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KRASOVSKII AND RAZUMIKHIN STABILITY THEOREMS FOR
STOCHASTIC SWITCHED NONLINEAR TIME-DELAY SYSTEMS\ast 

WEI REN\dagger AND JUNLIN XIONG\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper studies stability properties of stochastic switched nonlinear time-delay
systems. The stability analysis is based on two extensions of the Lyapunov-based method: the
Krasovskii approach and the Razumikhin approach. In terms of the Krasovskii approach, Krasovskii-
type stability conditions are derived based on Lyapunov--Krasovskii functions and average dwell-time
condition. In terms of the Razumikhin approach, Razumikhin-type stability conditions are obtained
via Lyapunov--Razumikhin functions, the small gain condition, and the fixed dwell-time condition.
Furthermore, as a widespread phenomenon in switched systems, the asynchronous switching case
is studied. Both Krasovskii-type and Razumikhin-type stability conditions are established for the
asynchronous switching case. Finally, the developed results are illustrated via two examples from
the mechanical rotational cutting process and networked switched control systems.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Lyapunov--Krasovskii function, Lyapunov--Razumikhin function, time delay, stocha-
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\bfD \bfO \bfI . 10.1137/17M1111711

1. Introduction. As a special class of stochastic hybrid systems [1, 2], stochas-
tic switched systems are dynamical systems consisting of a family of continuous-time
subsystems and a switching rule that orchestrates switching between them, where
either the continuous-time subsystems or the switching rule is subject to stochastic
perturbations. Stochastic switched systems can be used to model many physical and
manmade systems and have numerous applications in diverse fields like networked
control systems [3, 4, 5], power systems [6, 7], and server systems [2, Chapter 7].
Besides stochastic perturbations, time delays are another class of practical imper-
fections affecting system performance. For stochastic switched systems, time delays
may lead to asynchronous switching, which in turn deteriorates system stability and
performance; see [4, 5, 8, 9]. In this paper, we focus on stability analysis of stochastic
switched nonlinear time-delay systems with/without asynchronous switching.

To analyze stability of control systems, the Lyapunov-based method is commonly
used and effective; see [10, 11, 13]. However, classic Lyapunov theory cannot be
applied directly to time-delay systems as time delays cause a violation of monotonic
decrease conditions [9, 14]. As a result, there are generally two ways to extend the
Lyapunov-based method. The first one is the Krasovskii approach, which is based
on Lyapunov--Krasovskii functions (LKFs) [15, 16, 17]. An LKF is a positive definite
function with a negative definite derivative along the system solution. The second one
is the Razumikhin approach, the essence of which is Lyapunov--Razumikhin functions
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1044 WEI REN AND JUNLIN XIONG

(LRFs) [8, 18, 19, 20, 21]. An LRF is a positive definite function whose derivative is
negative definite under the Razumikhin condition [18, 21]. These two approaches have
been used successfully in stability analysis and controller design of time-delay systems,
such as impulsive time-delay systems [19, 22], functional differential systems [23],
time-delay logistics networks [24], and time-delay fuzzy systems [25].

In this paper, we would like to continue this research line and aim to estab-
lish both Krasovskii-type and Razumikhin-type conditions for stability of stochastic
switched nonlinear time-delay systems with/without asynchronous switching. To our
knowledge, most available results in the literature are on linear deterministic switched
systems [5, 10, 26, 27] or are based on exponential Lyapunov functions [20, 28] and
the average dwell-time (ADT) condition [8, 28, 29, 30]. These results cannot be easily
and directly applied to stochastic switched nonlinear time-delay systems. For in-
stance, the obtained linear matrix inequalities [5, 26, 27] for linear switched systems
are not available for stochastic switched nonlinear systems. Therefore, as the first
contribution of this paper, we employ Krasovskii-type and Razumikhin-type stabil-
ity conditions for stochastic switched nonlinear time-delay systems with synchronous
switching. The Krasovskii-type conditions are based on LKFs and the ADT condition,
whereas the Razumikhin-type conditions depend on LRFs, the small gain condition,
and the fixed dwell-time (FDT) condition. Consequently, the applicability ranges of
both the Krasovskii and Razumikhin approaches are expanded.

Compared with the previous works [5, 28, 31, 32, 33, 34] based on LKFs, the
derived Krasovskii-type conditions have the following advantages. First, the deriva-
tives of the LKFs in this paper are allowed to depend on the delayed state trajectory,
which is not the case in [5, 28, 32]. Second, stochastic switched nonlinear time-delay
systems are studied in this paper, whereas linear switched time-delay systems were
considered in [5, 33, 34] and external disturbances have not been addressed in [31].
Thus, the obtained Krasovskii-type conditions are more general. On the other hand,
the obtained Razumikhin-type stability conditions have advantages over those in pre-
vious works. First, in contrast with [20] using the comparison principle, we apply the
Razumikhin approach in this paper. Hence, we avoid constructing the comparison
system. Second, instead of exponential Lyapunov functions [26, 30, 35, 36], general
LRFs are implemented with the FDT condition and the small gain condition in this
paper. As a result, the obtained Razumikhin-type stability conditions can be applied
to study those that cannot be analyzed via exponential Lyapunov functions.

As the second contribution of this paper, we study the asynchronous switching
case, which is widespread in switched systems [8, 26, 28, 30]. The asynchronous
switching arises from time delays or external disturbances and causes instability of
switched systems in the switching intervals. For the asynchronous switching case,
both Krasovskii-type and Razumikhin-type stability conditions are established in this
paper. In what follows, Krasovskii-type and Razumikhin-type stability conditions are
extended from the synchronous switching case to the asynchronous switching case.
Furthermore, to obtain the Krasovskii-type conditions for the asynchronous switching
case, a comparison principle is proposed for impulsive switched time-delay systems.

The rest of this paper is organized as follows. In section 2, the considered problem
is formulated and some necessary preliminaries are introduced. In sections 3 and
4, both Krasovskii-type and Razumikhin-type stability conditions are established for
stochastic switched nonlinear time-delay systems. The synchronous and asynchronous
switching cases are studied in sections 3 and 4, respectively. Finally, the developed
results are applied in section 5 to mechanical rotational cutting process and networked
switched control systems.

D
ow

nl
oa

de
d 

04
/0

7/
19

 to
 2

02
.3

8.
73

.7
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC NONLINEAR SWITCHED TIME-DELAY SYSTEMS 1045

Notation. \BbbR := ( - \infty ,+\infty ); \BbbR +
t := [t,+\infty ) for a given t \in \BbbR ; \BbbR + := (0,+\infty );

\BbbN := \{ 0, 1, 2, . . .\} ; \BbbN + := \{ 1, 2, . . .\} . \BbbR n denotes the n-dimensional Euclidean space.
For two vectors x, y \in \BbbR n, x \prec y (x \preceq y) if xi < yi (xi \leq yi) for all i \in \{ 1, . . . , n\} . For
a given vector or matrix A, A\top denotes its transpose. For a matrix A = A\top \in \BbbR n\times n,
tr[A], \lambda max, and \lambda min denote the trace, the largest, and the smallest eigenvalues
of A, respectively. | \cdot | represents the Euclidean vector norm; \BbbP \{ \cdot \} denotes the
probability measure; \BbbE [\cdot ] denotes the mathematical expectation. For a given func-
tion f : \BbbR +

t0 \rightarrow \BbbR n and the initial time t0 \geq \tau > 0, \| f\| \tau := supt\in [t0 - \tau ,t0] | f(t)| ;
\| f\| [t0,t) := supt\in [t0,t] | f(t)| ; \| f\| denotes the supremum norm on [t0,\infty ). \scrC 1,2 stands

for the class of the nonnegative functions on \BbbR +
t0 \times \BbbR n, which are continuously dif-

ferentiable on the first augment and continuously twice differentiable on the second
augment. Let \BbbP \BbbC ([a, b];\BbbR n) denote the class of piecewise continuous functions map-
ping [a, b] to \BbbR n and having finite right-hand continuous jumps on [a, b]. Given a
function f : \BbbR \rightarrow \BbbR , denote f(t - ) := lim sups\rightarrow 0 - f(t+ s). A function \alpha : \BbbR +

