presented in Appendix. �
Based on Lemma 4 , the following theorem provides the conditions for the construction of

the reduced-order NI systems. 

Theorem 1. Given an NI system (13) , 1 ≤ r 1 < n 1 , 1 ≤ r 2 < n 2 , r 1 + 2r 2 = r, the interpolation
points sets S 1 , S 2 . Let Y be a solution of (14) −(15) . Construct matrix U ∈ R 

n×r as 

 = diag{ U 1 , U 2 } (16) 

where 

U 1 = 

[
(s 1 I − A 1 ) 

−1 B 1 . . . (s r 1 I − A 1 ) 
−1 B 1 

]
, 

U 2 = 

[
(s 1 I − A 2 ) 

−1 B 2 . . . (s 2r 2 I − A 2 ) 
−1 B 2 

]
, 

(17) 

are the real basis matrices of the generalized reachability matrices. If the matrix U 

T Y 

−1 ˆ A 

−1 U 

is nonsingular, then the reduced-order NI system that matches the moments of system (13) is
given by 

ˆ A r = (U 

T Y 

−1 ˆ A 

−1 U ) −1 (U 

T Y 

−1 U ) , 
ˆ B r = −(U 

T Y 

−1 ˆ A 

−1 U ) −1 U 

T ˆ C 

T , ˆ C r = 

ˆ C U . 
(18) 

Proof. Firstly, we prove that the reduced-order system (18) is NI. It follows from Y > 0 that
 

T Y 

−1 U > 0. This implies that the matrix 

ˆ A r is nonsingular. Let Y r = (U 

T Y 

−1 U ) −1 . Then,
we have that 

 r = diag{ Y r 1 , Y r 2 } = diag{ (U 

T 

1 Y 

−1 
1 U 1 ) 

−1 , (U 

T 

2 Y 

−1 
2 U 2 ) 

−1 } > 0. 

Moreover, the system matrices in Eq. (18) can be rewritten as 

ˆ A r = 

[
A r 1 0 

0 A r 2 

]
, ˆ B r = −

[
B r 1 
B r 2 

]
, ˆ C r = 

[
C r 1 C r 2 

]
, 

where 

A r 1 = (U 

T 

1 Y 

−1 
1 A 

−1 
1 U 1 ) 

−1 Y 

−1 
r 1 , A r 2 = (U 

T 

2 Y 

−1 
2 A 

−1 
2 U 2 ) 

−1 Y 

−1 
r 2 , 

B r 1 = (U 

T 
1 Y 

−1 
1 A 

−1 
1 U 1 ) 

−1 U 

T 
1 C 

T 
1 , B r 2 = (U 

T 

2 Y 

−1 
2 A 

−1 
2 U 2 ) 

−1 U 

T 

2 C 

T 

2 , 
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 r 1 = C 1 U 1 , C r 2 = C 2 U 2 . 

t follows from Lemma 4 that the following equivalent conditions hold 

A 1 Y 1 + Y 1 A 

T 

1 ≤ 0 ⇔ Y 

−1 
1 (A 1 Y 1 + Y 1 A 

T 

1 ) Y 

−1 
1 ≤ 0, 

⇔ Y 

−1 
1 A 1 + A 

T 

1 Y 

−1 
1 ≤ 0 ⇔ A 

−T 

1 (Y 

−1 
1 A 1 + A 

T 

1 Y 

−1 
1 ) A 

−1 
1 ≤ 0, 

⇔ Y 

−1 
1 A 

−1 
1 + (Y 

−1 
1 A 

−1 
1 ) T ≤ 0 ⇔ U 

T 

1 Y 

−1 
1 A 

−1 
1 U 1 + (U 

T 

1 Y 

−1 
1 A 

−1 
1 U 1 ) 

T ≤ 0, 

⇔ (U 

T 

1 Y 

−1 
1 A 

−1 
1 U 1 ) 

−1 + (U 

T 

1 Y 

−1 
1 A 

−1 
1 U 1 ) 

−T ≤ 0, 

⇔ A r 1 Y r 1 + Y r 1 A 

T 

r 1 ≤ 0. 

imilarly, we can obtain that 

 2 Y 2 + Y 2 A 

T 

2 = 0 ⇔ A r 2 Y r 2 + Y r 2 A 

T 

r 2 = 0. 

oreover, B r 1 = −A r 1 Y r 1 C 

T 

r 1 , B r 2 = −A r 2 Y r 2 C 

T 

r 2 . Thus, according to Lemma 4 , the reduced-order
ystem (18) is NI. 

