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a b s t r a c t 

In this paper, taking advantage of aperiodic sampled data control technique, the synchronization issue of 

network systems is brought into focus. During the transmission of sampled data, time-varying delays are 

concerned. Applying input delay method, the sampled data network systems can be rebuilt via continu- 

ous systems with another new delay term in the distributed controller. Unlike the utilization of Jensen 

and Wirtinger-based inequalities in most literature, the Bessel–Legendre integral inequality is introduced, 

which can relax conservative further. The characteristics of this integral inequality are adequately merged 

with the establishment of augmented Lyapunov functional. Two sufficient conditions for synchronizability 

of network systems are established. In the end, a simulation example is illustrated to verify the efficacy 

and advantage of the designed approach. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

For the past few years, a large amount of problems of network

systems have been researched extensively [1–8] . For example, in

[9] , based on time variant measurement topology, the issue of dis-

tributed estimation for cars formation was addressed. In [10] , the

synchronization problem of network systems with general linear

dynamics was solved by a distributed event-triggered strategy. In

particular, the synchronization problem becomes a hotspot topic

in network systems investigation owing to its widespread practical

applications. For instance, formation control, cooperative control

of unmanned aircrafts and underwater vehicles, communication

among wireless sensor networks and flocking of mobile vehicles

are some typical issues in military and civilian area which the

synchronization problems are involved. In [11] , using a complex

Laplacian-based technique, the fundamental formation control

problem was investigated which required the network systems to

achieve an explicit but arbitrary formation shape. In [12] , for the

synchronization tracking, an iterative learning control scheme was

proposed, which can be utilized in the network systems with a

fixed communication topology. The results were not only suitable

for the homogeneous network systems, but extended to hetero-
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eneous ones also. Afterwards, with regard to the synchronization

ssue of high-order nonlinear network systems, a novel distributed

daptive iterative learning control strategy was further designed in

13] . In addition, the distributed synchronization protocol design

ssue for network systems with oriented communication graphs

nd ordinary linear dynamics was discussed in [14] . 

For network systems, researchers poured attention into syn-

hronization problem utilizing continuous-time control strategies.

owever, continuous-time control strategy sometimes is not ap-

ropriate due to some inherent characteristics of the networked

cenarios. In order to address such issue, sampled-data control

ethod should be a better choice rather than continuous-time one.

he plant of sampled-data system is continuous-time, while the

pdate mode of control law is discrete-time [15–20] . Although pe-

iodic sampling approach was widely used under some circum-

tances, it is necessary to employ aperiodic sampling pattern in

rder to saving energy further. Some crucial problems were stud-

ed in literature with the aim of analysing aperiodic sampled-data

ystems. In [21] , stability analysis of the acylic sampled data sys-

ems was concerned for application to embedded and networked

ontrol. In [22] , the synchronization of network systems with non-

inear dynamics applying aperiodic sampled data controllers was

tudied. In [23] , the continuous time systems with time-varying

ampling intervals were rebuilt as discrete time-varying systems. In

24] , the initial sampled data systems were reconstructed by time

elay systems employing the input delay approaches. Adopting
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ampled data control laws, a refresh method to evaluate the sta-

ility of continuous linear systems was proposed in [25] . Derived

rom the discrete time Lyapunov theorem, the above approach af-

ords simpler stability conditions of the continuous time system

odels. In [26] , utilizing Lyapunov functionals with discontinuity

t the impulse moments, exponential stability for time-varying im-

ulsive systems including nonlinear dynamics was established. 

Owing to the fact that control signals are transmitted from

ne system to another in a wireless communication network in

ost situations, nonlinear dynamics and transmission delays usu-

lly arise inevitably during control process [27–33] . The prob-

ems of time delay for network systems are widely studied by

esearchers. In [34] , the cooperative output regulation issues for

iscrete time linear network systems suffering time delay were

tudied. The network systems were subject to jointly connected

witching networks. The distributed control law was composed

f a distributed switched observer and a purely decentralized

ontrol law. In [35] , the synchronization problems of time-delay

etwork systems with continuous-time single-integrator dynam-

cs were studied and the smart leader was introduced. In [36] ,

he synchronization issues of a kind of second order continuous

etwork systems with jointly-connected topologies and time de-

ay were investigated. Moreover, a linear neighbor-based proto-

ol suffering time delay was introduced. The imperfect network

nvironment may influence the stability of network systems re-

arkably. As a consequence, the sampled-data control approach is

opular and effective for analyzing network systems with time de-

ay. Among the existing literature, the input delay method is a

ompelling approach to model the sampled-data control inputs via

ontinuous-time functions. By applying this approach, the closed-

oop control systems can be presented as switched systems with

rdered and multiple time-varying delays [37,38] . 

More recently, by Lyapunov functional approach, the synchro-

ization analysis of network systems with time variant delays has

rew a lot of attentions. The essential technical steps concerning

his approach are correlated with the design of the functional, and

he choice of proper bounding approaches as well. As is known

o all that the Jensen inequality is one of the bounding methods,

hich has been employed diffusely, despite an unavoidable con-

ervatism. Afterwards, to relax this conservatism, extended Jensen

nequalities were studied, which involved Jensen inequality via the

doption of attached quadratic terms. The alleged Wirtinger-based

nequality and its further extensions were investigated in [39,40] .

n addition, generalized integral inequalities were investigated in

41] , which were derived from Legendre polynomials and Bessel in-

quality. Particularly, if the degree of Legendre polynomials is cho-

en as two, it can be called the second-order Bessel–Legendre in-

quality. 

There are many progress and achievements on synchronization

roblems for network systems in the existing literature. However,

he synchronization issue of network systems has not been fully

tudied and some problems are required to be probed. Based on

he discussion mentioned above, this paper considers the issue of

ynchronization for network systems with time-varying delays uti-

izing aperiodic sampled-data control approach. The main contri-

utions are as follows. First, time-varying delays with no restric-

ion on their derivatives are considered in this paper. Furthermore,

he characteristics of the Bessel-Legendre inequality are adequately

dapted to the establishment of augmented Lyapunov-Krasovskii

unctionals. In addition, unlike the utilization of Wirtinger-based

nd Jensen inequalities in most literature, the Bessel-Legendre in-

quality is adopted to address the synchronization issue of net-

ork systems, which is less conservative. 

The structure of the paper is arranged as follows. First, sys-

em model, the corresponding problem description and some

seful lemmas are explained by Section 2 . Then in Section 3 ,
erived from the input delay approach and Lyapunov functional,

wo novel sufficient conditions for synchronizability issue of net-

ork systems with time variant delays are provided. Meanwhile,

wo relevant sampled-data synchronization control laws are de-

igned. In the end, the validity of the proposed synchronization

ontrol law is testified by numerical simulation in Section IV. 

