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SUMMARY

This paper is concerned with the robust guaranteed cost control problem for networked control systems
(NCSs). The plant considered is an uncertain linear discrete-time system, where the communication
limitations include packet-loss and signal transmission delay. Our purpose is to design a robust state-
feedback guaranteed cost controller such that the resulting closed-loop system is robustly stable, and a
specified quadratic cost function is upper bound for all admissible uncertainties under such communication
limitations. A model of NCSs is established which contains two additive delay components, one being a
known constant, and the other unknown constant. By introducing a novel Lyapunov-Krasoviskii function
with the idea of delay partitioning, new sufficient conditions for the existence of guaranteed cost controllers
are proposed. Numerical examples are provided to demonstrate the usefulness of the developed theory.
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1. INTRODUCTION

Networked control systems(NCSs) are completely distributed and so are networked real-time feed-
back control systems whose sensors, actuators, estimator units, and control units are interconnected
through communication networks [1]. Compared with conventional point-to-point interconnected
control systems, NCSs have many advantages, such as simple and fast implementation (reduced
system wiring and powerful configuration tools), ease of system diagnosis and maintenance,
and increased system agility [2]. NCSs have many industrial applications in automobiles, manu-
facturing plants, aircrafts, and HVAC systems. Consequently, considerable attention has been
paid to the studying of NCSs recently, and many useful results are reported in the literature,
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see, for example, [1, 3–7] and references therein. Among these recent results, the stability problem
for NCSs has been investigated in [1, 8], the stabilization and control problems have been studied
in [4, 7, 9], the H∞ performance-based control problem has been considered in [6, 10].

Unlike conventional control systems, in an NCS, the insertion of the communication channels
creates discrepancies between the data records to be transmitted and the data records transmitted,
and hence, raises new interesting and challenging problems, such as quantization, signal transmis-
sion delay, and packet losses. The first issue is the signal transmission delay (sensor-to-controller
delay and controller-to-actuator delay), which is usually caused by the limited bit rate of the
communication channel, by a node waiting to send out a packet via a busy channel, or by signal
processing and propagation. The network-induced delay may degrade the performance of the NCSs
and even result in instability. There have been many methodologies available to deal with the signal
transmission delay, for example, [7, 9]. The other issue raised in NCSs is the packet losses, which
are caused by the limited bandwidth and the large amount of data packets transmitted over a single
channel [11]. The packet losses are usually unavoidable though many networked systems employ
Automatic Repeat reQuest mechanisms. So far, there have been many results reported that deal
with the issue of packet losses. For example, Zhang et al. [1] proposed a criterion to check whether
the NCS is stable at a certain rate of packet losses, and searched for the maximum packet-loss rate
under which the overall system remains stable. Gao et al. [4] considered the packet loss problem
and modelled the NCS as a new system with two additive time-varying delay components.

In the past few years, there have been growing theoretical interests in the fields of stability
analysis, control, filtering, and model reduction of time-delay systems, see, for example, [12–19]
and references therein. Although there have been numerous results on robust control of uncertain
delay systems, much effort has been made toward finding a controller that guarantees robust stability
only. However, when controlling a real plant, it is often desirable to construct a controller that
guarantees not only robust stability but also an adequate level of the performance. One approach
to this problem is the so-called guaranteed cost control approach [20, 21]. The guaranteed cost
control of an uncertain system aims at designing a robust controller to stabilize the uncertain
system and to guarantee a specified level of the performance index of a closed-loop system for
all possible uncertainties. Based on this idea, many results have been presented, for example, for
continuous-time systems [21–23], discrete-time systems [23–25]. All the above results are delay-
independent, which is regarded as more conservative than the delay-dependent ones. Recently,
Chen et al. [26] considered the delay-dependent approach to solve the guaranteed cost control
problem for uncertain discrete-time systems with delay, and Xu et al. [19] investigated the same
problem for a class of uncertain continuous-time systems with state and input delays, and the
obtained results were delay-dependent.

This paper is concerned with the robust guaranteed cost control problem for NCSs. The physical
plant considered here is an uncertain linear discrete-time system, the uncertainties are assumed to
be norm-bounded and the communication limitations include packet-loss and signal transmission
delay, which typically appear in a networked environment. Our purpose is to design a robust
state-feedback guaranteed cost controller such that the resulting closed-loop system is robustly
stable, and a specified quadratic cost function has an upper bound for all admissible uncertainties
under the above communication limitations. A new model of NCS is first established with two
additive delay components, one a known constant, and the other unknown. Second, by constructing
a new Lyapunov-Krasovskii function combined with the idea of delay-partitioning, a new sufficient
criterion for the robust stability of the NCSs is proposed in terms of linear matrix inequality (LMI),
and it is shown to be less conservative via an illustrative example. Then, based on the obtained
stability condition, the stabilization problem and the guaranteed cost control problem of NCS
are both investigated. Sufficient conditions are established for existence of stabilization controller
and guaranteed cost controller, respectively. Numerical examples are provided to demonstrate the
usefulness of the developed theory.