Now we prove that the transfer functions of the reduced-order system (18) and the original
ystem (13) are equal at the selected interpolation points s k ∈ S 1 , s j ∈ S 2 . Note that, 

 r 1 (s k ) = C r 1 (s k I − A r 1 ) 
−1 B r 1 = −C r 1 (s k I − A r 1 ) 

−1 A r 1 Y r 1 C 

T 

r 1 

= −C 1 U 1 { s k U 

T 

1 Y 

−1 
1 A 

−1 
1 U 1 − (U 

T 

1 Y 

−1 
1 U 1 ) } −1 U 

T 

1 C 

T 

1 

= −C 1 U 1 { U 

T 

1 (s k Y 

−1 
1 A 

−1 
1 − Y 

−1 
1 ) U 1 } −1 U 

T 

1 C 

T 

1 , 

 r 2 (s j ) = C r 2 (s j I − A r 2 ) 
−1 B r 2 = −C r 2 (s j I − A r 2 ) 

−1 A r 2 Y r 2 C 

T 

r 2 

= −C 2 U 2 { s j U 

T 

2 Y 

−1 
2 A 

−1 
2 U 2 − (U 

T 

2 Y 

−1 
2 U 2 ) } −1 U 

T 

2 C 

T 

2 

= −C 2 U 2 { U 

T 

2 (s j Y 

−1 
2 A 

−1 
2 − Y 

−1 
2 ) U 2 } −1 U 

T 

2 C 

T 

2 . (19)

ccording to Lemma 4 , we have that B 1 = −A 1 Y 1 C 

T 

1 , B 2 = −A 2 Y 2 C 

T 

2 . Thus, U 1 , U 2 in
q. (17) can be rewritten as 

 1 = 

[−(s 1 I − A 1 ) 
−1 A 1 Y 1 C 

T 

1 . . . −(s r 1 I − A 1 ) 
−1 A 1 Y 1 C 

T 

1 

]
= 

[−(s 1 Y 

−1 
1 A 

−1 
1 − Y 

−1 
1 ) −1 C 

T 

1 . . . −(s r 1 Y 

−1 
1 A 

−1 
1 − Y 

−1 
1 ) −1 C 

T 

1 

]
, 

 2 = 

[−(s 1 I − A 2 ) 
−1 A 2 Y 2 C 

T 

2 . . . −(s 2r 2 I − A 2 ) 
−1 A 2 Y 2 C 

T 

2 

]
= 

[−(s 1 Y 

−1 
2 A 

−1 
2 − Y 

−1 
2 ) −1 C 

T 

2 . . . −(s 2r 2 Y 

−1 
2 A 

−1 
2 − Y 

−1 
2 ) −1 C 

T 

2 

]
. (20)

ombining Eq. (20) with Eq. (19) , one obtains that 

 r 1 (s k ) = −C 1 U 1 
[− ˜ U 1 · · · −U 

T 

1 C 

T 

1 · · · − ˜ U r 1 

]−1 
U 

T 

1 C 

T 

1 

= C 1 U 1 
[ ˜ U 1 · · · U 

T 

1 C 

T 

1 · · · ˜ U r 1 

]−1 [ ˜ U 1 · · · U 

T 

1 C 

T 

1 · · · ˜ U r 1 

]
e k 

= C 1 U 1 e k = C 1 (s k I − A 1 ) 
−1 B 1 = G 1 (s k ) , 

here 

˜ U 1 = U 

T 

1 (s k Y 

−1 
1 A 

−1 
1 − Y 

−1 
1 )(s 1 Y 

−1 
1 A 

−1 
1 − Y 

−1 
1 ) −1 C 

T 

1 , 

˜ 
 r 1 = U 

T 

1 (s k Y 

−1 
1 A 

−1 
1 − Y 

−1 
1 )(s r 1 Y 

−1 
1 A 

−1 
1 − Y 

−1 
1 ) −1 C 

T 

1 . 

imilarly, we can also obtain that G r 2 (s j ) = G 2 (s j ) . �
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Remark 5. Define the corresponding tangent directions as Q 1 = { b k | b k ∈ C 

q , k = 1 , . . . , r 1 } ,
Q 2 = { l j | l j ∈ C 

q , j = 1 , . . . , 2r 2 } . Theorem 1 can be extended to the MIMO case by replacing
the matrices U 1 , U 2 in Eq. (17) as 

 1 = 

[
(s 1 I − A 1 ) 

−1 B 1 b 1 . . . (s r 1 I − A 1 ) 
−1 B 1 b r 1 

]
, 

 2 = 

[
(s 1 I − A 2 ) 

−1 B 2 l 1 . . . (s 2r 2 I − A 2 ) 
−1 B 2 l 2r 2 

]
. (21) 

Following the proof of G r (s k ) = G (s k ) and G r (s j ) = G (s j ) in Theorem 1 , we have that the
transfer function of the obtained reduced-order NI system (18) satisfies 

G r (s k ) b k = G (s k ) b k , s k ∈ S 1 , b k ∈ Q 1 , 

G r (s j ) l j = G (s j ) l j , s j ∈ S 2 , l j ∈ Q 2 . 

Thus, the results in Theorem 1 are also applicable for the MIMO NI systems. 

Remark 6. In [35] , the guidelines to choose the interpolation points s k , s j have been estab-
lished, which can be concluded as follows. 

1) A purely imaginary interpolation point leads to very good local approximation and to a
very slow convergence at all frequencies away from the interpolation point. 

2) A real interpolation point offer a good approximation in a large neighborhood around the
interpolation point, except around some lightly damped eigenvalues on the imaginary axis. 