0 \rightarrow \BbbR +
0

is of class \scrK if it is continuous, zero at zero, and strictly increasing; \alpha (t) is of class
\scrK \infty if it is of class \scrK and unbounded; \alpha (t) is of class \scrL if it is continuous and strictly
decreasing to zero as t\rightarrow \infty ; \alpha (t) is of class \scrV \scrK (or \scrV \scrK \infty ) if it is of class \scrK (or \scrK \infty )
and convex; \alpha (t) is of class \scrC \scrK (or \scrC \scrK \infty ) if it is of class \scrK (or \scrK \infty ) and concave. A
function \beta (s, t) : \BbbR +

0 \times \BbbR +
0 \rightarrow \BbbR +

0 is of class \scrK \scrL if \beta (s, t) is of class \scrK for each fixed
t \geq 0 and of class \scrL for each fixed s \geq 0.

2. Problem formulation and preliminaries. In this section, we introduce
the system model of stochastic switched nonlinear time-delay systems and some nec-
essary preliminaries. As a mathematical tool, a comparison principle is proposed for
impulsive switched time-delay systems.

Consider the following stochastic switched nonlinear time-delay system:\Biggl\{ 
dx(t) = f\sigma (t)(t, xt, u)dt+ g\sigma (t)(t, xt, u)dB(t), t \in \BbbR +

t0 ,

x(t) = \xi (t), t \in [t0  - \tau , t0], t0 \geq \tau ,
(2.1)

where x(t) \in \BbbR nx is the system state, u(t) \in \BbbP \BbbC (\BbbR +
t0 ;\BbbR 

nu) is the external input, and
B(t) \in \BbbR nw is an nw-dimensional \frakF t-adapted Brownian motion defined on a complete
probability space (\Omega ,\frakF ,\BbbP , \{ \frakF t\} t\geq t0). The delayed state is denoted by xt := x(t - \tau (t)),
where the time-delay function \tau (t) : \BbbR +

t0 \rightarrow [0, \tau ] is continuous and upper bounded by
a constant \tau \geq 0. The initial function \xi : [t0  - \tau , t0] \rightarrow \BbbR nx is an \frakF t0-adapted random
variable with finite \BbbE [\| \xi \| \tau ]. The switching signal \sigma : \BbbR +

t0 \rightarrow \scrM := \{ 1, . . . ,M\} is
piecewise right-continuous. Denote by \scrT = \{ t0, t1, . . .\} the switching time sequence.
For each i \in \scrM , the functions fi : \BbbR +

t0 \times \BbbR nx \times \BbbR nu \rightarrow \BbbR nx and gi : \BbbR +
t0 \times \BbbR nx \times \BbbR nu \rightarrow 

\BbbR nx\times nw are assumed to be Lipschitz and Borel-measurable with fi(t, 0, 0) \equiv 0 and
gi(t, 0, 0) \equiv 0 for all t \in \BbbR +

t0 , which thus implies that x(t) \equiv 0 is a trivial solution to
the system (2.1). Assume that the system (2.1) has a unique solution process; see [37]
for more details.

Definition 2.1. The system (2.1) is stochastically input-to-state stable (SISS)
if for any \varepsilon \in (0, 1), there exist \beta \in \scrK \scrL , \gamma \in \scrK \infty such that for all \xi \in \BbbR nx , u \in \BbbR nu ,

\BbbP \{ | x(t)| \leq \beta (\BbbE [\| \xi \| \tau ], t - t0) + \gamma (\| u\| )\} \geq 1 - \varepsilon \forall t \in \BbbR +
t0 .(2.2)

If, in addition, the function \gamma (\| u\| ) in (2.2) is replaced by the form
\int t
t0
\gamma (| u(s)| )ds,

then the system (2.1) is stochastically integral input-to-state stable (SiISS).
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1046 WEI REN AND JUNLIN XIONG

Remark 2.1. Definition 2.1 on SISS and SiISS is parallel to those in [9, 19] for
deterministic time-delay systems, the one in [22] for stochastic impulsive time-delay
systems, and those in [32, 38, 39] for deterministic impulsive time-delay systems. In
addition, Definition 2.1 can be extended further to other stability properties like ISS
in mean square and weighted SISS; see [22].

Definition 2.2 (see [22, 29]). For a switching signal \sigma and any T2 \geq T1 \geq t0,
let N(T2, T1) be the switching number of \sigma over the interval (T1, T2]. If there exist
N0 \in \BbbN + and \tau a > 0 such that

 - N0 +
T2  - T1
\tau a

\leq N(T2, T1) \leq N0 +
T2  - T1
\tau a

,

then N0 and \tau a are called the chatter bound and the average dwell-time, or ADT,
respectively.

Definition 2.3 (see [8, 37]). Given any \scrC 1,2 functions Vi : \BbbR +
t0 - \tau \times \BbbR nx \rightarrow \BbbR +

0 ,
i \in \scrM , the infinitesimal operator L , associated with the continuous dynamics of the
system (2.1), is defined as

L Vi(t, xt) =
\partial Vi(t, x)

\partial t
+
\partial Vi(t, x)

\partial x
fi(t, xt, u) +

1

2
tr

\biggl[ 
gTi (t, xt, u)

\partial 2Vi(t, x)

\partial x2
gi(t, xt, u)

\biggr] 
.

Note that for a function W : \BbbR +
t0 - \tau \rightarrow \BbbR +

0 , the upper Dini derivative of W (t)
is defined as D+W (t) = lim sups\rightarrow 0+(W (t + s)  - W (t))/s; see [22, 38]. In addition,
the upper Dini derivative is a class of the Clark generalized directional derivative and
thus is an upper bound of the usual directional derivative; see [40, section 2].

From It\^o's differential formula in [41, Chapter IV.3], we have

dVi(t, x) = L Vi(t, xt)dt+
\partial Vi(t, x)

\partial x
gi(t, xt, u)dB(t) \forall t /\in \scrT .

Taking expectation, and from the proofs of Lemma 1 and Theorem 1 in [36], one has

d\BbbE [Vi(t, x)] = \BbbE [L Vi(t, xt)]dt \forall t /\in \scrT .

In addition, it follows from [22] that \BbbE [L Vi(t, xt)] is continuous in [tk, tk+1) and that
D+\BbbE [Vi(t, x(t))] = \BbbE [L Vi(t, xt)] for all t \in [tk, tk+1).

Before presenting the main results of this paper, the following comparison prin-
ciple is proposed for impulsive switched time-delay systems.