The remainder of this paper is organized as follows. The robust guaranteed cost control with
limited communication capacity is formulated in Section 2. Section 3 presents our main results.
Section 4 provides an illustrative example and we conclude the paper in Section 5.
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Notation. The superscript ‘T ’ represents matrix transposition; Z+ denotes the set of nonnegative
integers; Rn denotes the n-dimensional Euclidean space; the notation P>0 means that P is real
symmetric and positive definite; I and 0 represent the identity matrix and zero matrix, respectively,
and trace(M) denotes the trace of matrix M . In symmetric blockmatrices or long matrix expressions,
we use a star (�) to represent a term that is induced by symmetry. The spectral norm of a matrix
is denoted by ‖·‖ and the maximum eigenvalue of a real symmetric matrix is denoted by �max{·}.
Matrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic
operations.

2. SYSTEM DESCRIPTION AND PRELIMINARIES

The framework of NCSs considered in the paper is depicted in Figure 1. Suppose the physical
plant is denoted by an uncertain linear discrete-time system

x(k+1)= (A+�A(k))x(k)+(B+�B(k))u(k), (1)

where k∈Z+ is the time step, x(k)∈Rn is the system state vector, u(k)∈Rl is the control input
and x0�x(0) is the initial state. A and B are two constant matrices of appropriate dimensions.
�A(k) and �B(k) are time-varying matrices representing system parameter uncertainties, which
are assumed to be norm-bounded and can be described by

[�A(k) �B(k)]�GF(k)[H1 H2], (2)

where G, H1 and H2 are constant matrices of appropriate dimensions, F(k) is an unknown matrix,
which is Lebesque measurable and satisfies FT(k)F(k)�I . There are networks that exist between
the sampler and the controller, and between the controller and the zero-order holder (ZOH).
The sampler is assumed to be clock driven, the controller and ZOH are event driven and the data
are transmitted in a single packet at each time step. The networked controller is a state-feedback
controller given by

u(k)=Kx(k), (3)

where K ∈Rm×n is state-feedback control gain matrix to be designed later.
From Figure 1, we can see that there are two communication channels, that is, one is between

the sampler and the controller, and the other is between the controller and the ZOH. As discussed
above, the presence of the network may often lead to signal transmitting delay and data dropout
which can degrade the performance of the closed-loop system. To model these two features, we
denote the updating instants of the ZOH (successfully transmitted signal from the sampler to the

Figure 1. Networked control systems with network-induced delays and packet losses.

Copyright � 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2010)
DOI: 10.1002/oca



L. WU ET AL.

ZOH) as tk , k∈Z+, and let P�{t1, t2, . . .} be a subsequence of {1,2, . . .}. Let d(k) represent the
experienced time-delay of the sampled data of the plant output received by the actuator at time
instant tk . It is supposed that the signal transmission delay d(k) satisfies

dm�d(k)�dM, (4)

where dm and dM denote the minimum and maximum delays, respectively.
From the viewpoint of the zero-order hold, the control input is

u(k)=Kx(tk −d(k)), tk�k�tk+1−1 (5)

with tk+1 being the next updating instant of the actuator after tk , and the initial condition of control
input is set to be zero, that is, u(l)=0, 0�l�t1−1.

On the other hand, suppose the number of accumulated data packet dropouts at the updating
instant tk since the last updating instant tk−1 is �(k). Moreover, let ��maxtk∈P{�(k)} be the
maximum packet-loss upper bound, that is, 0��(k)��. Then, based on the above analysis and (4)
it can be seen that

1+dm�tk+1− tk��+1+dM, (6)

which implies that the interval between any two successive updating instants is upper bound by
(�+1+dM) and lower bound by (1+dm). Therefore, the closed-loop system can be described by

x(k+1)= (A+�A(k))x(k)+(B+�B(k))Kx(tk −d(k)), (7)

where tk�k�tk+1−1, tk ∈P. Let us represent tk−d(k) as

tk−d(k)=k−dm−�(k), (8)

where �(k)=k− tk+(d(k)−dm), and we can see from (6) that

0��(k)�d̄, (9)

where d̄�2dM−dm+�. Therefore, the closed-loop system can be further described by

x(k+1)= (A+�A(k))x(k)+(B+�B(k))Kx(k−dm−�(k)), (10)

which has two delays in the system state, that is, one is dm which is constant, the other is �(k)
which is time-varying with upper bound in (9). Associated with the system in (1), we define the
following quadratic cost function:

J�
∞∑
k=0

{xT(k)Qx(k)+uT(k)Ru(k)}, (11)

where Q and R are given positive-definite symmetric matrices.