3) The combination of real, imaginary, and complex interpolation points is generally preferred 

over a single interpolation point, however the choice and number of these points is not
straightforward. 

In [36] , a rational Krylov algorithm with interpolation points selected as spectral zeros
of the original transfer function has been presented for passive linear systems. However, the
choice of the interpolation points for NI systems is still an active field of research and remains
challenging. Our future research will focus on how to choose interpolation points to obtain 

the reduced-order NI system with small approximation error. 

Remark 7. For strongly strict NI systems, the system matrix 

ˆ A = A 1 satisfies A 1 Y 1 + Y 1 A 

T 

1 <

0, which implies that 

A r 1 Y r 1 + Y r 1 A 

T 

r 1 = (U 

T 

1 Y 

−1 
1 A 

−1 
1 U 1 ) 

−1 + (U 

T 

1 Y 

−1 
1 A 

−1 
1 U 1 ) 

−T < 0. 

Thus, the obtained reduced-order system matrix A r 1 is stable for the arbitrary interpolation 

points s k ∈ S 1 . 

Remark 8. For lossless NI systems, the system matrix 

ˆ A = A 2 satisfies 

A 2 Y 2 + Y 2 A 

T 

2 = 0, 

which implies that 

 

−1 
2 A 

−1 
2 = −A 

−T 

2 Y 

−1 
2 ⇒ Y 

−1 
2 A 

−1 
2 A 

−T 

2 Y 

−1 
2 = A 

−T 

2 Y 

−1 
2 Y 

−1 
2 A 

−1 
2 , 

that is, the matrix Y 

−1 
2 A 

−1 
2 is normal. According to Antoulas [37] , one obtains that the matrix

 

T 

2 Y 

−1 
2 A 

−1 
2 U 2 can never be singular. Thus, the obtained reduced-order system matrix A r 2 is

nonsingular for the arbitrary interpolation points s ∈ S . 
j 2 
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.2. Moment matching model reduction: NI systems with poles at the origin 

In this subsection, by using the transformation between NI systems and positive real sys-
ems, the moment matching model reduction problems for NI systems with poles at the origin
s transformed equivalently into that for the positive real systems with blocking zero at zero
requency. Then, the moment matching model reduction method is extended to the positive
eal systems with blocking zero at zero frequency. 

Consider the case when the NI system (5) having poles at the origin, that is, n 3 + n 4 = 1 ,

 1 + 2n 2 + n 3 + n 4 = n. Then, according to Lemma 3 in [29] , the transfer function 

(s) = sG (s) = C 1 A 1 (sI − A 1 ) 
−1 B 1 + C 2 A 2 (sI − A 2 ) 

−1 B 2 

+ 

C 4a B 4b 

s 
+ C 1 B 1 + C 2 B 2 + C 3 B 3 + C 4 B 4 , (22)

s positive real. A minimal state-space realization of R ( s ) is given by 

A PR 

= 

⎡ 

⎣ 

A 1 0 0 

0 A 2 0 

0 0 0 n 4 

⎤ 

⎦ , B PR 

= 

⎡ 

⎣ 

B 1 

B 2 

B 4b 

⎤ 

⎦ , C PR 

= 

[
C 1 A 1 C 2 A 2 C 4a 

]
, 

ˆ D = C 1 B 1 + C 2 B 2 + C 3 B 3 + C 4 B 4 . 

(23)

In terms of the block diagonal form (23) , a new condition is derived to test the positive
eal structure. 

emma 5. Let Eq. (23) be a minimal state-space realization of R ( s ), where A PR 

∈
 

(n 1 +2n 2 + n 4 ) ×(n 1 +2n 2 + n 4 ) , B PR 

∈ R 

n 1 +2n 2 + n 4 , C PR 

∈ R 

1 ×(n 1 +2n 2 + n 4 ) , ˆ D ∈ R , ˆ D = 

ˆ D 

T . Then R ( s )
s positive real if and only if there exists a block diagonal matrix P PR 

= diag{ ̂  P 1 , ˆ P 2 , ˆ P 3 } ,ˆ 
 1 ∈ R 

n 1 ×n 1 , ˆ P 1 = 

ˆ P 

T 

1 > 0, ˆ P 2 ∈ R 

2n 2 ×2n 2 , ˆ P 2 = 

ˆ P 

T 

2 > 0, ˆ P 3 ∈ R 

n 4 ×n 4 , ˆ P 3 = 

ˆ P 

T 

3 > 0 such that

P PR 

A PR 

+ A 

T 

PR 

P PR 

P PR 

B PR 

− C 

T 

PR 

B 

T 

PR 

P PR 

− C PR 

− ˆ D − ˆ D 

T 

]
≤ 0. (24)

roof. According to the GKYP Lemma [38] , R ( s ) is positive real if and only if there exist
atrices P PR 

∈ R 

(n 1 +2n 2 + n 4 ) ×(n 1 +2n 2 + n 4 ) , P PR 

= P 

T 

PR 

> 0, ˜ L , ˜ W such that 

P PR 

A PR 

+ A 

T 

PR 

P PR 

P PR 

B PR 

− C 

T 

PR 

B 

T 

PR 

P PR 

− C PR 

− ˆ D − ˆ D 

T 

]
= −

[ ˜ L ̃

 L 

T ˜ L 

˜ W 

˜ W 

T ˜ L 

T ˜ W 

T ˜ W 

]
≤ 0. 