Proposition 2.4. Assume that Xi(t),Ui(t) \in \BbbP \BbbC (\BbbR +
t0 - \tau ;\BbbR 

nx) for all i \in \scrM and

that \chi 3, \phi 2 \in \BbbP \BbbC (\BbbR +
t0 ;\BbbR 

nx) is continuous in [tk, tk+1), where k \in \BbbN . Suppose there
exist continuously nondecreasing functions \chi 1 : \BbbR nx \rightarrow \BbbR nx , \chi 2 : \BbbR nx \rightarrow \BbbR nx and a
continuously increasing function \phi 1 : \BbbR nx \rightarrow \BbbR nx such that for all k \in \BbbN ,

\Biggl\{ 
D+X\sigma (t)(t) \preceq \chi 1(X\sigma (t)(t)) + \chi 2(X\sigma (t - \tau (t))(t - \tau (t))) + \chi 3(t), t \in (tk, tk+1),

X\sigma (tk)(tk) \preceq \phi 1(X\sigma (t - k )(t
 - 
k )) + \phi 2(t

 - 
k ),

(2.3)

\Biggl\{ 
D+U\sigma (t)(t) \succ \chi 1(U\sigma (t)(t)) + \chi 2(U\sigma (t - \tau (t))(t - \tau (t))) + \chi 3(t), t \in (tk, tk+1),

U\sigma (tk)(tk) \succeq \phi 1(U\sigma (t - k )(t
 - 
k )) + \phi 2(t

 - 
k ).

(2.4)

If Xi(t) \preceq Ui(t) for all t \in [t0  - \tau , t0] and all i \in \scrM , then X\sigma (t)(t) \preceq U\sigma (t)(t) for all
t \in [t0,\infty ) and all i \in \scrM .

D
ow

nl
oa

de
d 

04
/0

7/
19

 to
 2

02
.3

8.
73

.7
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC NONLINEAR SWITCHED TIME-DELAY SYSTEMS 1047

Proof. Since Xi(t) \preceq Ui(t) for all t \in [t0  - \tau , t0], we first prove that X\sigma (t)(t) \preceq 
U\sigma (t)(t) for t \in [t0, t1) via reductio ad absurdum. Then using the mathematical induc-
tion approach, we prove that X\sigma (t)(t) \preceq U\sigma (t)(t) for all t \in [t0,\infty ).

Suppose that X\sigma (t)(t) \preceq U\sigma (t)(t) holds for all t \in (t0, t1). If not, then there exists a
t \in (t0, t1) such that X\sigma (t)(t) \preceq U\sigma (t)(t) does not hold. At such a time instant t, there

exists at least an l \in \{ 1, . . . , nx\} such that the lth component of X\sigma (t)(t), i.e., X
l
\sigma (t)(t),

satisfies Xl\sigma (t)(t) > Ul\sigma (t)(t). Define \=t := inf\{ t \in (t0, t1)| \exists l \in \{ 1, . . . , nx\} s.t. Xl\sigma (t)(t) >

Ul\sigma (t)(t)\} and j := min\{ l \in \{ 1, . . . , nx\} | Xl\sigma (\=t)(\=t) \geq Ul\sigma (\=t)(
\=t)\} . Hence, we have that

X\sigma (t0)(t) \prec U\sigma (t0)(t), t \in (t0, \=t),(2.5)

Xj\sigma (t0)(
\=t) = Uj\sigma (t0)(

\=t),(2.6)

Xj\sigma (t0)(t) > Uj\sigma (t0)(t), t \in (\=t, \=t+\Delta t),(2.7)

where \Delta t > 0 is arbitrarily small. Moreover, we obtain from (2.6)--(2.7) that

Xj\sigma (t0)(t) - Xj\sigma (t0)(
\=t)

t - \=t
>

Uj\sigma (t0)(t) - Uj\sigma (t0)(
\=t)

t - \=t
, t \in (\=t, \=t+\Delta t).

In what follows, we have that D+Xj\sigma (t0)(
\=t) \geq D+Uj\sigma (t0)(

\=t).

On the other hand, from the first inequalities in (2.3)--(2.4), we have that at the
time instant t = \=t, \sigma (\=t) = \sigma (t0) and

D+X\sigma (\=t)(\=t) \preceq \chi 1(X\sigma (\=t)(\=t)) + \chi 2(X\sigma (\=t - \tau (\=t))(\=t - \tau (\=t))) + \chi 3(\=t),(2.8)

D+U\sigma (\=t)(\=t) \succ \chi 1(U\sigma (\=t)(\=t)) + \chi 2(U\sigma (\=t - \tau (\=t))(\=t - \tau (\=t))) + \chi 3(\=t).(2.9)

If \=t - \tau (\=t) \in [t0  - \tau , t0], then it follows from the assumption that Xi(\=t - \tau (\=t)) \preceq Ui(\=t - 
\tau (\=t)) for all i \in \scrM . Otherwise, \=t - \tau (\=t) \in (t0, \=t], which implies that \sigma (\=t - \tau (\=t)) = \sigma (t0).
In this case, X\sigma (\=t - \tau (\=t))(\=t - \tau (\=t)) \preceq U\sigma (\=t - \tau (\=t))(\=t - \tau (\=t)) holds the definition of \=t and (2.5).
Since \chi 1, \chi 2 are nondecreasing and \chi 3 \in \BbbP \BbbC ([t0,\infty );\BbbR nx), we obtain from (2.8)--(2.9)
that D+X\sigma (t0)(\=t) \prec D+U\sigma (t0)(\=t), which implies that D+Xj\sigma (t0)(

\=t) < D+Uj\sigma (t0)(
\=t). This

is a contradiction. As a result, X\sigma (t)(t) \preceq U\sigma (t)(t) for all t \in (t0, t1).
Furthermore, suppose that X\sigma (t)(t) \preceq U\sigma (t)(t) holds for all t \in [t0, tk). As a

result, it follows that X\sigma (t)(t) \preceq U\sigma (t)(t) holds for t \in [tk  - \tau , tk). In addition, due to
the second inequalities in (2.3)--(2.4) and because \phi 1 is continuously increasing and
\phi 2 \in \BbbP \BbbC ([t0,\infty );\BbbR nx), one has that

X\sigma (tk)(tk) \preceq \phi 1(X\sigma (t - k )(t
 - 
k )) + \phi 2(t

 - 
k )

\preceq \phi 1(U\sigma (t - k )(t
 - 
k )) + \phi 2(t

 - 
k ) \preceq U\sigma (tk)(tk).

That is, X\sigma (tk)(tk) \preceq U\sigma (tk)(tk).
If X\sigma (t)(t) \preceq U\sigma (t)(t) is not valid for all t \in (tk, tk+1), then there exist \=t \in (tk, tk+1)

and j \in \{ 1, . . . , nx\} such that Xj\sigma (tk)(
\=t) > Uj\sigma (tk)(

\=t). Along the same lines as the proof

for the case of (t0, t1), we have that X\sigma (t)(t) \preceq U\sigma (t)(t) for all t \in [tk, tk+1). According
to the mathematical induction, we get that X\sigma (t)(t) \preceq U\sigma (t)(t) for all t \in [t0,\infty ).

Remark 2.2. Proposition 2.4 provides a comparison principle for vector-valued
functions. If X\sigma (t)(t) and U\sigma (t)(t) are scalar, then the result is still valid. Different
versions of the comparison principle in the previous works are included as the special
cases of Proposition 2.4, such as Lemma C.1 in [42] for hybrid systems, Lemma 1
in [22] for impulsive delayed systems, and Lemma 2.7 in [35] for switched systems.
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1048 WEI REN AND JUNLIN XIONG

3. Stochastic switched time-delay systems with synchronous switching.
In this section, SISS and SiISS are studied for the system (2.1) in the synchronous
switching case. Both Krasovskii-type and Razumikhin-type stability conditions are
established.