Notations: Throughout the entire paper, R 

n represents the real

uclidean space with dimension n . R 

a ×b is utilized to denote the

ollection of all a × b real matrices. M 

T is the matrix transpose of

 , and M 

−1 is the inverse matrix. For any square matrix A , He (A ) =
 + A 

T . The notation ‖ · ‖ means the Euclidean vector norm or the

nduced matrix 2-norm. Q > 0 ( Q ≥ 0) represents that Q is pos-

tive definite (positive semi-definite). The set S 
n + stands for the

ollection of symmetric positive definite matrices. 0 expresses a

ero matrix, and I N stands for the N -dimensional identity matrix.

iag( ���) represents a block diagonal matrix or diagonal matrix,

nd diag p ( ̄J ) denotes a block diagonal matrix with p blocks of J̄ .

ol { ���} stands for a column vector. P �Q represents the Kronecker

roduct. 

. Problem formulation and preliminaries 

.1. Network systems 

So as to introduce the concept of network systems, simple

nowledge of graph theory is presented first. G = (V , E , A ) is uti-

ized to represent an oriented graph containing the collection

f vertices V = { v 1 , v 2 , . . . , v N } , the collection of oriented edges

 ⊆V × V , and the adjacency matrix A = [ a i j ] N×N . For convenience,

e represent G = (V , E , A ) as G ( A ) if there is no ambiguity. When

 vertex j can take over signals from vertex i , then an oriented

dge e ij ∈ E exists in G ( A ), which can be represented via vertices

air of vertices ( v i , v j ). The element of adjacency matrix A is set as

 i j = 1 if and only if an oriented edge ( v i , v j ) consists in G ( A ), or

lse, a i j = 0 . 

From vertex v i to v j , an oriented path is a series of ordered

dges in E , indicated by (v i , v c1 ) , (v c1 , v c2 ) , . . . , (v ck , v j ) with inter-

ediate vertices v cp , p = 1 , . . . , k . An oriented graph is strong or

trongly connected if there exists an oriented path between any

wo distinct vertices v i and v j . For graph G ( A ), the corresponding

aplacian matrix L = [ l i j ] N×N is set by 

 

l i j = −a i j , i � = j, 

l ii = −∑ N 
j =1 , j � = i l i j . 

(1) 

ith regard to a strong oriented graph G ( A ), L is subject to
 N 
j=1 l i j = 0 , which is known as the diffusion property, and is ir-

educible as well. 

Consider the network systems with N isolated linear systems,

bbreviated as nodes, described by the following dynamic charac-

eristics: 

˙ 
 i (t) = Ax i (t) + Bu i (t) , i = 1 , 2 , . . . , N. (2) 

or the i th node, x i (t) = [ x i 1 (t ) , . . . , x in (t )] T ∈ R 

n stands for the sys-

em state and u i (t) ∈ R 

p denotes the designed control law. The

onstant real matrices A and B have proper dimensions. 

The objective of the paper is, for network systems (2) , to pro-

ide a distributed controller u i for each node i such that the

ynchronization can be realized. However, to reduce the energy

onsumption of communication, such design task for node i only

epends on the signals from its neighbors and its own at separate

ampling instants instead of successive signals. 

Before deriving the main results, it is essential to retrospect one

efinition and two lemmas as follows. 

efinition 1 [42] . If the following equations hold, 
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lim 

→∞ 

‖ x i (t) − x j (t) ‖ = 0 , ∀ i, j = 1 , . . . , N, (3)

the network systems (2) can be considered to achieve the synchro-

nization for any initial conditions. 

Lemma 1 [43] . With regard to an oriented strong graph G , its

Laplacian matrix L meets the diffusive coupling condition (1) with∑ N 
j=1 l i j = 0 , and is irreducible as well. Moreover, L has an eigenvalue

0 with multiplicity 1, and the relevant normalized left eigenvector

� = [ � 1 , � 2 , . . . , � N ] 
T ∈ R 

N satisfying 
∑ N 

i =1 � i = 1 , namely, � 

T · L = 0 .

In addition, for all i = 1 , 2 , . . . , N, ϱi > 0 is satisfied. 

Lemma 2 [44] . With regard to an oriented and strong graph G , let

� = [ � 1 , � 2 , . . . , � N ] 
T be the unique left normalized eigenvector of

corresponding Laplace matrix L with regard to the 0 eigenvalue, � =
diag { � 1 , � 2 , . . . , � N } > 0 , and W N×N = � − � � 

T . Accordingly, ∀ P > 0,

the following two equations hold: 

x T (t)(W L � P C) g(x (t)) 

= −1 

2 

N ∑ 

i =1 

N ∑ 

j =1 , j � = i 
� i l i j 

(
x i (t) − x j (t) 

)T 
P C 

[
g(x i (t)) − g(x j (t)) 

]
, 

x T (t)(W � P C) g(x (t)) 

= 

1 

2 

N ∑ 

i =1 

N ∑ 

j =1 , j � = i 
� i � j 

(
x i (t) − x j (t) 

)T 
P C 

[
g(x i (t)) − g(x j (t)) 

]
. 

Remark 1. It can be noticed that g ( x ( t )) stands for any function of

x ( t ). For example, ˙ x (t) and x ( t ) are the most common two alterna-

tives of g ( x ( t )). When nonlinear dynamics exist in network systems,

then g ( x ( t )) can be substituted by a nonlinear function of x ( t ). 

2.2. Bessel-Legendre integral inequality 

In the first place, let us introduce an inequality which is the

kernel of the theoretical derivation of this paper. It is consistent

with the inequality shown in [45] recently, which is a special cir-

cumstance of the Bessel-Legendre inequality in [41] as well. The

corresponding proving process can be sought out in [45] or in [41] .

Lemma 3. For a differentiable function z in [ a, b] → R 

n , and a matrix

M ∈ S 
n + , the inequality 

∫ b 

a 

˙ z T (v ) M ̇

 z (v ) dv ≥ 1 

b − a 
G 

T diag (M, 3 M, 5 M) G (4)

holds, where 

G = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

z(b) − z(a ) 

z(b) − z(a ) − 2 

b − a 

∫ b 

a 

z(v ) dv 

z(b) − z(a ) − 6 

b − a 

∫ b 

a 

δa,b (v ) z(v ) dv 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

δa,b (v ) = 2 

(v − a 

b − a 

)
− 1 . 

Remark 2. The Wirtinger-based inequality of [39] is included

in the inequality (4) with the aid of the third element of G .

Except as signals 
∫ b 

a z(v ) dv , z ( a ) and z ( b ), an additional signal∫ b 
a δa,b (v ) z(v ) dv is introduced to accomplish this improvement.

Compared with the Jensen and Wirtinger-based inequalities, the

utilize of the Bessel–Legendre integral inequality can relax the con-

servatism. In the next section, the characteristics of this integral

inequality are adapted to the establishment of extended Lyapunov

functional adequately. Pursuing the approach developed in [46] ,
more precise conditions are derived in this paper. t
.3. Parameter-dependent matrix inequalities 

Applying another construction method, the reciprocally convex

ombination inequality in [47] is shown via the following lemma. 

emma 4. With regard to any R ∈ S 
n + , it is assumed that there is

 matrix X ∈ R 

n ×n so that [ 
R X 
X T R 

] ≤ 0 . Accordingly, the following in-

quality 

 

 

1 

β
R 0 

0 

1 

1 − β
R 

⎤ 

⎦ ≤
[
R X 

X 

T R 

]
, ∀ β ∈ (0 , 1) , 

olds. 