y following the similar lines as in the proof of Lemma A.4 [34] , we conclude that the above
nequality and Eq. (24) are equivalent. �

Let (A i , B i , C i A i , C i B i ) (i = 1 , 2) denote the subsystems in Eq. (23) . Here, the subsystems
 A i , B i , C i A i , C i B i ) always have a blocking zero at zero frequency since the matrices A 1 ,
 2 are nonsingular. This implies that the positive real system without a blocking zero at
ero frequency is always transformed into an NI system with poles at the origin. Hence, we
erform moment matching model reduction on subsystems ( A i , B i , C i A i , C i B i ) to preserve the
locking zero and the positive real structure for the reduced-order systems. 

The following theorem provides the conditions for the construction of the reduced-order
ositive real systems that preserve the blocking zero and match the moments of the original
ystem (23) . 

heorem 2. Given the positive real system (23) , 1 ≤ r 1 < n 1 , 1 ≤ r 2 < n 2 , r 1 + 2r 2 = r. Let
 PR 

be a solution of Eq. (24) , s 1 = 0, { s k } r 1 ⊂ C be a set of interpolation points such
k=2 
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that s k ∩ σ (A 1 ) = ∅ , { s j } 2r 2 
j=2 ⊂ C be a set of interpolation points such that s j ∩ σ (A 2 ) = ∅ .

Construct a matrix U ∈ R 

(n 1 +2n 2 + n 4 ) ×(r 1 +2r 2 + n 4 ) as 

 = diag{ U 1 , U 2 , I n 4 } , (25) 

where the matrices U 1 , U 2 are defined in Eq. (17) . A reduced-order positive real system that
matches the moments of the original system (23) is given by 

˜ A PR 

= (U 

T P PR 

U ) −1 U 

T P PR 

A PR 

U , ˜ B PR 

= (U 

T P PR 

U ) −1 U 

T P PR 

B PR 

, 
˜ C PR 

= C PR 

U , ˆ D = C 1 B 1 + C 2 B 2 + C 3 B 3 + C 4 B 4 . 
(26) 

Proof. Firstly, we prove that the reduced-order system R r ( s ) in Eq. (26) is positive real. Let
˜ P PR 

= U 

T P PR 

U . Then, we have that ˜ P PR 

= 

˜ P 

T 

PR 

> 0. Moreover, 

� = 

[ ˜ P PR ̃

 A PR 

+ 

˜ A 

T 

PR 

˜ P PR 

˜ P PR 

˜ B PR 

− ˜ C 

T 

PR 

˜ B 

T 

PR 

˜ P PR 

− ˜ C PR 

− ˆ D − ˆ D 

T 

] 

= 

[ 

U 

T (P PR 

A PR 

+ A 

T 

PR 

P PR 

) U U 

T (P PR 

B PR 

− C 

T 

PR 

) 

(B 

T 

PR 

P PR 

− C PR 

) U − ˆ D − ˆ D 

T 

] 

(27) 

= �T 

[ 

P PR 

A PR 

+ A 

T 

PR 

P PR 

P PR 

B PR 

− C 

T 

PR 

B 

T 

PR 

P PR 

− C PR 

− ˆ D − ˆ D 

T 

] 

� ≤ 0, 

where � = diag{ U , 1 } . Thus, according to Lemma 5 , the reduced-order system (26) is positive
real. 

Now we prove that the transfer function of the reduced-order system (26) and the original
system (23) are equal at the selected interpolation points s 1 = 0. The following string of
equalities lead to the desired result, 

R r 1 (s k ) = 

˜ C PR 1 (s k I − ˜ A PR 1 ) 
−1 ˜ B PR 1 + C 1 B 1 

= C 1 A 1 U 1 { s k I − (U 

T 

1 
ˆ P 1 U 1 ) 

−1 U 

T 

1 
ˆ P 1 A 1 U 1 } −1 (U 

T 

1 
ˆ P 1 U 1 ) 

−1 U 

T 

1 
ˆ P 1 B 1 + C 1 B 1 

= C 1 A 1 U 1 { U 

T 

1 
ˆ P 1 (s k I − A 1 ) U 1 } −1 U 

T 

1 
ˆ P 1 B 1 + C 1 B 1 

= C 1 A 1 U 1 
[ ˆ U 1 · · · U 

T 

1 
ˆ P 1 B 1 · · · ˆ U r 1 

]−1 
U 

T 

1 
ˆ P 1 B 1 + C 1 B 1 

= C 1 A 1 U 1 
[ ˆ U 1 · · · U 

T 

1 
ˆ P 1 B 1 · · · ˆ U r 1 

]−1 

×[ ˆ U 1 · · · U 

T 

1 
ˆ P 1 B 1 · · · ˆ U r 1 

]
e k + C 1 B 1 

= C 1 A 1 U 1 e k + C 1 B 1 = C 1 A 1 (s k I − A 1 ) 
−1 B 1 + C 1 B 1 = R 1 (s k ) , 

where 
ˆ U 1 = −U 

T 

1 
ˆ P 1 (s k I − A 1 ) A 

−1 
1 B 1 , 

ˆ U r 1 = U 

T 

1 
ˆ P 1 (s k I − A 1 )(s r 1 I − A 1 ) 

−1 B 1 . 