3.1. Krasovskii approach based stability analysis. In the following,
Krasovskii-type conditions are established for both SISS and SiISS of the system
(2.1).

Theorem 3.1. Consider the system (2.1). Assume that there exist LKFs Vi :
\BbbR +
t0 - \tau \times \BbbR nx \rightarrow \BbbR +

0 , i \in \scrM , \alpha 1, \varphi 1, \varphi 2 \in \scrK \infty , \alpha 2 \in \scrC \scrK \infty and constants \lambda 1 > \lambda 2 \geq 
0, \mu > 1 such that
(A.1) for all t \in \BbbR +

t0 - \tau , \alpha 1(| x(t)| ) \leq Vi(t, x(t)) \leq \alpha 2(| x(t)| );
(A.2) for all t \in \BbbR +

t0\setminus \scrT , k \in \BbbN +, L V\sigma (t)(t, xt) \leq  - \lambda 1V\sigma (t)(t, x(t)) + \lambda 2V\sigma (t - \tau (t))
(t - \tau (t), xt) + \varphi 1(| u(t)| );

(A.3) for all t \in \scrT , V\sigma (t)(t, x(t)) \leq \mu V\sigma (t - )(t
 - , x(t - )) + \varphi 2(| u(t - )| );

(A.4) \tau a >
ln\mu 
\lambda 0

, where \lambda 0 \in (0, \=\lambda ) and \=\lambda is the unique solution to \lambda  - \lambda 1 +\lambda 2e
\lambda \tau = 0,

then the system (2.1) is both SISS and SiISS.

Proof. We prove the theorem via three steps. First, the existence of \=\lambda in (A.4) is
established. Second, we prove the boundedness of the LKFs via reductio ad absurdum.
Finally, based on the bounds of the LKFs and (A.4), we prove the convergence of the
system state, which in turn guarantees SISS and SiISS of the system (2.1).

Step 1. Define \Gamma (\lambda ) := \lambda  - \lambda 1 + \lambda 2e
\lambda \tau . Observe that \Gamma (0) =  - \lambda 1 + \lambda 2 < 0 and

that \Gamma (\lambda ) \rightarrow \infty as \lambda \rightarrow \infty . In addition, \Gamma \prime (\lambda ) := 1 + \lambda 2\tau e
\lambda \tau \geq 1. Thus, there exists

a unique \=\lambda > 0 such that \Gamma (\lambda ) = 0 and \Gamma (\lambda 0) < 0 for all \lambda 0 \in (0, \=\lambda ).
Step 2. Since \alpha 1 \in \scrK \infty and \alpha 2 \in \scrC \scrK \infty , we obtain from (A.1) and Jensen's

inequality in [41, Chapter II, 18.3] that for all t \in \BbbR +
t0 - \tau and i \in \scrM ,

\BbbE [Vi(t, x(t))] \leq \alpha 2(\BbbE [| x(t)| ]).(3.1)

Because u(t) is defined on [t0,\infty ), we have from (A.3) and (3.1) that \BbbE [Vi(t, x(t))] \leq 
\mu \alpha 2(\BbbE [\| \xi \| \tau ]) for all t \in [t0  - \tau , t0] and i \in \scrM .

Define W\sigma (t)(t) := e\lambda 0(t - t0)V\sigma (t)(t, x(t)) for t \in \BbbR +
t0 - \tau , where \lambda 0 is from (A.4).

Obviously, \BbbE [Wi(t)] < \BbbE [Vi(t, x(t))] \leq \mu \alpha 2(\BbbE [\| \xi \| \tau ]) holds for all t \in [t0 - \tau , t0]. In the
following, we prove that for all t \in [t0,\infty ),

\BbbE [W\sigma (t)(t)] \leq \mu N(t,t0)H1(t,N(t, t0)) +H2(t,N(t, t0)),(3.2)

where H1(t,N(t, t0)) :=M1 +M2(t,N(t, t0)), M1 := \mu \alpha 2(\BbbE [\| \xi \| \tau ]) and

M2(t,N(t, t0)) :=

N(t,t0) - 1\sum 
i=0

\mu  - i
\int ti+1

ti

e\lambda 0(s - t0)\varphi 1(| u(s)| )ds

+ \mu  - N(t,t0)

\int t

tN(t,t0)

e\lambda 0(s - t0)\varphi 1(| u(s)| )ds,

H2(t,N(t, t0)) :=

N(t,t0)\sum 
i=1

\mu N(t,ti)e\lambda 0(ti - t0)\varphi 2(| u(t - i )| ).

Observe that H1(t,N(t, t0)) \equiv M1 for t \in [t0  - \tau , t0]. For t \in [t0, t1), H1(t, 0) =

M1 +
\int t
t0
e\lambda 0(s - t0)\varphi 1(| u(s)| )ds,H2(t, 0) \equiv 0, \sigma (t) = \sigma (t0), and N(t, t0) = 0. Suppose
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STOCHASTIC NONLINEAR SWITCHED TIME-DELAY SYSTEMS 1049

that \BbbE [W\sigma (t)(t)] \leq H1(t, 0) holds for t \in [t0, t1). If not, define t\ast := inf\{ t \in 
(t0, t1)| \BbbE [W\sigma (t)(t)] > H1(t, 0)\} . Therefore, from the continuity ofW\sigma (t)(t) andH1(t, 0)
in (t0, t1), we have that

\BbbE [W\sigma (t\ast )(t
\ast )] = H1(t

\ast , 0);(3.3)

\BbbE [W\sigma (t)(t)] > H1(t, 0), t \in (t\ast , t\ast +\Delta t),(3.4)

where \Delta t > 0 is arbitrarily small. We get from (3.2)--(3.4) that

D+\BbbE [W\sigma (t\ast )(t
\ast )] \geq lim sup

\Delta t\rightarrow 0+

1

\Delta t

\int t\ast +\Delta t

t\ast 
e\lambda 0(s - t0)\varphi 1(| u(s)| )ds

= e\lambda 0(t
\ast  - t0)\varphi 1(| u(t\ast )| ).(3.5)

On the other hand, if t\ast  - \tau (t\ast ) \in [t0 - \tau , t0], it follows from (3.1) and the definition
ofW\sigma (t)(t) that \BbbE [Wi(t

\ast  - \tau (t\ast ))] \leq \BbbE [Vi(t\ast  - \tau (t\ast ), x(t\ast  - \tau (t\ast )))] \leq M1 for all i \in \scrM .
Otherwise, \BbbE [W\sigma (t\ast  - \tau (t\ast ))(t

\ast  - \tau (t\ast ))] \leq H1(t
\ast  - \tau (t\ast ), 0) holds from the definition of

t\ast . Since H1(t,N(t, t0)) is constant in [t0 - \tau , t0] and increases in [t0, t
\ast ], we have that

\BbbE [W\sigma (t\ast  - \tau (t\ast ))(t
\ast  - \tau (t\ast ))] \leq H1(t

\ast  - \tau (t\ast ), N(t\ast  - \tau (t\ast ), t0))

\leq H1(t
\ast , 0) = \BbbE [W\sigma (t\ast )(t

\ast )],

which implies that

\BbbE [V\sigma (t\ast  - \tau (t\ast ))(t\ast  - \tau (t\ast ), xt\ast )] = e - \lambda 0(t
\ast  - \tau (t\ast ) - t0)\BbbE [W\sigma (t\ast  - \tau (t\ast ))(t