Definition 1
Consider uncertain system (1) with the communication limitations (that is, signal transmission
delay and packet-losses), if there exist a networked controller u∗(k) and a positive scalar J∗ such
that for all admissible uncertainties, the closed-loop system (10) is robustly stable and the cost
function (11) satisfies J�J∗, then J∗ is said to be a guaranteed cost and u∗(k) is said to be a
networked guaranteed cost controller for the uncertain system in (1).

Therefore, the problem of robust guaranteed cost control with limited communication capacity
to be addressed in this paper can be expressed as follows.

Problem RGCCLCC (Robust Guaranteed Cost Control with Limited Communication Capacity):
Consider the uncertain discrete-time system in (1), design a memoryless state feedback networked
guaranteed cost controller u(k)=Kx(k) such that the closed-loop system is robustly stable and
a specified quadratic cost function has an upper bound for all admissible uncertainties under the
above communication limitations.
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Before proceeding further, we give the following lemma that will be used to deal with the
uncertainties.

Lemma 1 (Wang et al. [27])
Let �1, �2 and �3 be real matrices of appropriate dimensions, with �1=�T

1 , then

�1+�2�(k)�3+�T
3�T(k)�T

2<0 (12)

holds for all �(k) satisfying �T(k)�(k)�I if and only if for some ε>0,

�1+ε−1�2�
T
2 +ε�T

3�3<0. (13)

3. STABILIZATION PROBLEM

Before proceeding, we first establish a new stability condition for the following nominal linear
discrete-time system with two additive time-delays (one is a constant and the other is unknown
but bound by (9)).

x(k+1)= Ax(k)+Adx(k−dm−�(k)), (14)

where x(k)∈Rn is the system state vector; A and Ad are two constant matrices of appropriate
dimensions; x(�)=�(�), �∈ [−dm− d̄, 0] denotes the initial condition.

Remark 1
Notice that there are two additive delays in system (14), the conventional method to deal with this
time-delay system is to combine dm and �(k) into one delay h(k), that is, h(k)=dm+�(k), thus
system (14) becomes

x(k+1)= Ax(k)+Adx(k−h(k)). (15)

So far, there have been many results reported for system (15), for example, delay-independent
approach [28, 29], delay-dependent approach [29, 30]. However, these approaches do not make full
use of the information about dm and �(k), it would be inevitably conservative for some situations;
see [31] for the details. In this paper, we will consider the two additive delays dm and �(k)
independently to fully utilize the information about time-delay, and a new stability criterion will
be presented.

In the following, we will use the delay partitioning approach [32] to derive the stability condition
of system (14). We assume that the constant part dm can always be described by dm=�m, where
� and m are both integers. We define the following vector:

�(i)�[xT(i) xT(i−�) xT(i−2�) · · · xT(i−�m+�)]T.

Theorem 1
Given positive integers � and m, the time-delay system in (14) is asymptotically stable if there
exist real matrices P>0, R>0, Qi>0, Si>0, i =1,2, Mj , j =1,2, . . . ,m, M>0, N>0, X , Y and
Z satisfying [

�1+�2+�3+�+�T �

� −diag{P, S1, S2}

]
< 0, (16)

�1�
[
M X

� S1

]
�0, �2�

[
N Y

� S2

]
� 0, (17)

�3�
[
N Z

� S2

]
� 0, (18)
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where

�1 � −�T
2 P�2+(d̄+1)�T

2 R�2+�T
2Q2�2,

�2 � WT
Q1

Q̄1WQ1 −WT
R RWR −WT

Q2
Q2WQ2 +�M+ d̄ N,

�3 � diag{M1,M2−M1, . . . ,Mm −Mm−1,−Mm,0n×n,0n×n},

� � [X Y Z ]

⎡
⎢⎣

In − In 0n×(m+1)n

0n×mn In − In 0n

0n×(m+1)n In − In

⎤
⎥⎦ ,

WR �
[
0n×(m+1)n In 0n

]
, WQ2�[0n×(m+2)n In],

Q̄1 �
[
Q1 0

0 −Q1

]
, WQ1�

[
Imn 0mn×3n

0mn×n Imn 0mn×2n

]
,

� �
[
�T
1 P

√
��T

3 S1
√
d̄�T

3 S2

]
, �3��1−�2,

�1 � [A 0n×mn Ad 0n], �2�[ In 0n×(m+2)n].