Similarly, we also obtain that R r 2 (s j ) = R 2 (s j ) . Moreover, we have that 

R r 1 (s 1 ) = R 1 (s 1 ) = 0, R r 2 (s 1 ) = R 2 (s 1 ) = 0. 

That is, the blocking zero at zero frequency is also preserved for the reduced-order system. �
Remark 9. Similar to Theorem 1 , when the matrices U 1 , U 2 in Eq. (25) are defined as in
Eq. (21) , then the obtained results in Theorem 2 are also applicable for the MIMO NI systems.
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Fig. 1. Ladder RLC network. 
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Based on Theorem 2 , the following result provides the condition for the construction of
he reduced-order NI system with poles at the origin. 

emma 6. Given an NI system with poles at the origin in Eq. (5) , 1 ≤ r 1 < n 1 , 1 ≤ r 2 < n 2 ,
 1 + 2r 2 = r. Let s 1 = 0, { s k } r 1 i=2 ⊂ C be a set of interpolation points such that s k ∩ σ (A 1 ) =
 , { s j } 2r 2 

j=2 ⊂ C be a set of interpolation points such that s j ∩ σ (A 2 ) = ∅ . Construct a matrix

 ∈ R 

(n 1 +2n 2 + n 4 ) ×(r 1 +2r 2 + n 4 ) as in Eq. (25) . A reduced-order NI system with poles at the origin
hat matches the moments of the origin system (5) is given by 

 r (s) = 

1 

s 
( ̃  C PR 

(sI − ˜ A PR 

) −1 ˜ B PR 

+ 

ˆ D ) , (28)

here ˜ A PR 

, ˜ B PR 

, ˜ C PR 

, ˆ D are defined in Eq. (26) . 

roof. According to Theorem 2 , the obtained reduced-order subsystems R r 1 (s) and R r 2 (s) are
oth positive real systems with blocking zero at zero frequency. Thus, the stability of the
ransformed reduced-order subsystems G r 1 (s) = 

1 
s R r 1 (s) and G r 2 (s) = 

1 
s R r 2 (s) can be guar-

nteed. That is, the transformed reduced-order subsystem G r 1 (s) = 

1 
s R r 1 (s) is asymptotically

table, the transformed reduced-order subsystem G r 2 (s) = 

1 
s R r 2 (s) is lossless NI. This implies

hat the transformed reduced-order system G r ( s ) in Eq. (28) preserves the NI structure of the
riginal system (5) . �

. Illustrative examples 

In this section, we provide three examples to demonstrate the effectiveness of the proposed
oment matching model reduction methods. 

.1. Example 1: Stable NI systems 

Consider the n -stage RLC network as shown in Fig. 1 , which is borrowed from [13] .
efining the state as 

(t ) = 

[
u 0 (t ) i L 1 (t ) u 1 (t ) · · · i L n (t ) u n (t ) 

]T 

, 

here u s ( t ) is the voltage across capacitor C s , i L s (t ) represent the current through inductor
 s . A stable NI system can be obtained by considering the input–output relationship from
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Table 1 
Comparison of reduced-order systems in Example 4.1. 

Method Reduced-order system 

‖ G e (s) ‖ ∞ 

‖ G (s) ‖ ∞ 

NI 

Moment matching [37] 1 . 033 s 2 −0. 374s+0. 2807 
s 3 +1 . 823 s 2 +0. 9711 s+0. 1065 

0.5607 No 

NI moment matching 1 . 661 s 2 +2. 329 s+1 . 508 
s 3 +3 . 539 s 2 +2. 585 s+0. 3064 

0.1796 Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u(t ) = V (t ) to y(t ) = 

∑ n 
k=0 Q k (t ) with 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− 1 
C 0 R 0 

− 1 
C 0 

0 0 0 · · · 0 

1 
L 1 

−R 1 
L 1 

− 1 
L 1 

0 0 · · · 0 

0 

1 
C 1 

0 − 1 
C 1 

0 · · · 0 

0 0 

1 
L 2 

−R 2 
L 2 

− 1 
L 2 

· · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

0 0 0 · · · 1 
L n 

−R n 
L n 

− 1 
L n 

0 0 0 · · · 0 

1 
C n 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
C 0 R 0 

0 

0 

0 

0 

. . . 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

C = 

[
C 0 0 C 1 0 C 2 · · · C n 

]
. 