\ast  - \tau (t\ast ))]

\leq e - \lambda 0(t
\ast  - \tau (t\ast ) - t0)\BbbE [W\sigma (t\ast )(t

\ast )]

\leq e\lambda 0\tau \BbbE [V\sigma (t\ast )(t\ast , x(t\ast ))].(3.6)

In what follows, from (A.2), (A.4), and (3.6), we yield that

D+\BbbE [W\sigma (t\ast )(t
\ast )] \leq e\lambda 0(t

\ast  - t0)(\lambda 0\BbbE [V\sigma (t\ast )(t\ast , x(t\ast ))] - \lambda 1\BbbE [V\sigma (t\ast )(t\ast , x(t\ast ))]
+ \lambda 2\BbbE [V\sigma (t\ast  - \tau (t\ast ))(t\ast  - \tau (t\ast ), xt\ast )] + \varphi 1(| u(t\ast )| ))

\leq e\lambda 0(t
\ast  - t0)(\lambda 0\BbbE [V\sigma (t\ast )(t\ast , x(t\ast ))] - \lambda 1\BbbE [V\sigma (t\ast )(t\ast , x(t\ast ))]

+ \lambda 2e
\lambda 0\tau \BbbE [V\sigma (t\ast )(t\ast , x(t\ast ))] + \varphi 1(| u(t\ast )| ))

< e\lambda 0(t
\ast  - t0)\varphi 1(| u(t\ast )| ),(3.7)

which contradicts (3.5). Therefore, \BbbE [W\sigma (t)(t)] \leq H1(t, 0) for all t \in [t0, t1).
In the following, suppose that (3.2) holds for all t \in [t0, tk), k \in \BbbN . Thus, at the

switching time instance tk, we get from (A.3) and (3.2) that

\BbbE [W\sigma (tk)(tk)] \leq \mu \BbbE [W\sigma (t - k )(t
 - 
k )] + e\lambda 0(tk - t0)\varphi 2(| u(t - k )| )

\leq \mu N(t - k ,t0)+1H1(t
 - 
k , N(t - k , t0)) + \mu H2(t

 - 
k , N(t - k , t0))

+ e\lambda 0(tk - t0)\varphi 2(| u(t - k )| ).(3.8)
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1050 WEI REN AND JUNLIN XIONG

Since N(t - k , t0)+ 1 = N(tk, t0) and N(t, t0) - i = N(t, ti) for all t \in \BbbR +
t0 , one has that

\mu N(t - k ,t0)+1H1(t
 - 
k , N(t - k , t0))

= \mu N(tk,t0)M1 + \mu N(tk,t0)

N(t - k ,t0) - 1\sum 
i=0

\mu  - i
\int ti+1

ti

e\lambda 0(s - t0)\varphi 1(| u(s)| )ds

+ \mu N(tk,t0)\mu  - N(t - k ,t0)

\int t - k

t
N(t

 - 
k

,t0)

e\lambda 0(s - t0)\varphi 1(| u(s)| )ds,

\leq \mu N(tk,t0)M1 + \mu N(tk,t0)

N(tk,t0) - 1\sum 
i=0

\mu  - i
\int ti+1

ti

e\lambda 0(s - t0)\varphi 1(| u(s)| )ds

= \mu N(tk,t0)H1(tk, N(tk, t0))(3.9)

and that

\mu H2(t
 - 
k , N(t - k , t0)) + e\lambda 0(tk - t0)\varphi 2(| u(tk)| )

=

N(t - k ,t0)\sum 
i=1

\mu N(t - k ,ti)+1e\lambda 0(ti - t0)\varphi 2(| u(t - i )| ) + e\lambda 0(tk - t0)\varphi 2(| u(t - k )| )

\leq 
N(t - k ,t0)\sum 
i=1

\mu N(tk,ti)e\lambda 0(ti - t0)\varphi 2(| u(t - i )| ) + \mu e\lambda 0(tk - t0)\varphi 2(| u(t - k )| )

= H2(tk, N(tk, t0)).(3.10)

Combining (3.8)--(3.10) gives that

\BbbE [W\sigma (tk)(tk)] \leq \mu N(tk,t0)H1(tk, N(tk, t0)) +H2(tk, N(tk, t0)).

That is, (3.2) is valid for t = tk.
Suppose that (3.2) holds for all t \in (tk, tk+1). If not, define t \star := inf\{ t \in 

(tk, tk+1)| \BbbE [W\sigma (t)(t)] > \mu N(t,t0)H1(t,N(t, t0))+H2(t,N(t, t0))\} . Thus, it follows from
the continuity of W\sigma (t)(t) in (tk, tk+1) that

\BbbE [W\sigma (t \star )(t
 \star )] = \mu N(t \star ,t0)H1(t

 \star , N(t \star , t0)) +H2(t
 \star , N(t \star , t0)),(3.11)

\BbbE [W\sigma (t)(t)] > \mu N(t,t0)H1(t,N(t, t0)) +H2(t,N(t, t0)), t \in (t \star , t \star +\Delta t),(3.12)

where \Delta t > 0 is arbitrarily small. Similar to (3.5), we get that

D+\BbbE [W\sigma (t \star )(t
 \star )] \geq e\lambda 0(t

 \star  - t0)\varphi 1(| u(t \star )| ).(3.13)

Assume there exists certain \jmath \in \{ 1, . . . , k\} such that t \star  - \tau (t \star ) \in [t\jmath , t\jmath +1). There-
fore, we obtain from (3.2) and (3.11) that

\BbbE [W\sigma (t \star  - \tau (t \star ))(t
 \star  - \tau (t \star ))]

\leq \mu N(t\jmath ,t0)H1(t
 \star  - \tau (t \star ), N(t\jmath , t0)) +H2(t

 \star  - \tau (t \star ), N(t\jmath , t0))

\leq \mu N(t \star ,t0)H1(t
 \star , N(t \star , t0)) +H2(t

 \star , N(t \star , t0))

= \BbbE [W\sigma (t \star )(t
 \star )],(3.14)
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STOCHASTIC NONLINEAR SWITCHED TIME-DELAY SYSTEMS 1051

where the second ``\leq "" holds due to the fact that \mu N(t,t0)H1(t,N(t, t0)) and H2(t,N
(t, t0)) are nondecreasing with respect to t. Therefore, from (A.2), (A.4), (3.14) and
along a similar fashion as (3.6)--(3.7), we have that

D+\BbbE [W\sigma (t \star )(t
 \star )] \leq e\lambda 0(t

 \star  - t0)(\lambda 0\BbbE [V\sigma (t \star )(t \star , x(t \star ))] - \lambda 1\BbbE [V\sigma (t \star )(t \star , x(t \star ))]
+ \lambda 2\BbbE [V\sigma (t \star  - \tau (t \star ))(t \star  - \tau (t \star ), xt \star )] + \varphi 1(| u(t \star )| ))

\leq e\lambda 0(t
 \star  - t0)(\lambda 0\BbbE [V\sigma (t \star )(t \star , x(t \star ))] - \lambda 1\BbbE [V\sigma (t \star )(t \star , x(t \star ))]

+ \lambda 2e
\lambda 0\tau \BbbE [V\sigma (t \star )(t \star , x(t \star ))] + \varphi 1(| u(t \star )| ))