Proof
Define the following Lyapunov-Krasovskii function:

V (k)�V1(k)+V2(k)+V3(k)+V4(k)+V5(k) (19)

with

V1(k) � xT(k)Px(k),

V2(k) �
k−1∑

i=k−�
�T(i)Q1�(i)+

k−1∑
i=k−�m−d̄

xT(i)Q2x(i),

V3(k) �
−1∑

i=−�

k−1∑
j=k+i

�T( j )S1�( j )+
−�m−1∑

i=−�m−d̄

k−1∑
j=k+i

�T( j )S2�( j ),

V4(k) �
−�m+1∑

i=−�m−d̄+1

k−1∑
j=k−1+i

xT( j )Rx( j ),

V5(k) �
m∑
i=1

k−(i−1)�−1∑
j=k−i�

xT( j )Mix( j ),

�( j ) � x( j+1)−x( j ),

where P>0, R>0, Qi>0, Si>0 (i =1,2) and Mj ( j =1,2, . . . ,m) are the matrices to be determined.
Then, along with the solution of system (14), the increment of V (k) is given by

�V1(k)= xT(k+1)Px(k+1)−xT(k)Px(k)

= [Ax(k)+Ad x(k−h(k))]TP[Ax(k)+Ad x(k−h(k))]−xT(k)Px(k),

�V2(k)= �T(k)Q1�(k)−�T(k−�)Q1�(k−�)+xT(k)Q2x(k)

−xT(k−�m− d̄)Q2x(k−�m− d̄),
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�V3(k)= ��T(k)S1�(k)+ d̄�T(k)S2�(k)−
k−1∑
j=k−�

�T( j )S1�( j )

−
k−�m−1∑
j=k−h(k)

�T( j )S2�( j )−
k−h(k)−1∑
j=k−�m−d̄

�T( j )S2�( j ), (20)

�V4(k)= (d̄+1)xT(k)Rx(k)−
k−�m∑

i=k−�m−d̄

xT(i)Rx(i)

� (d̄+1)xT(k)Rx(k)−xT(k−h(k))Rx(k−h(k))

= (d̄+1)�T(k)�T
2 R�2�(k)−xT(k−h(k))Rx(k−h(k)),

�V5(k)=
m∑
i=1

xT(k−(i−1)�)Mi x(k−(i−1)�)−
m∑
i=1

xT(k−i�)Mi x(k−i�)

= �T(k)�3�(k),

where �(k)�[�T(k) xT(k−�m) xT(k−h(k)) xT(k−�m− d̄)]T.
By using the technique in [18], for any matrices X , Y and Z the following equations always

hold:

2�T(k)X

[
x(k)−x(k−�)−

k−1∑
j=k−�

�( j )

]
= 0,

2�T(k)Y

[
x(k−�m)−x(k−h(k))−

k−�m−1∑
j=k−h(k)

�( j )

]
= 0,

2�T(k)Z

[
x(k−h(k))−x(k−dm− d̄)−

k−h(k)∑
j=k−�m−d̄

�( j )

]
= 0.

On the other hand, for any appropriately dimensioned matrices M>0 and N>0, the following
identities hold:

0 = ��T(k)M�(k)−
k−1∑
j=k−�

�T(k)M�(k),

0 = d̄�T(k)N�(k)−
k−�m−1∑
j=k−h(k)

�T(k)N�(k)−
k−h(k)−1∑
j=k−�m−d̄

�T(k)N�(k).

(21)

Then, from (20) to (21) we have

�V (k)= �V1(k)+�V2(k)+�V3(k)+�V3(k)

� �T(k)(�+�T+�T
1 P�1)�(k)+�T(k)(�1+�2+�3)�(k)+�T(k)�T

3 (�S1+ d̄ S2)�3�(k)

−
k−1∑
j=k−�

	T(k, j )�1	(k, j )−
k−�m−1∑
j=k−h(k)

	T(k, j )�2	(k, j )−
k−h(k)−1∑
j=k−�m−d̄

	T(k, j )�3	(k, j ),

where 	(k, j )�[�T(k) �T( j )]T. By Schur complement, (16) implies �1+�2+�3+�+�T+
�T
1 P�1+�T

3 �S1�3+ d̄�T
3 S2�3<0, and together with �i�0 (i =1,2,3), we have �V<−
‖�‖2

with 
>0. Then by Lyapunov’s stability theory, we can see that system (1) is asymptotically stable.
�
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Based on Theorem 1, we can easily solve the networked stabilization problem for uncertain
system (1). The following theorem gives the main result of the networked stabilization problem.