(29) 

Here, we consider an 11 th -order RLC network with C s = 1 F, L s = 1 H, R s = 0. 5�. Let
S 1 = {−0. 8 , −0. 15 , j} . For comparison, we reduce the system order to 3 rd -order by two
different methods, the moment matching model reduction for linear systems in [37] and the
NI moment matching model reduction method proposed in the paper. Moreover, the relative 
H ∞ 

approximation errors with respect to the original NI system and the reduced-order system
are computed. The obtained reduced-order systems and the relative H ∞ 

approximation errors 
are listed in Table 1 . A reduced-order stable NI system can be obtained by the proposed
model reduction method with transfer function given in Table 1 , while the moment matching
model reduction method can not. Moreover, the achieved relative H ∞ 

approximation error is 
smaller than 0.5607 obtained by the moment matching model reduction method [37] . 

Fig. 2 shows the bode plots of the original and the reduced-order systems. It can be
seen from Fig. 2 that the reduced-order system G r ( j ω) obtained by the proposed model re-
duction method satisfies ∠ G r ( jω) ∈ (−π, 0) for all ω ∈ (0, ∞ ). This means that G r ( j ω) has
non-positive imaginary part, that is, j [ G r ( j ω) − G 

∗
r ( jω)] ≥ 0. In addition, the reduced-order

system is stable. Thus, as shown in Fig. 2 , the reduced-order system obtained by the proposed
model reduction method is stable NI and approximate the original system well. However, the
reduced-order system obtained by the moment matching model reduction method [37] does 
not satisfy the NI structure. 

To further illustrate the effectiveness of the proposed model reduction method, we consider 
the internal stability of a positive feedback interconnection of the high order NI system
(29) and a positive feedback controller, as shown in Fig. 3 . The positive feedback controller
is given by 

K (s) = 

k 

s 2 + 2ξωs + ω 

2 
, (30) 

where k > 0, ξ > 0, ω > 0. By using Nyquist arguments, it is clear that K ( s ) in Eq. (30) is
strict negative imaginary. 
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Fig. 2. Bode plots of the original and reduced-order systems. 

Fig. 3. Positive feedback interconnection. 
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Note that the transfer function of the original system (29) satisfies G (∞ ) = 0, G (0) =
 , the transfer function K ( s ) in Eq. (30) satisfies K (∞ ) = 0, K (0) = 

k 
ω 2 

, and the transfer
unction of the reduced-order NI system obtained by the proposed model reduction satisfies
 r (∞ ) = 0, G r (0) = 4. 96 . 
Let λmax ( · ) denotes the the maximum eigenvalue of a matrix with only real eigenvalues.

ccording to Theorem 5 in [1] , the closed loop system as shown in Fig. 3 is internally
table equivalent to that the dc gain condition λmax ( G (0) K (0)) < 1 holds. Thus, we have that
k 
ω 2 

< 0. 167 . It follows that k 
ω 2 

< 0. 202, which is equivalent to that the dc gain condition
max ( G r (0) K (0)) < 1 holds. This implies that the positive feedback system consisting of the
educed-order NI system and the given controller in Eq. (30) is internally stable. Thus, a given
ositive feedback controller (30) for the high order NI system (29) can perform satisfactorily
or the reduced-order NI system obtained by the proposed model reduction method. 

.2. Example 2: NI systems with poles at the origin 

Consider a train system as shown in Fig. 4 . The forces acting on the engine m 1 consist of
he forces due to the spring with spring constant k , the friction force with fraction coefficient
, and the force generated by the engine F . From Newton’s second law of motion, the



2288 L. Yu and J. Xiong / Journal of the Franklin Institute 356 (2019) 2274–2293 

Fig. 4. A train system consisting of an engine m 1 and cars m s . 

 

 

 

 

 

 

 

 

dynamics of the system can be described by the following equations 

m 1 ̈y 1 = F − k(y 1 − y 2 ) − μm 1 g ̇  y 1 , 
m 2 ̈y 2 = k(y 1 − y 2 ) − k(y 2 − y 3 ) − μm 2 g ̇  y 2 , 

. . . 
m n ̈y n = k(y n−1 − y n ) − μm n g ̇  y n , 

where F is the force generated by the engine, g = 9 . 8 m/s 2 is the gravitation constant, y 1 
represents the position of the engine m 1 and y s represents the position of the cars m s . Choose
the state as x = 

[
y 1 ˙ y 1 y 2 ˙ y 2 · · · y n ˙ y n 

]T 

, the input-output relationship from u = F 

to y = y 1 is given by Eq. (1) with 

B = 

[
0 

1 
m 1 

0 0 0 · · · 0 

]T 

, C = 

[
1 0 0 0 0 · · · 0 

]
. 

The main diagonal of the system matrix A has 0 in the (2s − 1 , 2s − 1) position and −μg in
the (2 s , 2 s ) position. The super diagonal of A contains k s−1 

m s−1 
in the (2s − 2, 2s − 1) position and

1 in the (2s − 1 , 2s) position. The sub-diagonal of A has 0 in the (2s − 1 , 2s − 2) position
and − k s−1 

m s 
in the (2s, 2s − 1) position. Additionally, the system matrix A has k s−1 

m s 
in the

(2s, 2s − 3) position. For the case of s = 3 , the system matrix A is given by 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 0 0 0 0 

− k 1 
m 1 

−μg 

k 1 
m 1 

0 0 0 

0 0 0 1 0 0 

k 1 
m 2 

0 − k 1 + k 2 
m 2 

−μg 

k 2 
m 2 

0 

0 0 0 0 0 1 

0 0 

k 2 
m 3 

0 − k 2 
m 3 

−μg 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

The transfer function of the train system satisfies the NI property and has a simple pole at the
origin. Here, we consider a 10 th -order train system with μ = 0. 001 , m s = 2 kg , k s = 2 N/ m.
The goal of this example is to find a 4th-order NI system with a simple pole at the origin. 