Next, a variational form of Lemma 4 is presented alternatively,

hich is derived from the classical bounding technique in [48] . 

emma 5. With regard to any given M 1 ∈ S 
n + , M 2 ∈ S 

n + , Y 1 ∈ R 

2 n ×n

nd Y 2 ∈ R 

2 n ×n , the inequality 

 

 

1 

β
M 1 0 

0 

1 

1 − β
M 2 

⎤ 

⎦ ≤ �M 

(β) , ∀ β ∈ (0 , 1) , 

olds, where 

M 

(β) = He ( Y 1 [ I n 0 n ×n ] + Y 2 [ 0 n ×n I n ] ) 

− βY 1 M 

−1 
1 Y T 1 − (1 − β) Y 2 M 

−1 
2 Y T 2 . 

emark 3. It can be noticed that the key distinction between

emmas 4 and 5 is that, the lower bound depends specifically upon

he uncertain argument β in Lemma 5 . Eventually, at the cost of

dditional decision variables, this reliance on β results in a de-

rease of conservatism. 

. Sampled data control law 

In the paper, the synchronization control protocal with sampled

ata signals for system i is given as follows, i = 1 , . . . , N, 

 i (t) = αK 

N ∑ 

j =1 , j � = i 
a i j 

[
x j (t k − η(t k )) − x i (t k − η(t k )) 

]
, 

t ∈ [ t k , t k +1 ) , k ∈ N , (5)

here α > 0 stands for a coupling strength parameter, K is the gain

atrix to be designed. t k represents the updating instant of the

OH. Moreover, it is supposed that the sampled signals have ex-

erienced a time-varying transmission delay η( t ) from sampler to

ontroller which satisfies 0 ≤η1 ≤η( t ) ≤η2 . Hence, data informa-

ion at discrete sampling instant t k − η(t k ) is applied to the con-

roller design task at t k . Then, by employing ZOH, the control signal

olds between two adjacent updating moments t k and t k +1 . The

pdating instants of ZOH are subject to η(t 0 ) = t 0 < t 1 < · · · < t k <

· · < lim t→∞ 

t k = + ∞ . Suppose that the sampling intervals are al-

erable with an upper bound h b as 

(t k +1 − η(t k )) − (t k − η(t k )) = t k +1 − t k ≤ h b , k ∈ N . 

y defining h 2 � h b + η2 , one has 

 k +1 − (t k − η(t k )) = t k +1 − t k + η(t k ) ≤ h 2 , k ∈ N , (6)

here h 2 represents the maximal time lag between the instant t k −
(t k ) at which the state information is updated, and the instant

 k +1 at which the next sampling is triggered. 
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 (t) = 

⎡ 

⎢ ⎢ ⎣ 

x 1 (t) 
x 2 (t) 

. . . 
x N (t) 

⎤ 

⎥ ⎥ ⎦ 

, x (t k − η(t k )) = 

⎡ 

⎢ ⎢ ⎣ 

x 1 (t k − η(t k )) 
x 2 (t k − η(t k )) 

. . . 
x N (t k − η(t k )) 

⎤ 

⎥ ⎥ ⎦ 

. 

ubstituting (5) into (2) leads to 

˙ 
 (t) = (I N � A ) x (t) − α(L � BK) x (t k − η(t k )) , (7) 

here t ∈ [ t k , t k +1 ) , k ∈ N . Inspired by Fridman et al. [24,37,38] , the

nput delay approach is utilized. Defining h (t) = t − t k + η(t k ) , t ∈
 t k , t k +1 ) , it can be found from (6) that h 1 ≤ η(t k ) ≤ h (t) < t k +1 −
 k + η(t k ) ≤ h 2 , where h 1 = η1 . Then, we rewrite (7) as 

˙ x (t) = (I N � A ) x (t) − α(L � BK) x (t − h (t)) , 
x (t) = φ(t) , −h 2 ≤ t ≤ 0 , 

(8) 

here h 1 ≤ h ( t ) ≤ h 2 and h 12 � h 2 − h 1 . 

emark 4. It can be observed that ˙ h (t) = 1 for t � = t k . However, no

onstraints are made on the derivative of the time-varying delay

unctions ˙ η(t) . Therefore, η( t ) are fast variant delays which the sta-

ility conditions do not rely on the derivative of the time delay

unctions ˙ η(t) [49] . 

.1. Some useful notations 

On the basis of Lemma 3 together with Lemma 4 or 5 , two the-

rems are given for the synchronization issue of system (8) with

ime variant delays. For the simplicity of expression, in this sec-

ion we utilize the following notations. 

e i = 

[
0 nN×(i −1) nN I nN 0 nN×(14 −i ) nN 

]
, i = 1 , . . . , 14 , 

w i = 

[
0 n ×(i −1) n I n 0 n ×(14 −i ) n 

]
, i = 1 , . . . , 14 , 

�
 
 = (I N � A ) e 1 − α(L � BK) e 3 , 


i j = Aw 1 + ᾱi j BKw 3 , ᾱi j = α(l i j /� j ) , 

 2 (χ ) = 

[ 

χ1 − χ2 

χ1 + χ2 − 2 χ5 

χ1 − χ2 − 6 χ6 

] 

, G 3 (χ ) = 

[ 

χ2 − χ3 

χ2 + χ3 − 2 χ7 

χ2 − χ3 − 6 χ8 

] 

, 

 4 (χ ) = 

[ 

χ3 − χ4 

χ3 + χ4 − 2 χ9 

χ3 − χ4 − 6 χ10 

] 

, �(χ) = 

[
G 3 (χ ) 
G 4 (χ ) 

]
, 

nd 

0 (t) = 

⎡ 

⎢ ⎣ 

x (t) 
x (t − h 1 ) 

x (t − h (t)) 
x (t − h 2 ) 

⎤ 

⎥ ⎦ 

, ξ1 (t) = 

1 

h 1 

⎡ 

⎢ ⎣ 

∫ 0 

−h 1 

x (t + s ) ds ∫ 0 

−h 1 

δ1 (s ) x (t + s ) ds 

⎤ 

⎥ ⎦ 

, 

2 (t) = 

1 

h (t) − h 1 

⎡ 

⎢ ⎣ 

∫ −h 1 

−h (t) 
x (t + s ) ds ∫ −h 1 

−h (t) 
δ2 (s ) x (t + s ) ds 

⎤ 

⎥ ⎦ 

, 

3 (t) = 

1 

h 2 − h (t) 

⎡ 

⎢ ⎣ 

∫ −h (t) 

−h 2 

x (t + s ) ds ∫ −h (t) 

−h 2 

δ3 (s ) x (t + s ) ds 

⎤ 

⎥ ⎦ 

, 

4 (t) = (h (t) − h 1 ) ξ2 (t) , ξ5 (t) = (h 2 − h (t)) ξ3 (t) , 

6 (t) = 

⎡ 

⎢ ⎣ 

∫ −h 1 

−h 2 

x (t + s ) ds 

h 12 

∫ −h 1 

−h 2 

δ4 (s ) x (t + s ) ds 

⎤ 

⎥ ⎦ 

, 
nd looking up the functions δa, b given in Lemma 3 , where the

unctions δi are shown as follows 

1 (s ) = 2 

s + h 1 

h 1 

− 1 , δ2 (s ) = 2 

s + h (t) 

h (t) − h 1 

− 1 , 

3 (s ) = 2 

s + h 2 

h 2 − h (t) 
− 1 , δ4 (s ) = 2 

s + h 2 

h 12 

− 1 . 