Theorem 2
Consider uncertain linear discrete-time system (1), there exists a state-feedback controller (3),
such that the NCS (10) is robustly stable if there exist matrices P>0, R>0, M>0, N>0, Qi>0,
Si>0, i =1,2, M j>0, j=1,2, . . . ,m, X, Y, Z, K and a scalar ε>0 satisfying the following
LMIs: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̆11 �̆12 �̆13 �̆14 �T

� �̆22
√

�εGGT
√
d̄εGGT 0

� � �̆33

√
�d̄εGGT 0

� � � �̆44 0

� � � � −ε I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0, (22)

�4�
[
M X

� 2P−S1

]
�0, �5�

[
N Y

� 2P−S2

]
�0, (23)

�6�
[
N Z

� 2P−S2

]
�0, (24)

where

�̆12 �

⎡
⎢⎢⎢⎢⎢⎣

PAT

0mn×n

KTBT

0n×n

⎤
⎥⎥⎥⎥⎥⎦ , �̆13�

√
�

⎡
⎢⎢⎢⎢⎢⎣

P(A− I )T

0mn×n

KTBT

0n×n

⎤
⎥⎥⎥⎥⎥⎦ , �̆14�

√
d̄

⎡
⎢⎢⎢⎢⎢⎣

P(A− I )T

0mn×n

KTBT

0n×n

⎤
⎥⎥⎥⎥⎥⎦ ,

�̆22 � −P+εGGT, �̆33�−S1+�εGGT, �̆44�−S2+ d̄εGGT,

�̆11 � T1+T2+T T
2 +T3+T4+T5+�M+ d̄N, ��

[
H1P 0n×mn H2K 0n×n

]
,

T4 �

⎡
⎢⎣

0(m+1)n×(m+3)n

0n×(m+1)n −R 0n×n

0n×(m+3)n

⎤
⎥⎦+

[
0(m+2)n×(m+3)n

0n×(m+2)n −Q2

]
,

T1 �
[−P+(d̄+1)R+Q2 0n×(m+2)n

0(m+2)n×(m+3)n

]
,

T2 �
{[

X −X 0(m+3)n×(m−2)n Y −Y+Z −Z
]

(m�2)

[X −X+Y −Y+Z −Z] (m=1),

T3 �
[
Q1 0mn×3n

03n×(m+3)n

]
−

⎡
⎢⎣

0n×(m+3)n

0mn×n Q1 0mn×2n

02n×(m+3)n

⎤
⎥⎦ ,

T5 � diag{M1,M2−M1, . . . ,Mm−Mm−1,−Mm,0n×n,0n×n}.
In this case, the controller is given by K =KP−1.
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Proof
After the matrices A and Ad in LMI (16) are replaced by Ã�A+�A(k) and B̃�BK +�B(k)K ,
respectively, the closed-loop NCS is robustly stable, according to Theorem 1, if there exist real
matrices P>0, R>0, Qi>0, Si>0, i =1,2, Mj>0, j =1,2, . . . ,m, M>0, N>0, X , Y and Z such
that for all admissible uncertainties, (17)–(18) and the following LMI holds:⎡

⎣�1+�2+�3+�+�T �̃

� −diag{P, S1, S2}

⎤
⎦<0, (25)

where �̃�[�̃
T
1 P

√
��̃

T
3 S1

√
d̄�̃

T
3 S2] with �̃1�[ Ã 0n×mn B̃ 0n], �̃3��̃1−�2, and �2

defined in Theorem 1. Then, LMI (25) can be further rewritten as

�1+�2F(k)�3+�T
3 F

T(k)�T
2<0, (26)

where

�1 �

⎡
⎣�1+�2+�3+�+�T �̄

� −diag{P, S1, S2}

⎤
⎦ ,

�2 �
[
0n×(m+3)n GTP

√
�GTS1

√
d̄GTS2

]T
,

�3 �
[
H1 0n×mn H2K 0n×4n

]
,

�̄ �
[
�̄
T
1 P

√
��̄

T
3 S1

√
d̄�̄

T
3 S2

]
,

�̄1 �
[
A 0n×mn BK 0n

]
, �̄3��̄1−�2.

Pre- and post-multiplying (26) by diag
{
P−1, P−1, . . . , P−1, S−1

1 , S−1
2

}
and defining

P� P−1, K�KP, S1�S−1
1 , S2�S−1

2 ,

R�PRP, Q2�PQ2P,

Q1 �P1Q1P1, M�P2MP2, N�P2NP2,

X�P2XP, Y�P2YP, Z�P2ZP,

M1 �PM1P, M2�PM2P, . . . , Mm�PMmP,

P1 �

⎡
⎢⎢⎢⎢⎢⎣

P 0 · · · 0

� P · · · 0

� �
. . .

...

� � � P

⎤
⎥⎥⎥⎥⎥⎦
mn×mn

,

P2 �

⎡
⎢⎢⎢⎢⎢⎣

P 0 · · · 0

� P · · · 0

� �
. . .

...