Let s 1 = 0, { s k } 4 k=2 = {−0. 15 , −0. 009 , −0. 0055 } . A reduced-order NI system that matches
the moments of the original system at s 1 , { s k } 4 k=2 is given by 

[ ˙ x r 1 (t ) 
˙ x 3 (t ) 

]
= 

[
A r 1 0 

0 A 3 

][
x r 1 (t ) 
x 3 (t ) 

]
+ 

[
B r 1 
B 3 

]
u(t ) , 

y r (t ) = 

[
C r 1 C 3 

][x r 1 (t ) 
x 3 (t ) 

]
, 
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Fig. 5. Bode plots of the original and reduced-order systems. 
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here 

 r 1 = 

⎡ 

⎣ 

−0. 0146 0 0 

0 −0. 01 −1 . 5826 

0 1 . 5826 −0. 01 

⎤ 

⎦ , B r 1 = 

⎡ 

⎣ 

−1 . 0972 

−0. 002 

0. 0202 

⎤ 

⎦ , C r 1 = 

⎡ 

⎣ 

0. 1044 

−0. 3268 

−0. 0032 

⎤ 

⎦ 

T 

he transfer function of the reduced-order system is 

 r (s) = 

0. 4276 s 2 + 0. 006246 s + 0. 1044 

s 4 + 0. 02452s 3 + 0. 6264s 2 + 0. 009113 s 
. (31)

t can be verified that the reduced-order system is an NI system with a simple pole at the
rigin. 

Let ˜ s 1 = 1 , { s k } 4 k=2 = {−0. 15 , −0. 009 , −0. 0055 } . The reduced-order positive real system
btained by the passive preserving moment matching model reduction method [39] is given
y 

 r (s) = 

0. 444s 3 + 0. 006208 s 2 + 0. 1111 s + 0. 000449 

s 4 + 0. 02359 s 3 + 0. 6669 s 2 + 0. 009228 s 
. (32)

t has no blocking zero at zero frequency. Thus, the transformed reduced-order system G r (s) =
1 
s R r (s) has a double pole at the origin. 

Fig. 5 shows the bode plots of the original and the reduced-order systems. It can be seen
rom Fig. 5 that the reduced-order system obtained by the proposed model reduction method is
I system with a simple pole at the origin. It approximate the original system well. However,

he transformed reduced-order system obtained by the passive preserving model reduction
ethod [39] has a relatively large approximation error. Compared with the passive preserving
odel reduction method [39] , the proposed model reduction method guarantees the blocking

ero at zero frequency for the reduced-order positive real system. Thus, it guarantees the same
oles at the origin for the original and the transformed reduced-order systems. 
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Fig. 6. Mass-spring-damper system. 
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4.3. Example 3: MIMO NI systems 

Consider a mass-spring-damper system as shown in Fig. 6 , which is borrowed from [15] .
The masses, spring constants, damping constants are denoted by m s , k s , d s , s = 1 , . . . , n. y s 
is the displacement of the mass m s . u = 

[
f 1 f 2 

]T 

is the applied input force and the output
y = 

[
y 1 y 2 

]
is the displacement of the mass. A minimal realization corresponding to four

masses is given by Eq. (1) with 

A = 

[
0 I 4 

−M 

−1 K −M 

−1 D 

]
, B 

T = 

[
0 0 0 0 

1 
m 1 

0 0 0 

0 0 0 0 0 

1 
m 2 

0 0 

]T 

, 

 = 

[
1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

]
, (33) 

where 

K = 

⎡ 

⎢ ⎢ ⎣ 

k 1 −k 1 0 0 

−k 1 k 1 + k 2 −k 2 0 

0 −k 2 k 2 + k 3 −k 3 
0 0 −k 3 k 3 + k 4 

⎤ 

⎥ ⎥ ⎦ 

, F = 

⎡ 

⎢ ⎢ ⎣ 

f 1 
f 2 
0 

0 

⎤ 

⎥ ⎥ ⎦ 

, q = 

⎡ 

⎢ ⎢ ⎣ 

y 1 
y 2 
y 3 
y 4 

⎤ 

⎥ ⎥ ⎦ 

, x = 

[
q 

˙ q 

]
, 

M = diag{ m 1 , m 2 , m 3 , m 4 } , D = diag{ d 1 , d 2 , d 3 , d 4 } . 

Let m s = 1 kg , k s = 2 N/ m, d s = 3 . 5 Ns / m. The goal of this example is to find a 2nd-order
NI system. 