.2. “Reciprocally convex” – based result 

heorem 1. It is assumed that the oriented graph G is strong.

iven controller gain matrix K, time-varing delay 0 ≤η1 ≤η( t ) ≤η2 ,

nd upper bound of sampling intervals h b > 0, if there exist P ∈
 

5 n + , S 1 , S 2 , R 1 , R 2 ∈ S 
n + , M , N ∈ R 

14 n ×2 n and a matrix X ∈ R 

3 n ×3 n so

hat for any i, j = 1 , . . . , N, and any κ = 1 , 2 , the following inequali-

ies hold: 

= 

[
˜ R 2 X 

X 

T ˜ R 2 

]
≤ 0 , �i j (h κ ) = �0 (h κ ) − �T (w )��(w ) < 0 , 

here h 1 = η1 , h 2 = h b + η2 , and for any θ ∈ R , 

0 (θ ) = He 

(
G 

T 
1 (θ ) P G 0 + M g 1 (θ ) + N g 2 (θ ) 

)
+ 

ˆ S 

+ 
T 
i j 

(
h 

2 
1 R 1 + h 

2 
12 R 2 

)

i j − G 2 (w ) T ˜ R 1 G 2 (w ) , 

G 1 (θ ) = 

[
w 

T 
1 h 1 w 

T 
5 h 1 w 

T 
6 w 

T 
11 + w 

T 
13 

ˆ G 

T 
1 (θ ) 

]T 
, 

ˆ G 1 (θ ) = (h 2 − θ )(w 11 + w 14 ) + (θ − h 1 )(w 12 − w 13 ) , 

G 0 = 

[

T 

i j w 

T 
1 −w 

T 
2 w 

T 
1 +w 

T 
2 −2 w 

T 
5 w 

T 
2 −w 

T 
4 

ˆ G 

T 
0 

]T 
, 

ˆ G 0 = h 12 (w 2 + w 4 ) − 2(w 11 + w 13 ) , 

ˆ S = diag (S 1 , −S 1 + S 2 , 0 n ×n , −S 2 , 0 10 n ×10 n ) , 

˜ R i = diag (R i , 3 R i , 5 R i ) , 

nd 

 1 (θ ) = (θ − h 1 ) 

[
w 7 

w 8 

]
−

[
w 11 

w 12 

]
, 

 2 (θ ) = (h 2 − θ ) 

[
w 9 

w 10 

]
−

[
w 13 

w 14 

]
. 

fterwards, the network systems (2) can realize the synchronization. 

roof. For system (8) , choose the Lyapunov-Krasovskii functional

s 

 

(
x (t) , ˙ x (t) 

)
= V P 

(
x (t) 

)
+ V S 

(
x (t) 

)
+ V R 

(
x (t) , ˙ x (t) 

)
, (9)

here 

V P 

(
x (t) 

)
= 

�
 x T (t)(W � P ) � x (t) , 

V S 

(
x (t) 

)
= 

∫ t 

t−h 1 

x T (s )(W � S 1 ) x (s ) ds 

+ 

∫ t−h 1 

t−h 2 

x T (s )(W � S 2 ) x (s ) ds, 

 R 

(
x (t) , ˙ x (t) 

)
= h 1 

∫ 0 

−h 1 

∫ t 

t+ θ
˙ x T (s )(W � R 1 ) ̇ x (s ) d sd θ

+ h 12 

∫ −h 1 

−h 2 

∫ t 

t+ θ
˙ x T (s )(W � R 2 ) ̇ x (s ) d sd θ, 

nd 

�
 x (t) = col{ x (t) , h 1 ξ1 (t) , ξ6 (t) } . �

emark 5. The Lyapunov functionals V S and V R have been utilized

n [47] and [39] already. About the choice of V P , for example in

47] , the usual approach is to select a quadratic term relying on

he momentary system state x ( t ) merely. While it was demon-

trated in [39] that it is necessary to augment V for purpose of
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fully taking advantage of the Wirtinger-based inequality. The aug-

mented form is comprised of 
∫ 0 
−h 1 

x (t + s ) ds and 

∫ −h 1 
−h 2 

x (t + s ) ds,

which can be found apparently in the Wirtinger-based inequality.

Furthermore, considering the Bessel-Legendre inequality shown in

Lemma 3 , which is an augmented form of the Wirtinger-based

inequality, the term V P ought to contain two extra signals∫ 0 
−h 1 

δ1 (s ) x (t + s ) ds and 

∫ −h 1 
−h 2 

δ4 (s ) x (t + s ) ds as well. Such state ex-

tension in V P was first put forward in [50] . 

Along the trajectories of (8) , the target of the following deriva-

tion is to obtain an upper bound of the derivative of Lyapunov

functional V 
(
x (t) , ˙ x (t) 

)
. Therefore, an extended state vector is uti-

lized as 

ϕ(t) = col 

{ 

ξ0 (t ) , ξ1 (t ) , ξ2 (t ) , ξ3 (t ) , ξ4 (t ) , ξ5 (t ) 
} 

. 

To avoid complexity, the time variable is left out without any pos-

sible ambiguity. Specifically, it means that, for example, h and ϕ
represent h ( t ) and ϕ( t ) in the sequel, respectively. 

For t ∈ [ t k , t k +1 ) , by finding the time derivative of functional

V P ( x ( t )) along the trajectory of (8) , we can see that 

d 

dt 
V P 

(
x (t) 

)
= 2 

�
 x T (t)(W � P ) ̇ � x (t) . 

Accordingly, it is needed to represent ˙ �
 x (t) and 

�
 x (t) by the extended

vector ϕ. For one thing, it can be noticed that 

˙ x (t) = 

�
 
ϕ. 

Then, it can be found that 

d 

dt 

∫ 0 

−h 1 

x (t + s ) d s = 

d 

d t 

∫ t 

t−h 1 

x (u ) d u = x (t) − x (t − h 1 ) , (10)

is the first component of h 1 ˙ ξ1 (t) . Afterwards, adopting integration

by parts leads to 

d 

dt 

∫ 0 

−h 1 

s · x (t + s ) ds = s · x (t + s ) | 0 −h 1 
−

∫ 0 

−h 1 

x (t + s ) ds 

= h 1 x (t − h 1 ) −
∫ 0 

−h 1 

x (t + s ) ds. 