< e\lambda 0(t
 \star  - t0)\varphi 1(| u(t \star )| ),

which contradicts (3.13). In what follows, (3.2) holds for all t \in (tk, tk+1).
According to the mathematical induction, we obtain from the preceding analysis

that (3.2) holds for all t \in [t0,\infty ). Furthermore, it follows from (3.2) that

\BbbE [V\sigma (t)(t, x(t))] \leq e - \lambda 0(t - t0)\mu N(t,t0)H1(t,N(t, t0))

+ e - \lambda 0(t - t0)H2(t,N(t, t0)) \forall t \in [t0,\infty ).(3.15)

Step 3. Based on Definition 2.2 and (A.4), there exists an \omega > 0 such that

N(t, s) \leq N0 +
t - s

\tau a
\leq N0 +

(\lambda 0  - \omega )(t - s)

ln\mu 
,

which in turn implies that

\mu N(t,t0)e - \lambda 0(t - t0) \leq \mu N0+
(\lambda 0 - \omega )(t - t0)

ln\mu e - \lambda 0(t - t0) = \mu N0e - \omega (t - t0).(3.16)

According to (3.16) and the fact that \mu N(t,t0) - i = \mu N(t,ti+1)+1, we obtain that

\mu N(t,t0)e - \lambda 0(t - t0)M2(t,N(t, t0))

\leq 
N(t,t0) - 1\sum 

i=0

e - \lambda 0(t - t0)\mu N(t,ti+1)+1e(\lambda 0 - \omega )(ti+1 - t0)
\int ti+1

ti

e\omega (s - t0)\varphi 1(| u(s)| )ds

+ e - \lambda 0(t - t0)e(\lambda 0 - \omega )(t - t0)
\int t

tN(t,t0)

e\omega (s - t0)\varphi 1(| u(s)| )ds

\leq \mu 1+N0

N(t,t0) - 1\sum 
i=0

e - \omega (t - t0)
\int ti+1

ti

e\omega (s - t0)\varphi 1(| u(s)| )ds

+ e - \omega (t - t0)
\int t

tN(t,t0)

e\omega (s - t0)\varphi 1(| u(s)| )ds

\leq \mu 1+N0e - \omega (t - t0)
\int t

t0

e\omega (s - t0)\varphi 1(| u(s)| )ds.(3.17)

Similarly,

e - \lambda 0(t - t0)H2(t,N(t, t0)) =

N(t,t0)\sum 
i=1

\mu N(t,ti)e - \lambda 0(t - ti)\varphi 2(| u(ti)| )

\leq \mu N0

N(t,t0)\sum 
i=1

e - \omega (t - ti)\varphi 2(| u(ti)| ).(3.18)
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1052 WEI REN AND JUNLIN XIONG

Therefore, it follows from (3.15)--(3.18) that

\BbbE [V\sigma (t)(t, x(t))] \leq \mu N0e - \omega (t - t0)M1 + \mu 1+N0e - \omega (t - t0)
\int t

t0

e\omega (s - t0)\varphi 1(| u(s)| )ds

+ \mu N0

N(t,t0)\sum 
i=1

e - \omega (t - ti)\varphi 2(| u(ti)| )(3.19)

\leq \mu N0e - \omega (t - t0)M1 + \Lambda \varphi (\| u\| ),(3.20)

where \Lambda := (\omega  - 1\mu + (1  - e - \omega \theta 1) - 1)\mu N0 , \varphi (v) := max\{ \varphi 1(v), \varphi 2(v)\} , and 0 < \theta 1 \leq 
inf\{ tk+1  - tk| k \in \BbbN \} . Using Markov's inequality in [41, Chapter II, 18.1] to (3.20)
yields that for all t \in \BbbR +

t0 ,

\BbbP \{ V\sigma (t)(t, x(t)) \leq \=\beta (\BbbE [\| \xi \| \tau ], t - t0) + \=\varphi (\| u\| )\} 

\geq 1 - 
\BbbE [V\sigma (t)(t, x(t))]

\=\beta (\BbbE [\| \xi \| \tau ], t - t0) + \=\varphi (\| u\| )
\geq 1 - \varepsilon 1,(3.21)

where \=\beta (v, t) := \mu N0+1e - \omega t\alpha 2(v)/\varepsilon 1 and \=\varphi (v) := \Lambda \varphi (v)/\varepsilon 1. As a result, it follows
from (A.1) and (3.21) that the system (2.1) is SISS with \beta (v, t) := \alpha  - 1

1 (2 \=\beta (v, t)) and
\gamma (v) := \alpha  - 1

1 (2 \=\varphi (v)).
On the other hand, (3.19) can be rewritten as

\BbbE [V\sigma (t)(t, x(t))] \leq \mu N0e - \omega (t - t0)M1 + (1 + \mu )\mu N0

\int t

t0

(\varphi 1(| u(s)| ) + \theta  - 1
1 \varphi 2(| u(s)| ))ds.

Just like the SISS analysis, we also conclude that the system (2.1) is SiISS.

Remark 3.1. Let us examine the statement of Theorem 3.1 in some detail.
(i) The condition (A.1) is a fairly standard assumption and ensures that each

Vi(t, x(t)) is positive definite and radially unbounded; see also [11, section 4].
(ii) The condition (A.2) is used to estimate the derivatives of the LKFs along the

vector field of each subsystem. Both \lambda 1 and \lambda 2 offer the quantities of such esti-
mate and the assumption that \lambda 1 > \lambda 2 \geq 0 ensures that each subsystem is stable
in the switching intervals. Condition (A.2) allows the derivatives of the LKFs
to be related to the current state, the delayed state trajectory, and the external
disturbance. Condition (A.3) restricts the jumps of the LKFs by the switches
and implies that the jumps of the LKFs depend on both the current state and
the external disturbance. In previous works [28, 30, 33, 34], the derivatives of
the Lyapunov functions (both the LKFs and the LRFs) do not depend on the
delayed state trajectory, and the jumps of the Lyapunov functions only depend
on the current state. As a result, (A.2)--(A.3) in Theorem 3.1 are more general
and include those in [28, 34] as the special cases; see also Remark 3.2. In ad-
dition, similar conditions can be found in [22], which studied SISS of impulsive
time-delay systems. If the considered system is an impulsive time-delay system,
then (A.3) is thought of as the condition for the impulsive times, and Theorem
3.1 is reduced to Theorem 1 in [22].

(iii) The condition (A.4) is the ADT condition, which balances the coefficients in
(A.2)--(A.3) and constrains the frequency of the switching on average to establish
SISS and SiISS of the system (2.1). If \mu \equiv 1 and \varphi 2(v) \equiv 0 in (A.3), then the
switching is neutral for system stability [28, 30], thereby having no constraints on
the ADT. In previous works like [28], the small gain condition was used to study
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STOCHASTIC NONLINEAR SWITCHED TIME-DELAY SYSTEMS 1053

switched nonlinear time-delay systems. The relationship between the small gain
condition and the ADT condition has been studied in [43, section 4.2].