� � � P

⎤
⎥⎥⎥⎥⎥⎦
(m+3)n×(m+3)n

,
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we have

�̆+

⎡
⎢⎢⎢⎢⎢⎣

0(m+3)n×n

G
√

�G√
d̄G

⎤
⎥⎥⎥⎥⎥⎦F(k)

⎡
⎢⎢⎢⎢⎢⎣

PHT
1

0mn×n

KTHT
2

04n×n

⎤
⎥⎥⎥⎥⎥⎦

T

+

⎡
⎢⎢⎢⎢⎢⎣

PHT
1

0mn×n

KTHT
2

04n×n

⎤
⎥⎥⎥⎥⎥⎦FT(k)

⎡
⎢⎢⎢⎢⎢⎣

0(m+3)n×n

G
√

�G√
d̄G

⎤
⎥⎥⎥⎥⎥⎦

T

<0, (27)

where

�̆�

⎡
⎢⎢⎢⎢⎢⎣

�̆11 �̆12 �̆13 �̆14

� −P 0 0

� � −S1 0

� � � −S2

⎤
⎥⎥⎥⎥⎥⎦ ,

By Lemma 1 and the Schur complement of (27), we know that (22) holds.
Pre- and post-multiplying �1, �2 and �3 in (17) and (18) by

diag{P−1, . . . , P−1, P−1},
diag{P−1, . . . , P−1, P−1}

and

diag{P−1, . . . , P−1, P−1},
respectively, yields[

M X

� PS1P

]
�0,

[
N Y

� PS2P

]
�0,

[
N Z

� PS2P

]
�0. (28)

Notice that (28) is not in LMI form because of the nonlinear terms PS1P and PS2P.
By noticing S1>0 and S2>0, we have (S1−P)S1(S1−P)�0 and (S2−P)S2(S2−P)�0 ,
which is equivalent to

PS1P�2P−S1, PS2P�2P−S2. (29)

Then, by considering (28) and (29), (23) and (24) can be obtained. This completes the proof. �

4. GUARANTEED COST CONTROL

In this section, we will consider the guaranteed cost control problem for NCSs based on the results
obtained in the previous section.

Theorem 3
Given positive integers �,m, � and dM, the state-feedback controller in (3) is a networked guaranteed
cost controller for the uncertain system in (1), if there exist matrices P>0, Qi>0, Si>0, i =1,2,
Mj>0, j=1,2, . . . ,m, R>0, M>0, N>0, X , Y and Z such that for all admissible uncertainties
both the LMIs in (17), (18) and the following LMI hold:[

�1+�2+�3+�+�T+	1+	2 �̃

� −diag{P, S1, S2}

]
<0, (30)
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where �̃ is defined in (25) and

	1�
[

Q 0n×(m+2)n

0(m+2)n×(m+3)n

]
, 	2�WT

R K
TRKWR .

Proof
According to Theorem 1 and (25), it can be easily seen that the closed-loop system is robustly
stable if condition (30) holds. On the other hand, choose the same Lyapunov-Krasovskii functional
as in (19) and along the same line as in the proof of Theorem 1, if (30) holds, then we have

�V (k)�−xT(k)Qx(k)−xT(k−dm−d(k))K TRKx(k−dm−d(k))<0. (31)

Furthermore, by summating both sides of the inequality (31) from 0 to N and using the initial
condition, we obtain

N∑
k=0

(V (k+1)−V (k))�−
N∑

k=0
{xT(k)Qx(k)+xT(k−dm−d(k))K TRKx(k−dm−d(k))}, (32)

which implies

J= lim
N→+∞

N∑
k=0

{xT(k)Qx(k)+uT(k)Ru(k)}

= lim
N→+∞

N∑
k=0

{xT(k)Qx(k)+xT(k−dm−d(k))K TRKx(k−dm−d(k))}

� lim
N→+∞

N∑
k=0

(V (k)−V (k+1))=V (0)− lim
N→+∞

V (N +1), (33)

Notice that the closed-loop NCS (10) is asymptotically stable, therefore, when N →+∞ it follows
that V (N +1)→0. Then, according to (19), we have

J=
∞∑
k=0

{
xT(k)Qx(k)+uT(k)Ru(k)

}
.

� V (0).

= xT(0)Px(0)+
−1∑

i=−�
�T(i)Q1�(i)+

−1∑
i=−�m−d̄

xT(i)Q2x(i)+
−1∑

i=−�

−1∑
j=i

�T( j )S1�( j )

+
−�m−1∑

i=−�m−d̄

−1∑
j=i

�T( j )S2�( j )+
−�m+1∑

i=−�m−d̄+1

−1∑
j=−1+i

xT( j )Rx( j )+
m∑
i=1

−(i−1)�−1∑
j=−i�

xT( j )Mix( j ),

= xT(0)P−1x(0)+
−1∑

i=−�
�T(i)P−1

1 Q1P
−1
1 �(i)+

−1∑
i=−�m−d̄

xT(i)P−1Q2P
−1x(i)

+
−1∑

i=−�

−1∑
j=i

�T( j )S−1
1 �( j )+

−�m−1∑
i=−�m−d̄

−1∑
j=i

�T( j )S−1
2 �( j )

+
−�m+1∑

i=−�m−d̄+1

−1∑
j=−1+i

xT( j )P−1RP−1x( j )+
m∑
i=1

−(i−1)�−1∑
j=−i�

xT( j )P−1MiP
−1x( j ).