Therefore, the second component of h 1 ˙ ξ1 (t) is given by 

d 

dt 

∫ 0 

−h 1 

δ1 (s ) x (t + s ) ds 

= 

d 

dt 

∫ 0 

−h 1 

(
2 s 

h 1 

+ 1 

)
x (t + s ) ds 

= 

2 

h 1 

· d 

dt 

∫ 0 

−h 1 

s · x (t + s ) ds + 

d 

dt 

∫ 0 

−h 1 

x (t + s ) ds 

= 2 x (t − h 1 ) − 2 

h 1 

∫ 0 

−h 1 

x (t + s ) ds + x (t) − x (t − h 1 ) 

= x (t) + x (t − h 1 ) − 2 

h 1 

∫ 0 

−h 1 

x (t + s ) ds. (11)

Consequently, from (10) and (11) , it can be concluded that 

h 1 
˙ ξ1 (t) = 

[
e 1 − e 2 

e 1 + e 2 − 2 e 5 

]
ϕ. 

By using similar methods, it can be seen that 

˙ ξ6 (t) = 

[
e 2 − e 4 

ˆ G 0 (e ) 

]
ϕ, 

where ˆ G 0 (χ ) = h 12 (χ2 + χ4 ) − 2(χ11 + χ13 ) . Hence, it can be sum-

marized that 

˙ 
 x (t) = 

�
 G 0 ϕ, 
here 

�
 

 0 = 

[
�
 
T e T 1 − e T 2 e T 1 + e T 2 − 2 e T 5 e T 2 − e T 4 ˆ G 

T 
0 (e ) 

]T 
. 

For another, let us derive an expression of � x (t) relying on ϕ. To

egin with, it can be seen that 

 (t) = e 1 ϕ, h 1 ξ1 (t) = h 1 

[
e 5 
e 6 

]
ϕ. 

hen, to express ξ 6 ( t ) depending on the augmented state ϕ, it can

e noticed that 

6 (t) = 

⎡ 

⎢ ⎢ ⎣ 

(∫ −h 1 

−h 

+ 

∫ −h 

−h 2 

)
x (t + s ) ds 

h 12 

(∫ −h 1 

−h 

+ 

∫ −h 

−h 2 

)
δ4 (s ) x (t + s ) ds 

⎤ 

⎥ ⎥ ⎦ 

. (12)

n one hand, from (12) , it can be seen that the first nN elements

an be represented as (e 11 + e 13 ) ϕ. On the other hand, for the

ast nN elements of ξ 6 ( t ), two dissimilar expressions of δ4 ( t ) are

eeded, which are based on δ2 ( t ) and δ3 ( t ), respectively. Then, it

an be found that 

h 12 δ4 (s ) = (h − h 1 ) δ2 (s ) + (h 2 − h ) , 
h 12 δ4 (s ) = (h 2 − h ) δ3 (s ) − (h − h 1 ) . 

herefore, it can be seen that 

h 12 

(∫ −h 1 

−h 

+ 

∫ −h 

−h 2 

)
δ4 (s ) x (t + s ) ds 

= (h − h 1 ) 

(∫ −h 1 

−h 

δ2 (s ) x (t + s ) ds −
∫ −h 

−h 2 

x (t + s ) ds 

)

+ (h 2 − h ) 

(∫ −h 1 

−h 

x (t + s ) ds + 

∫ −h 

−h 2 

δ3 (s ) x (t + s ) ds 

)
= 

ˆ G 1 (h, e ) ϕ, 

here ˆ G 1 (θ, χ) = (h 2 − θ )(χ11 + χ14 ) + (θ − h 1 )(χ12 − χ13 ) . Ac-

ordingly, it can be concluded that 

6 (t) = 

[
e 11 + e 13 

ˆ G 1 (h, e ) 

]
ϕ, 

nd 

�
 x (t) = G 1 (h, e ) ϕ, where 

 1 (θ, χ) = 

[
χ T 

1 h 1 χ
T 
5 h 1 χ

T 
6 χ T 

11 + χ T 
13 

ˆ G 

T 
1 (θ, χ) 

]T 
. 

Furthermore, recalling the structure of the extended state ϕ, it

an be noticed that the last four elements of ϕ can be regarded

s linear combination of the other elements. That is, ξ4 (t) = (h −
 1 ) ξ2 (t) and ξ5 (t) = (h 2 − h (t )) ξ3 (t ) directly lead to 

 

T He 

(
(W � M ) g 1 (h, e ) + (W � N ) g 2 (h, e ) 

)
ϕ = 0 , 

here matrices M , N ∈ R 

14 n ×2 n and functions g 1 ( · ), g 2 ( · ) are de-

ned as 

 1 (θ, χ) = (θ − h 1 ) 

[
χ7 

χ8 

]
−

[
χ11 

χ12 

]
, 

 2 (θ, χ) = (h 2 − θ ) 

[
χ9 

χ10 

]
−

[
χ13 

χ14 

]
. 

onsequently, the derivative of V P ( x ( t )) is given as 

d 

dt 
V P 

(
x (t) 

)
= ϕ 

T He 

(
G 

T 
1 (h, e )(W � P ) � G 0 + (W � M ) g 1 (h, e ) 

+ (W � N ) g 2 (h, e ) 
)
ϕ. (13)

By deriving the time derivative of functional V S ( x ( t )), it can be

ound that 

d 
V S 

(
x (t) 

)
= ϕ 

T �
 S ϕ, (14)
dt 
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here �
 S = diag (W � S 1 , W � (−S 1 + S 2 ) , 0 nN×nN , −W � S 2 ,

 10 nN×10 nN ) . 

To obtain the derivative of functional V R 
(
x (t) , ˙ x (t) 

)
, we can see

hat 

d 

dt 
V R 

(
x (t) , ˙ x (t) 

)
 

˙ x T (t) 
(

h 

2 
1 (W � R 1 ) + h 

2 
12 (W � R 2 ) 

)
˙ x (t) + ϒ1 + ϒ2 , 

here 

1 = −h 1 

∫ t 

t−h 1 

˙ x T (u )(W � R 1 ) ̇ x (u ) du, 

2 = −h 12 

(∫ t−h 1 

t−h 

+ 

∫ t−h 

t−h 2 

)
˙ x T (u )(W � R 2 ) ̇ x (u ) du. 

rom Lemma 3 , it can be found that 

1 ≤ −ϕ 

T G 2 (e ) T � R 1 G 2 (e ) ϕ, 

2 ≤ − 1 

β
ϕ 

T G 3 (e ) T � R 2 G 3 (e ) ϕ − 1 

1 − β
ϕ 

T G 4 (e ) T � R 2 G 4 (e ) ϕ 

= −ϕ 

T �(e ) T 

⎡ 

⎣ 

1 

β
�
 R 2 0 

0 

1 

1 − β
�
 R 2 

⎤ 

⎦ �(e ) ϕ, 

here �
 R i = diag (W � R i , 3 W � R i , 5 W � R i ) , i = 1 , 2 , and

= 

h − h 1 
h 12 

. Next, it can be noticed from Lemma 4 that 

2 ≤ −ϕ 

T �(e ) T � ��(e ) ϕ, 

here 

�
 = 

[
�
 R 2 

�
 X 

�
 X 

T �
 R 2 

]
≤ 0 . 