Let S 1 = {−0. 19 , −0. 8 } . A reduced-order system that matches the moments of the original
system (31) at S 1 is given by Eq. (18) with 

ˆ A r = 

[−0. 1794 0. 01242 

−0. 4344 −1 . 429 

]
, ˆ B r = 

[−0. 01058 −0. 01242 

0. 4345 0. 6293 

]
, ˆ C r = 

[−55 . 96 −1 . 269 

−49 . 49 −0. 9138 

]
. 

It can be verified that the obtained reduced-order system is NI by Lemma 2 . Moreover, the

matrix Y r = 

[
2008 . 9 59 . 2 

59 . 2 3 

]
is found to satisfy Eq. (4) . 

Fig. 7 shows the time domain simulations for the original and the reduced-order systems.
It can be seen that the reduced-order system follow the original output accurately over the
low frequency, while there exists a relatively large error over high frequency. Thus, it can
be concluded that the proposed model reduction method is also applicable for MIMO case.
However, the choice of the interpolation points s i and the tangent directions b i is still an
active field of research and remains challenging. The future work will be focused on how to
choose s i and b i to optimize the approximation error over the full positive frequency range. 
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Fig. 7. Time domain simulations of the original and reduced-order systems. 
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. Conclusions 

The moment matching model reduction problem for negative imaginary systems with poles
t the origin has been studied in this paper. Sufficient conditions have been established for
he construction of the reduced-order negative imaginary system. It has shown that a desired
educed-order system can be obtained by direct computation of the projection matrix. The
esulting reduced-order system preserves the negative imaginary structure and matches the pre-
cribed moments of the original system. Moreover, the proposed model reduction method has
een extended to the positive real case. Finally, several numerical examples have shown the ef-
ectiveness of the proposed model reduction method. The limitation of the proposed model re-
uction method is that a prior approximation error bound can not be guaranteed. How to select
he interpolation points to obtain the optimal reduced-order system is worth future research. 
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ppendix 

In this appendix, the proof of Lemma 4 is given as follows. 
According to Lemma 3 , system (13) is NI if and only if there exist matrices X 1 ∈ R 

n 1 ×n 1 ,

 1 = X 

T 

1 > 0, X 2 ∈ R 

2n 2 ×2n 2 , X 2 = X 

T 

2 > 0, L 1 , W such that 

X 1 A 1 + A 

T 

1 X 1 = −L 

T 

1 L 1 , 

X 2 A 2 + A 

T 

2 X 2 = 0, 

X 1 B 1 − A 

T 

1 C 

T 

1 = −L 

T 

1 W , 

https://doi.org/10.13039/501100001809
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C

C

C

 

 

 

 

 

 

 

 

 

 

X 2 B 2 − A 

T 

2 C 

T 

2 = 0, 

 1 B 1 + C 2 B 2 + B 

T 

1 C 

T 

1 + B 

T 

2 C 

T 

2 = W 

T W , 

which are equivalent to 

A 1 Y 1 + Y 1 A 

T 

1 = −ˆ L 

T 

1 
ˆ L 1 , 

A 2 Y 2 + Y 2 A 

T 

2 = 0, 

B 1 − Y 1 A 

T 

1 C 

T 

1 = −ˆ L 

T 

1 W , 

B 2 − Y 2 A 

T 

2 C 

T 

2 = 0, 

 1 B 1 + C 2 B 2 + B 

T 

1 C 

T 

1 + B 

T 

2 C 

T 

2 = W 

T W , 

where Y 1 = X 

−1 
1 , Y 2 = X 

−1 
2 , ˆ L 1 = L 1 X 

−1 
1 . Note that the above equalities can be rewritten as 

A 1 Y 1 + Y 1 A 

T 

1 = −ˆ L 

T 

1 
ˆ L 1 , 

A 2 Y 2 + Y 2 A 

T 

2 = 0, 

B 1 − Y 1 A 

T 

1 C 

T 

1 = −ˆ L 

T 

1 W , 

B 2 + A 2 Y 2 C 

T 

2 = 0, 

 1 (A 1 Y 1 + Y 1 A 

T 

1 ) = W 

T W + C 1 ̂  L 

T 

1 W + W 

T ˆ L 1 C 

T 

1 . 

Thus, we have that (15) in Lemma 4 hold. Combining with the first, the third and the last
equations, one obtains that 

A 1 Y 1 + Y 1 A 

T 

1 = −ˆ L 

T 

1 
ˆ L 1 , 

B 1 − Y 1 A 

T 

1 C 

T 

1 = −ˆ L 

T 

1 W , 

(W + 

ˆ L 1 C 

T 

1 ) 
T (W + 

ˆ L 1 C 

T 

1 ) = 0. 

Hence, W = −ˆ L 1 C 

T 

1 . Then, the second equation can be rewritten as 

B 1 = Y 1 A 

T 

1 C 

T 

1 + 

ˆ L 

T 

1 
ˆ L 1 C 

T 

1 = −A 1 Y 1 C 

T 

1 . 

That is, Eq. (14) in Lemma 4 holds. Therefore, the conditions in Lemma 3 are equivalent to
the conditions in Lemma 4 for system (13) . This complete the proof. 
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