From Definition 1 the result follows. �

We are in a position to present a solution to design the networked guaranteed cost controller in (3).
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Theorem 4
Consider uncertain linear discrete-time system in (1), there exists a state-feedback networked
guaranteed cost controller in (3), if there exist matrices P>0, R>0, M>0, N>0, Qi>0, Si>0,
i =1,2, M j>0, j =1,2, . . . ,m, X, Y, Z, K and a scalar ε>0 satisfying the following LMIs:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̆11 �̆12 �̆13 �̆14 �T 
1 
2

� �̆22
√

�εGGT
√
d̄εGGT 0 0 0

� � �̆33

√
�d̄εGGT 0 0 0

� � � �̆44 0 0 0

� � � � −ε I 0 0

� � � � � −Q−1 0

� � � � � � −R−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0, (34)

�4�
[
M X

� 2P−S1

]
�0, �5�

[
N Y

� 2P−S2

]
�0, (35)

�6�
[
N Z

� 2P−S2

]
�0 (36)

with


1�
[

P

0(m+2)n×n

]
, 
2�

⎡
⎢⎢⎣
0(m+1)n×n

KT

0n×n

⎤
⎥⎥⎦ .

Moreover, if the above conditions have a feasible solution, then the state-feedback networked
guaranteed cost controller is given by K =KP−1, and the cost function (11) satisfies

J�J∗ � xT(0)P−1x(0)+
−1∑

i=−�
�T(i)P−1

1 Q1P
−1
1 �(i)+

−1∑
i=−�m−d̄

xT(i)P−1Q2P
−1x(i)

+
−1∑

i=−�

−1∑
j=i

�T( j )S−1
1 �( j )+

−�m−1∑
i=−�m−d̄

−1∑
j=i

�T( j )S−1
2 �( j )

+
−�m+1∑

i=−�m−d̄+1

−1∑
j=−1+i

xT( j )P−1RP−1x( j )+
m∑
i=1

−(i−1)�−1∑
j=−i�

xT( j )P−1MiP
−1x( j ). (37)

The result can be obtained by employing the same techniques as used in Theorems 2 and 3.

Remark 2
It is worth noting that Theorem 4 gives a set of networked guaranteed cost controllers characterized
in terms of the solutions to (34)–(36). Each networked guaranteed cost controller ensures the robust
stability of the resulting closed-loop system and an upper bound on the cost function given by (37).
However, the bound (37) obtained in Theorem 4 depends on the initial condition of system (1). It
is desirable to remove this dependence. If the initial state of system (1) is assumed to be arbitrary
but belong to the set Y�{x(i)∈Rn : x(i)�Uvi ,v

T
i vi�1, i=−�m− d̄,−�m− d̄+1, . . . ,1,0}, where
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U is a given matrix. Then, the cost function (11) satisfies

J� �max{UTP−1U}+��max{UTP−1
1 Q1P

−1
1 U}+(�m+ d̄)�max{UTP−1Q2P

−1U}
+4�2�max{UTS−1

1 U}+4d̄(�m+ d̄)�max{UTS−1
2 U}+(d̄+1)(�m+ d̄)�max{UTP−1RP−1U}

+m�max
i

�max{UTP−1MiP
−1U}, (38)

where U�[UT . . . UT]Tmn×n .

5. NUMERICAL EXAMPLES

In this section, we will use three numerical examples to illustrate the stabilization and the guaranteed
cost control problems for the NCS based on the new model, respectively.

Example 1 (Stability)
Consider system (14) with

A=
⎡
⎣ 0.8 0

0.05 0.9

⎤
⎦ , Ad =

⎡
⎣−0.1 0

−0.2 −0.1

⎤
⎦ ,

which has also been considered in [12].

For a given lower delay bound dm, we are interested in the upper delay dM for which the above
system is asymptotically stable for all dm�d(k)�dM. Table I presents a comparison between the
results obtained in [12] and Theorem 1.

It can be seen from Table I that our results are identical to the existing results of [12] when
m=1. However, when m increases, the conservatism is reduced.