onsequently, it can be summarized that 

d 

dt 
V R 

(
x (t) , ˙ x (t) 

)
≤ ϕ 

T 
[ 
�
 
T 
(

h 

2 
1 (W � R 1 ) + h 

2 
12 (W � R 2 ) 

)
�
 


− G 2 (e ) T � R 1 G 2 (e ) − �(e ) T � ��(e ) 
] 
ϕ. (15) 

inally, putting the previous formulas (13) –(15) together, and

ecalling Lemmas 1 and 2 , then we have 

d 

dt 
V 

(
x (t) , ˙ x (t) 

)
≤ 1 

2 

N ∑ 

i =1 

N ∑ 

j =1 , j � = i 
� i � j ̃  ϕ 

T �i j ( h ) ̃  ϕ 

here 

˜ ϕ = ϕ i − ϕ j , 

i j (θ ) = �0 (θ ) − �T (w )��(w ) , 

�0 (θ ) = He 

(
G 

T 
1 (θ, w ) P G 0 + M g 1 (θ, w ) + N g 2 (θ, w ) 

)
+ 

ˆ S 

+ 
T 
i j 

(
h 

2 
1 R 1 + h 

2 
12 R 2 

)

i j − G 2 (w ) T ˜ R 1 G 2 (w ) , 

G 0 = 

[

T 

i j w 

T 
1 −w 

T 
2 w 

T 
1 +w 

T 
2 −2 w 

T 
5 w 

T 
2 −w 

T 
4 

ˆ G 

T 
0 (w ) 

]T 
, 

ˆ S = diag (S 1 , −S 1 + S 2 , 0 n ×n , −S 2 , 0 10 n ×10 n ) , 

˜ R i = diag (R i , 3 R i , 5 R i ) , 

� = 

[
˜ R 2 X 

X 

T ˜ R 2 

]
≤ 0 . 

t can be noticed the fact that �ij ( h ) is affine respecting h ,

n order that �ij ( h ) is convex. In consequence, the two in-

qualities �ij ( h 1 ) < 0 and �ij ( h 2 ) < 0 indicate �ij ( h ) < 0 for all

 ∈ [ h 1 , h 2 ]. Afterwards, it can be found that d 
dt 

V 
(
x (t ) , ˙ x (t ) 

)
< 0 and
 

(
x (t) , ˙ x (t) 

)
≤ V 

(
x (0) , ˙ x (0) 

)
, which indicates that V 

(
x (t) , ˙ x (t) 

)
is

ounded. Hence, � x T (t )(W � P ) � x (t ) is bounded as well and 

� i � j λmin (P ) ‖ 

�
 x i (t) − �

 x j (t) ‖ 

2 

≤ 1 

2 

N ∑ 

i =1 

N ∑ 

j =1 , j � = i 
� i � j 

(
�
 x i (t) − �

 x j (t) 
)T 

P 

(
�
 x i (t) − �

 x j (t) 
)

 

�
 x T (t)(W � P ) � x (t) = O (e −�t ) . 

herefore, based on Definition 1 , synchronization in network

ystems (2) suffering time variant delay η( t ) can be guaranteed. 

heorem 2. It is assumed that the oriented graph G is strong. Given

ime-varing delay 0 ≤η1 ≤η( t ) ≤η2 , upper bound of sampling in-

ervals h b > 0 and parameters ϑg , (g = 1 , 2 , 3) , if there exist P̄ 2 ∈
 

4 n + , S̄ 1 , S̄ 2 ∈ S 
n + , M̄ , N̄ ∈ R 

14 n ×2 n , X̄ ∈ R 

3 n ×3 n , U ∈ R 

n ×n and a diag-

nal matrix J̄ ∈ S 
n + so that ∀ i, j = 1 , 2 , . . . , N and any κ = 1 , 2 , the

ollowing inequalities hold: 

¯ = 

[
R̄ 2 X̄ 

X̄ 

T R̄ 2 

]
≤ 0 , (16) 

�̄1 + �̄2 (h κ ) Z̄ T 

Z̄ −δ̄ J̄ 

]
< 0 , (17) 

here h 1 = η1 , h 2 = h b + η2 , and for any θ ∈ R , 

�̄1 = He 

(
w 

T 
1 δ1 (A ̄J w 1 + ᾱi j BUw 3 ) 

)
, 

�̄2 (θ ) = He 

(
G 

T 
12 (θ ) ̄P 2 G 02 + M̄ g 1 (θ ) + N̄ g 2 (θ ) 

)
+ S̄ 

− G 

T 
2 (w ) ̄R 1 G 2 (w ) − �T (w ) ̄��(w ) , 

 12 (θ ) = 

[
h 1 w 

T 
5 h 1 w 

T 
6 w 

T 
11 + w 

T 
13 

ˆ G 

T 
1 (θ ) 

]T 
, 

ˆ G 1 (θ ) = (h 2 − θ )(w 11 + w 14 ) + (θ − h 1 )(w 12 − w 13 ) , 

G 02 = 

[
w 

T 
1 −w 

T 
2 w 

T 
1 +w 

T 
2 −2 w 

T 
5 w 

T 
2 −w 

T 
4 

ˆ G 

T 
0 

]T 
, 

ˆ G 0 = h 12 (w 2 + w 4 ) − 2(w 11 + w 13 ) , 

S̄ = diag ( ̄S 1 , −S̄ 1 + S̄ 2 , 0 n ×n , −S̄ 2 , 0 10 n ×10 n ) , 

R̄ i = δi +1 diag ( ̄J , 3 ̄J , 5 ̄J ) , 

Z̄ = δ̄(A ̄J w 1 + ᾱi j BUw 3 ) , 

δ̄ = h 

2 
1 δ2 + h 

2 
12 δ3 , 

nd 

 1 (θ ) = (θ − h 1 ) 

[
w 7 

w 8 

]
−

[
w 11 

w 12 

]
, 

 2 (θ ) = (h 2 − θ ) 

[
w 9 

w 10 

]
−

[
w 13 

w 14 

]
. 

hen, the network systems (2) can accomplish the synchronization

ith the control gain K = U ̄J −1 in (5) . 

roof. Based on Theorem 1 , we choose P = diag (P 1 , P 2 ) , where

 1 ∈ S 
n + and P 2 ∈ S 

4 n + . By selecting P 1 = δ1 J, R 1 = δ2 J and R 2 = δ3 J,

here J ∈ S 
n + is a diagonal matrix, it can be seen that 

 

T 
1 (θ ) P G 0 = 

[
w 

T 
1 G 

T 
12 (θ ) 

][P 1 0 

0 P 2 

][ 


i j 

G 02 

] 

, 

= w 

T 
1 δ1 J(Aw 1 + ᾱi j BKw 3 ) + G 

T 
12 (θ ) P 2 G 02 . 

urthermore, we set 

J̄ = J −1 , U = K ̄J , P̄ 2 = diag 
4 
( ̄J ) P 2 diag 

4 
( ̄J ) , S̄ 1 = J̄ S 1 ̄J , 

¯
 2 = J̄ S 2 ̄J , X̄ = J̄ X ̄J , M̄ = diag 

14 
( ̄J ) M diag 

2 
( ̄J ) , 

¯
 = diag 

14 
( ̄J ) N diag 

2 
( ̄J ) . 
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Pre- and post-multiplying � by diag 6 ( ̄J ) directly leads to (16) . Pre-

and post-multiplying �ij ( h κ ) by diag 
14 ( ̄J ) and applying Schur com-

plement, it can be found that (17) holds. �

3.3. Another synchronization result 

In the last section, Theorem 1 is obtained based on

Lemmas 3 and 4 . By substituting Lemma 5 for Lemma 4 , an analo-

gous analysis of synchronization can be accomplished alternatively,

which results in the following conditions. 