Remark 3.2. Based on Krasovskii-type stability conditions in Theorem 3.1, some
special cases and extensions can be derived. If \lambda 2 \equiv 0, then (A.2) is reduced to the
classic decreasing condition for the LKFs; see [2, 34, 36]. In this case, the obtained
result is valid with \lambda 0 \in (0, \lambda 1) in (A.4). Besides SISS and SiISS, the stability prop-
erties like ISS in mean square and weighted-ISS can also be established along the
lines of a similar stability analysis as in the proof of Theorem 3.1. For instance, if
\alpha 1(v) := a1v

2 and \alpha 2(v) := a2v
2, where a2 > a1 > 0, then it follows from (3.20) that

\BbbE [| x(t)| 2] \leq \beta 2(\BbbE [\| \xi \| \tau ], t - t0) + \varphi 2(| u(t)| ) \forall t \in \BbbR +
t0 ,

where \beta 2(v, t) := a - 1
1 a2\mu 

N0+1e - \omega tv and \varphi 2(v) := a - 1
1 \Lambda \varphi (v), which implies that the

system (2.1) is exponentially ISS in mean square; see [22]. Furthermore, Krasovskii-
type conditions in Theorem 3.1 can also be applied for stochastic impulsive switched
nonlinear time-delay systems. In this case, (A.2) is for impulsive switching intervals
and (A.3) is for impulsive switching time instances; see [12, 32]. Hence, the previous
works on both switched time-delay systems [4, 5, 28] and impulsive time-delay systems
[22, 34, 39] are recovered as the special cases of Theorem 3.1.

3.2. Razumikhin approach based stability analysis. In this subsection, the
Razumikhin-type conditions are derived for SISS of the system (2.1) with synchronous
switching. Instead of the ADT condition, the FDT condition and the small gain
condition are applied. To begin with, assume there exists \bfittheta > 0 such that \bfittheta \leq 
inf\{ tk+1  - tk| k \in \BbbN \} .

Theorem 3.2. Consider the system (2.1). Assume that there exist LRFs Vi :
\BbbR +
t0 - \tau \times \BbbR nx \rightarrow \BbbR +

0 , i \in \scrM , \alpha 1, \rho 1, \rho 2 \in \scrK \infty , \psi \in \scrV \scrK \infty , \alpha 2, \phi \in \scrC \scrK \infty and constants
\bfittheta > \delta > 0 such that (A.1) holds and
(B.1) for all t \in \BbbR +

t0\setminus \scrT , V\sigma (t)(t, x(t)) > max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ), \rho 2(| u(t)| )\} implies
that L V\sigma (t)(t, xt) \leq  - \psi (V\sigma (t)(t, x(t)));

(B.2) for all t \in \scrT , V\sigma (t)(t, x(t)) \leq \phi (V\sigma (t - )(t
 - , x(t - )));

(B.3) the FDT condition holds, that is,
\int \phi (a)
a

ds
\psi (s) \leq \bfittheta  - \delta for all a > 0;

(B.4) the small gain condition holds, that is, \rho 1(v) < v for all v > 0,
where | V\sigma (t)(t, x(t))| \tau := sups\in [t - \tau ,t] | V\sigma (t)(s, x(s))| , then the system (2.1) is SISS.

Proof. Since \alpha 1, \psi \in \scrV \scrK \infty and \alpha 2, \phi \in \scrC \scrK \infty , along similar lines as the proof of
Theorem 3.1, (3.1) holds and \BbbE [Vi(t, x(t))] \leq max\{ \alpha 2(\BbbE [\| \xi \| \tau ]), \phi (\alpha 2(\BbbE [\| \xi \| \tau ]))\} for
all t \in [t0  - \tau , t0] and all i \in \scrM . In the following, based on the relation between
max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ), \rho 2(| u(t)| )\} and V\sigma (t)(t, x(t)), the proceeding proof is parti-
tioned into two cases.

Case 1. V\sigma (t)(t, x(t)) > max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ), \rho 2(| u(t)| )\} for all t \in \BbbR +
t0 . In this

case, from Jensen's inequality in [41, Chapter II, 18.3], (B.1)--(B.2) can be written
directly as follows:

\BbbE [L V\sigma (t)(t, xt)] \leq  - \psi (\BbbE [V\sigma (t)(t, x(t))]), t /\in \scrT ;(3.22)

\BbbE [V\sigma (tk)(tk, x(tk))] \leq \phi (\BbbE [V\sigma (tk - 1)(t
 - 
k , x(t

 - 
k ))]), tk \in \scrT .(3.23)

For any k \in \BbbN , integrating (3.22) from tk to any t \in [tk, tk+1) and letting t \rightarrow t - k+1

give that \int t - k+1

tk

\BbbE [L V\sigma (t)(t, xt)]dt

\psi (\BbbE [V\sigma (t)(t, x(t))])
\leq  - (t - k+1  - tk) \leq  - \bfittheta .(3.24)
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1054 WEI REN AND JUNLIN XIONG

According to (3.24), define the function

F (\varrho ) :=

\int \varrho 

\varsigma 

ds

\psi (s)
,

where \varsigma > 0 is fixed and \varrho > 0. Obviously, F : \BbbR +
0 \rightarrow \BbbR is continuous and strictly

increasing, and so is its inverse F - 1 : \BbbR \rightarrow \BbbR +
0 . Thus, using It\^o's formula in [41,

Chapter IV, 3] and Fubini's theorem in [41, Chapter II, 12.2], (3.24) is rewritten as

F (\BbbE [V\sigma (tk)(t
 - 
k+1, x(t

 - 
k+1))]) - F (\BbbE [V\sigma (tk)(tk, x(tk))]) \leq  - \bfittheta .(3.25)

It follows from (B.3), (3.23), and (3.25) that for all k \in \BbbN ,

F (\BbbE [V\sigma (tk+1)(tk+1, x(tk+1))]) - F (\BbbE [V\sigma (tk)(tk, x(tk))])
\leq F (\phi (\BbbE [V\sigma (tk)(t

 - 
k+1, x(t

 - 
k+1))])) - F (\BbbE [V\sigma (tk)(tk, x(tk))])

\leq F (\phi (\BbbE [V\sigma (tk)(t
 - 
k+1, x(t

 - 
k+1))])) - F (\BbbE [V\sigma (tk)(t

 - 
k+1, x(t

 - 
k+1))])

+ F (\BbbE [V\sigma (tk)(t
 - 
k+1, x(t

 - 
k+1))]) - F (\BbbE [V\sigma (tk)(tk, x(tk))])

\leq \bfittheta  - \delta  - \bfittheta =  - \delta .

That is,

\BbbE [V\sigma (tk+1)(tk+1, x(tk+1))] \leq F - 1(F (\BbbE [V\sigma (tk)(tk, x(tk))]) - \delta ).(3.26)

In what follows, iterating the above analysis from t0 to tk \in \scrT gives that

\BbbE [V\sigma (tk)(tk, x(tk))] \leq F - 1(F (\BbbE [V\sigma (t0)(t0, x(t0))]) - k\delta ),(3.27)

which is valid for all k \in \frakK := \{ k \in \BbbN | F (\BbbE [V\sigma (t0)(t0, x(t0))]) - k\delta \geq lim\varrho \downarrow 0 F (\varrho )\} .
Denote r := \BbbE [V\sigma (t0)(t0, x(t0))] and k1 := maxk\in \frakK k (if it does not exist, denote

k1 := \infty ). Based on (3.27), a class \scrK \scrL function is constructed as follows:

\beta 1(r, 0) := max\{ r, \phi (r)\} ,(3.28)

\beta 1(r, tk  - t0) := F - 1(F (\beta 1(r, 0) - k\delta )), k \in \{ 1, . . . , k1\} .(3.29)

In (tk  - t0, tk+1  - t0), k \in \{ 1, . . . , k1\} , \beta 1(r, t) is required to decrease continuously
and to lie above every solution of (3.22). If k1 < \infty , then \beta 1(r, t) in [tk1  - t0,\infty ) is
defined to be continuous and decreasing to zero as t\rightarrow \infty .