Example 2 (Stabilization)
Consider the system (1) with the following system matrices:

A =

⎡
⎢⎣
0.85 0 0.1

0.01 0.96 0

0 0 1.0

⎤
⎥⎦ , B=

⎡
⎢⎣

−0.1 0 0

−0.2 −0.1 0

−0.1 0.1 0.1

⎤
⎥⎦ , G=

⎡
⎢⎣
0.1 0.1 0

0 0.1 0.1

0 0 0.1

⎤
⎥⎦ ,

H1 =

⎡
⎢⎣
0.1 0 0.1

0.1 0.1 0.1

0 0 0.1

⎤
⎥⎦ , H2=

⎡
⎢⎣
0.1 0 0.1

0.1 0.1 0

0 0.1 0.1

⎤
⎥⎦

It is assumed that the network induced delay bound in (4) are given by dm=1 (m=1,�=1)
and dM=5, the maximum number of data packet loss �=6. Then, from (9) we have d̄=15.
The eigenvalues of A are 0.9600, 0.8500 and 1.0000, thus the above system is not stable. Our
purpose is to design a state-feedback controller in (3) over a networked environment with limited

Table I. Allowable upper bound of dM for different values of dm.

dm 10 12 15

[12] dM=19 dM=21 dM=23
Theorem 1, m=1 dM=19 dM=21 dM=23
Theorem 1 m=2, dM=20 m=2, dM=22 m=3, dM=24
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communication capacity such that the resulting closed-loop system is robustly stable. By solving
Theorem 2, we have

P=

⎡
⎢⎣
4.1997 0.0564 0.8306

0.0564 3.6882 0.5212

0.8306 0.5212 1.8503

⎤
⎥⎦ , K=

⎡
⎢⎣

−0.4765 0.1616 0.1582

1.1022 0.0575 −0.0395

−1.9844 −0.2425 −0.5810

⎤
⎥⎦ ,

thus a state-feedback controller matrix is given by

K =

⎡
⎢⎣

−0.1419 0.0259 0.1419

0.2942 0.0341 −0.1630

−0.4525 −0.0450 −0.0982

⎤
⎥⎦ .
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Figure 2. Network-induced delays and data packet losses of Example 2.
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Figure 3. Initial response of the closed-loop system of Example 2.
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To further illustrate the effectiveness of the proposed design scheme above, we will give the
state response of the closed-loop system with the above-obtained controller. The initial condition
is assumed to be

x(0) = [−0.3 0.2 −0.1]T,

x(− j ) = [0 0 0 0]T j =1,2, . . . ,16.

In the simulation, the network induced delays d(k) and the data packet dropouts �(k) are generated
randomly (evenly distributed within their ranges), and shown in (A) and (B) of Figure 2, respec-
tively. The state variables of the closed-loop system are depicted in Figure 3. The control input is
shown in Figure 4.
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0
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0.15
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Figure 4. Control input of Example 2.
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Figure 5. Network-induced delays and data packet losses of Example 3.
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Figure 6. Initial response of the closed-loop system of Example 3.

Example 3 (guaranteed cost control)
Consider system (1) with the following system matrices:

A =
[
1.0 0.01

0.5 0.7

]
, B=

[
0.1

0.1

]
, G=

[
0.1 0.1

]
, H1=

[−0.1 0.1
]

H2 = 0.1, Q=
[
0.01 0

0 0.01

]
, R=0.01, U =

[
1 0

0 1

]
,

and x(0)= [−0.4 0.1]T. It is assumed that the network-induced delay bound in (4) are given by
dm=1 (m=1,�=1) and dM=3, the maximum number of data packet loss �=3. The eigenvalues
of A are 1.0158 and 0.6842, thus the original system is unstable. Our purpose in this example is
to design a state-feedback guaranteed cost controller in the form of (3) over a networked environ-
ment with limited communication capacity, such that the resulting closed-loop system is robustly
stable and a specified quadratic cost function has an upper bound for all admissible uncertainties.
By solving Theorem 4, it follows that the upper bound of the closed-loop cost function (38) is
350.0510, and

P=
[
1.3267 1.8369

1.8369 6.1786

]
, K=

[−1.0328 −1.6736
]
,

thus a state-feedback controller matrix is given by

K = [−0.6857 −0.0670].

The network-induced delays d(k) and the data packet dropouts �(k) are generated randomly, and
shown in (A) and (B) of Figure 5, respectively. The states of the resulting closed-loop system are
depicted in Figure 6. The control input is shown in Figure 7.

6. CONCLUSIONS

This paper has investigated the robust guaranteed cost control problem of NCS. First, a model
of NCS has been established for NCS with two additive delay components, one constant, and
the other also constant, but unknown. Based on a new Lyapunov-Krasovskii functional combined
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Figure 7. Control input of Example 3.

with the idea of delay-partitioning, an improved sufficient condition for the robust stability of
the NCS model has been proposed in terms of LMIs. Then, the stabilization and the guaranteed
cost control problems of NCS have been investigated. Sufficient conditions have been established
for the existence of a stabilizing controller and a guaranteed cost controller, respectively. Finally,
numerical examples have been provided to demonstrate the usefulness of the developed theory.
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