Theorem 3. Assume that the oriented graph G is strong. Given time-

varing delay 0 ≤η1 ≤η( t ) ≤η2 , controller gain K and upper bound of

sampling intervals h b > 0, if there exist P ∈ S 
5 n + , S 1 , S 2 , R 1 , R 2 ∈ S 

n + ,
M , N ∈ R 

14 n ×2 n and two matrices Y 1 , Y 2 ∈ R 

14 n ×3 n so that ∀ i, j =
1 , . . . , N and any κ = 1 , 2 , λ = 1 , 2 , the following inequality holds: [ 

�0 (h κ ) − He 

(
Y 2 G 3 (w ) + Y 1 G 4 (w ) 

)
Y λ

Y T 
λ

− ˜ R 2 

] 

< 0 , 

where h 1 = η1 , h 2 = h b + η2 , and �0 , ˜ R 2 are given in Theorem 1 .

Accordingly, the network systems (2) can realize the synchronization. 

Proof. Some proof steps are ignored due to the fact that the proof

process is similar to the technique in Theorem 1 . Thereinto, the

major difference consists in the utilization of Lemma 4 superseded

by Lemma 5 . From Lemma 4 , it can be found that 

ϒ2 ≤ −ϕ 

T �(e ) T 

⎡ 

⎣ 

1 

β
�
 R 2 0 

0 

1 

1 − β
�
 R 2 

⎤ 

⎦ �(e ) ϕ 

≤ −ϕ 

T �(e ) T � �M 

(β)�(e ) ϕ, 

where 

�
 �M 

(β) = He 
([

�
 X 1 

�
 X 2 

])
− β �

 X 1 
�
 R 

−1 
2 

�
 X 

T 
1 − (1 − β) � X 2 

�
 R 

−1 
2 

�
 X 

T 
2 . 

Consequently, we conclude that 

d 

dt 
V R 

(
x (t) , ˙ x (t) 

)
≤ ϕ 

T 
[ 
�
 
T 

(
h 

2 
1 (W � R 1 ) + h 

2 
12 (W � R 2 ) 

)
�
 


− G 2 (e ) T � R 1 G 2 (e ) − �(e ) T � �M 

(β)�(e ) 
] 
ϕ. 

(18)

Finally, putting the previous formulas (13) –(18) together, and re-

calling Lemmas 1 and 2 , then we have 

d 

dt 
V 

(
x (t) , ˙ x (t) 

)
≤ 1 

2 

N ∑ 

i =1 

N ∑ 

j =1 , j � = i 
� i � j ̃  ϕ 

T �i j ( h ) ̃  ϕ 

where 

�i j (θ ) = �0 (θ ) − �T (w )�M 

(β)�(w ) , 

�M 

(β) = He 
([

X 1 X 2 

])
− βX 1 ̃

 R 

−1 
2 X 

T 
1 − (1 − β) X 2 ̃

 R 

−1 
2 X 

T 
2 . 

Then, denoting �( w ) by �, it can be seen that 

�i j (h ) = �0 (h ) − He 
(
�T 

[
X 1 X 2 

]
�
)

+ β�T X 1 ̃
 R 

−1 
2 X 

T 
1 �

+(1 − β)�T X 2 ̃
 R 

−1 
2 X 

T 
2 �. 

Denoting �T X 1 = Y 2 and �T X 2 = Y 1 leads to 

�i j (h ) = � + βY 2 ̃  R 

−1 
2 Y T 2 + (1 − β) Y 1 ̃  R 

−1 
2 Y T 1 

= β(� + Y 2 ̃  R 

−1 
2 Y T 2 ) + (1 − β)(� + Y 1 ̃  R 

−1 
2 Y T 1 ) , 

where 
= �0 (h ) − He 

([
Y 2 Y 1 

][ G 3 (w ) 
G 4 (w ) 

])
. 

pplying Schur complement, it can be obtained that 

� Y λ
Y T 
λ

− ˜ R 2 

]
< 0 , 

or λ = 1 , 2 , can lead to �ij ( h ) < 0. Therefore, referring to the

roof in Theorem 1 and according to Definition 1 , synchroniza-

ion in network systems (2) with time-varying delay η( t ) can be

uaranteed. �

emark 6. To compare the conservatism of Theorems 1 and 3 , we

ssume that the conditions given in Theorem 1 are satisfied. By

pplying Schur complement, it can be noticed that � ≥ 0 leads to 

˜ 
 2 − X ̃

 R 

−1 
2 X 

T ≥ 0 , ˜ R 2 − X 

T ˜ R 

−1 
2 X ≥ 0 . 

hen, by choosing 

 

T 
1 = 

˜ R 2 G 4 (w ) + X 

T G 3 (w ) , Y T 2 = 

˜ R 2 G 3 (w ) + X G 4 (w ) , 

t can be found that 

�0 (h κ ) − He 

(
Y 2 G 3 (w ) + Y 1 G 4 (w ) 

)
+ Y 1 ̃  R 

−1 
2 Y T 1 

= �0 (h κ ) − �T (w ) 

(
� + 

[
˜ R 2 − X ̃

 R 

−1 
2 

X 

T 0 

0 0 

])
�(w ) 

≤ �0 (h κ ) − �T (w )��(w ) , 

nd 

�0 (h κ ) − He 

(
Y 2 G 3 (w ) + Y 1 G 4 (w ) 

)
+ Y 2 ̃  R 

−1 
2 Y T 2 

= �0 (h κ ) − �T (w ) 

(
� + 

[
0 0 

0 

˜ R 2 − X 

T ˜ R 

−1 
2 

X 

])
�(w ) 

≤ �0 (h κ ) − �T (w )��(w ) . 

herefore, the comparison demonstrates that Theorem 3 al-

ays brings about better (or at least the same) outcomes

han Theorem 1 . Generally, the underlying improvement of

heorem 3 over Theorem 1 , at the cost of a visible growth of the

uantity of decision variables, is the revealment of a tradeoff be-

ween the numerical complexity and the reduction of the conser-

atism. 

heorem 4. Assume that the oriented graph G is strong. Given time-

aring delay 0 ≤η1 ≤η( t ) ≤η2 , upper bound of sampling intervals

 b > 0 and parameters ϑg , (g = 1 , 2 , 3) , if there exist matrices P̄ 2 ∈
 

4 n + , S̄ 1 , S̄ 2 ∈ S 
n + , M̄ , N̄ ∈ R 

14 n ×2 n , Ȳ 1 , ̄Y 2 ∈ R 

14 n ×3 n , U ∈ R 

n ×n and a

iagonal matrix J̄ ∈ S 
n + such that for any i, j = 1 , . . . , N and any κ =

 , 2 , λ = 1 , 2 , the following inequality holds: 
 

 

�̄1 + �̄3 (h κ ) Z̄ T Ȳ λ
Z̄ −δ̄ J̄ 0 

Ȳ T 
λ

0 −R̄ 2 

⎤ 

⎦ < 0 , 

here h 1 = η1 , h 2 = h b + η2 , and for any θ ∈ R , 

¯
3 (θ ) = He 

(
G 

T 
12 (θ ) ̄P 2 G 02 + M̄ g 1 (θ ) + N̄ g 2 (θ ) 

)
+ S̄ 

− G 

T 
2 (w ) ̄R 1 G 2 (w ) − He 

(
Ȳ 2 G 3 (w ) + Ȳ 1 G 4 (w ) 

)
, 

nd other variables or matrices can be found in Theorem 2 . Accord-

ngly, the network systems (2) can realize the synchronization with

he control gain matrix K = U ̄J −1 in (5) . 

Proof: Referring to the proof in Theorem 2 , we can find the way

o prove Theorem 4 in like manner. 
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Fig. 1. Topology graph G of the network systems. 
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Fig. 2. State trajectories of the network systems. 
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. Numerical example 

In Section 4 , a numerical simulation is provided to demonstrate

he availability of the designed approach. The topology graph G

mong the network systems is provided in Fig. 1 . The adjacent ma-

rix A and the Laplacian matrix L of the network systems are given
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Fig. 3. Aperiodic sampling interv
s 

 = 

⎡ 

⎢ ⎢ ⎣ 

0 1 0 0 1 

1 0 1 0 0 

0 1 0 1 0 

0 0 1 0 1 

1 0 0 1 0 

⎤ 

⎥ ⎥ ⎦ 

, L = 

⎡ 

⎢ ⎢ ⎣ 

2 −1 0 0 −1 

−1 2 −1 0 0 

0 −1 2 −1 0 

0 0 −1 2 −1 

−1 0 0 −1 2 

⎤
⎥⎥⎦

herefore, it can be found that the directed communication graph

 of network systems is strong. Correspondingly, the normalized

eft eigenvector to the eigenvalue 0 can be calculated as � =
1 / 5 1 / 5 1 / 5 1 / 5 1 / 5] T . 

The dynamic characteristics of the i th system can be described

y Eq. (2) corresponding to the following parameter matrices, 

 = 

[
0 −1 . 7458 

3 . 5539 0 

]
, B = 

[
−2 . 0458 −1 . 3388 

−1 . 5095 1 . 3022 

]
, 

here x i (t) = 

[
x i 1 (t) x i 2 (t) 

]T 
, i = 1 , 2 , 3 , 4 , 5 . 

The initial states of the network systems are given as follows: 

 1 (0) = 

[
−1 . 5 

0 . 3 

]
, x 2 (0) = 

[
0 . 8 

1 . 5 

]
, x 3 (0) = 

[
−0 . 5 

0 . 8 

]
, 

 4 (0) = 

[
1 . 5 

−0 . 8 

]
, x 5 (0) = 

[
−0 . 8 

−1 . 5 

]
. 

Recalling the framework of the sampling controller (5) , we sup-

ose that the coupling strength is α = 0 . 5 . The time-varying delays

atisfy 0.1 ≤η( t ) ≤ 0.2, and upper bound of sampling lags is h b =
 . 5 . Therefore, it can be seen that h 1 = 0 . 1 and h 2 = h b + η2 = 0 . 7 .

ccording to Theorem 2 , we can find the gain K of the proposed

ampling controller by 

 = 

[
−0 . 3391 0 . 1329 

−0 . 1630 0 . 4565 

]
. 

Filling the gain matrix K and time-varying delays η( t k ) into the

ampling controller (5) , the state trajectories of the network sys-

ems under such sampled-data control law are demonstrated in

ig. 2 which signifies that the network systems can eventually re-

lize synchronization. 

The corresponding aperiodic sampling intervals are shown in

ig. 3 . The x -axis value of each stem stands for a sampling time

 k , k = 0 , 1 , . . . . The height of every stem represents the time span
20 25 30 35

als with upper bound h b . 
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Fig. 4. Sampled-data control signal u i ( t ) for system 1. 
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Fig. 5. Synchronization error ε( t ) attenuate exponentially to 0. 
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Fig. 6. Norm of the state trajectories ‖ x i ( t ) ‖ of the network systems. 
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of the aperiodic sampling interval t k +1 − t k related to the maxi-

mum sampling interval h b . From Fig. 3 , we can observe that the

sampling controller needs less data transmission. Therefore, com-

munication burden and energy consumption can be reduced by

this way intuitively. 

In Fig. 4 , the sampling control signals u i ( t ) for (2) are given.

From (5) , it can be found that u i (t) , t ∈ [ t k , t k +1 ) use the informa-

tion of the states x i (t k − η(t k )) with time-varying delays η( t k ). Fur-

thermore, the signals u i (t) , t ∈ [ t k , t k +1 ) keep a constant during the

sampling intervals [ t k , t k +1 ) due to the ZOH. 

For the purpose of demonstrating the availability of our de-

signed algorithm further, the synchronization error of each sys-

tem is defined as ε(t) = 

√ ∑ 5 
j=2 ‖ x j (t) − x 1 (t) ‖ . The synchroniza-

tion error ε( t ) is illustrated in Fig. 5 with a fast convergence rate

which can be seen that the synchronization of network systems is

achieved within a short time. 

The responses of the norm of the state trajectories ‖ x i ( t ) ‖ of the

network systems are presented in Fig. 6 , from which we can ob-

serve that the network systems achieve the synchronization with

the sampled-data controller which suffers time-varying delays. 
. Conclusions 

In the paper, utilizing aperiodic sampled data control approach,

he synchronization issue of network systems suffering time vari-

nt delays has been analyzed. Adopting input delay method, the

riginal sampled data systems have been rebuilt as continuous sys-

ems with novel time variant delay terms in the control signals.

o as to derive the synchronization conditions of network sys-

ems, the Bessel–Legendre inequality has been adopted. The char-

cteristics of this inequality have been adequately adapted to the

stablishment of extended Lyapunov functionals. Two novel suffi-

ient conditions for synchronizability of network systems and the

orresponding controller design methods have been presented. By

ontrast, it has been identified that the latter sufficient condition

rings better (or at least the same) outcomes than the former. At

ast, a numerical simulation has been shown to verify the availabil-

ty and advantage of the designed approach. 
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