From the construction of \beta 1(r, t) in (3.28)--(3.29), we have that

\BbbE [V\sigma (t)(t, x(t))] \leq \beta 1(\BbbE [V\sigma (t0)(t0, x(t0))], t - t0) \forall t \geq t0,

where \beta 1(r, t) is continuous and decreases with the time line. If k1 = \infty , \beta 1(r, t) \rightarrow 0
as t\rightarrow \infty by the construction. If not, we need to prove that \beta 1(r, t) \rightarrow 0 as t\rightarrow \infty .

Claim 1. If \beta 1(r, tk  - t0) \rightarrow 0 as k \rightarrow \infty , then \beta 1(r, t) \rightarrow 0 as t\rightarrow \infty .

Proof. If the claim is not true, then there exists an \epsilon > 0 (which depends on the
choice of r) that limk\rightarrow \infty \beta 1(r, tk  - t0) = \epsilon . Define \vargamma := min\epsilon \leq q\leq \beta 1(r,0) \varphi (q) and using
the mean value theorem, we have

\delta \leq F (\beta 1(r, tk  - t0)) - F (\beta 1(r, tk+1  - t0)) \leq 
\beta 1(r, tk  - t0) - \beta 1(r, tk+1  - t0)

\vargamma 
,

which implies that \beta 1(r, tk - t0) - \beta 1(r, tk+1 - t0) \geq \delta \vargamma > 0. Consequently, \beta 1(r, tk - t0)
decreases to zero as k \rightarrow \infty , which contradicts limk\rightarrow \infty \beta 1(r, tk  - t0) = \epsilon > 0. There-
fore, the claim is true.
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Define \beta 2(r, t) := sup0\leq b\leq r \beta 1(b, t) and \beta 3(r, t) :=
1
r

\int 2r

r
\beta 2(s, t)ds+re

 - t. Observe
that \beta 3(r, t) \geq \beta 2(r, t) \geq \beta 1(r, t) for all r, t > 0 and that \beta 3 \in \scrK \scrL . Thus, we get that

\BbbE [V\sigma (t)(t, x(t))] \leq \beta 3(\BbbE [V\sigma (t0)(t0, x(t0))], t - t0) \forall t \geq t0.(3.30)

Applying Markov's inequality in [41, Chapter II, 18.1] to (3.30) yields that for
arbitrary \varepsilon 1 \in (0, 1), there exists \beta 4(v, t) := \beta 3(v, t)/\varepsilon 1 such that for all t \in \BbbR +

t0 ,

\BbbP 
\bigl\{ 
V\sigma (t)(t, x(t)) > \beta 4(\BbbE [V\sigma (t0)(t0, x(t0))], t - t0)

\bigr\} 
\leq 

\BbbE [V\sigma (t)(t, x(t))]
\beta 4(\BbbE [V\sigma (t0)(t0, x(t0))], t - t0)

\leq \varepsilon 1,

which combined with (A.1) gives that for arbitrary \varepsilon 1 \in (0, 1), there exists \beta 5(v, t) :=
\alpha  - 1(\beta 4(\alpha 2(v), t)) \in \scrK \scrL such that

\BbbP \{ | x(t)| > \beta 5(\BbbE [\| \xi \| \tau ], t - t0)\} \leq \varepsilon 1 \forall t \in \BbbR +
t0 .(3.31)

Case 2. V\sigma (t)(t, x(t)) \geq max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ), \rho 2(| u(t)| )\} does not hold for all

t \in \BbbR +
t0 . If V\sigma (t)(t, x(t)) \geq max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ), \rho 2(| u(t)| )\} for some t \in \BbbR +

t0 , then
it follows from Case 1 that (3.30) holds. Otherwise, by taking expectation, we have
that \BbbE [V\sigma (t)(t, x(t))] \leq max\{ \rho 1(\BbbE [| V\sigma (t)(t, x(t))| \tau ]), \rho 2(\| u\| )\} . Combining these two

cases yields that (see also [23]), for all t \in \BbbR +
t0 ,

\BbbE [V\sigma (t)(t, x(t))] \leq max\{ \rho 1(\BbbE [\| V\sigma (t)(t, x(t))\| \tau ]), \rho 2(\| u\| ),
\beta 3(\BbbE [V\sigma (t0)(t0, x(t0))], t - t0)\} ,(3.32)

\BbbE [| V\sigma (t)(t, x(t))| \tau ] \leq max\{ \Upsilon (t - t0)\BbbE [| V\sigma (t)(t0, x(t0))| \tau ],\BbbE [\| V\sigma (t)(t, x(t))\| \tau ]\} ,(3.33)

where \| V\sigma (t)(t, x(t))\| \tau := supt\geq t0\{ | V\sigma (t)(t, x(t))| 
\tau \} ,\Upsilon (t) := 0.5[1  - sgn(t  - \tau )], and

sgn is a sign function with sgn(v) = 1 for v \geq 0 and sgn(v) =  - 1 for v < 0.
Using (B.4) and similar to the proof of Theorem 1 in [23], we have from (3.32)--

(3.33) that there exist \=\beta (v, t) := \alpha  - 1
1 (\beta 3(\alpha 2(v), t)) and \=\gamma := \alpha  - 1

1 (\rho 2(v)) such that

\BbbE [\| x(t)\| \tau ] \leq \=\beta (\BbbE [\| \xi \| \tau ], t - t0) + \=\gamma (\| u\| ) \forall t \in \BbbR +
t0 .(3.34)

Because \BbbE [\| x(t)\| \tau ] \geq \BbbE [| x(t)| ] for all t \in \BbbR +
t0 , it follows from (3.34) and Markov's

inequality that for any \varepsilon \in (0, 1), there exist \beta (v, t) := max\{ \beta 5(v, t), \=\beta (v, t)/\varepsilon \} and
\gamma (v) := \=\gamma (v)/\varepsilon such that

\BbbP \{ | x(t)| \leq \beta (\BbbE [\| \xi \| \tau ], t - t0) + \gamma (\| u\| )\} \geq 1 - \varepsilon \forall t \in \BbbR +
t0 .

That is, the system (2.1) is SISS and the proof is completed.

Remark 3.3. Compared with Krasovskii-type stability conditions in Theorem 3.1,
Razumikhin-type stability conditions in Theorem 3.2 imply that the LRFs decrease if
the Razumikhin condition, that is, V\sigma (t)(t, x(t))>max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ), \rho 2(| u(t)| )\} ,
holds for all t \in \BbbR +

t0 . In addition, the jumps of the LRFs only depend on the current
state. Although the Razumikhin approach is more retarded than the Krasovskii ap-
proach [14], Theorem 3.2 can still be applicable to some more general systems. The
main reason lies in that the obtained Razumikhin-type conditions are more general
from two perspectives:
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1056 WEI REN AND JUNLIN XIONG

(i) The functions \psi , \phi , and \rho 1 are not required to be linear. That is, the LRFs are
not necessarily exponential, which is the essential difference from the Lyapunov
functions in [5, 13, 22, 38] and the LKFs in Theorem 3.1. As a result, the
Razumikhin-type stability conditions can be applied to those that cannot be
analyzed by exponential Lyapunov functions.

(ii) The FDT condition is applied in Theorem 3.2 and implies that the switching
intervals are lower bounded by a certain limit. In some physical switched system
models like networked control systems [3, 4], the switching intervals are generally
bounded in some given intervals. In these cases, the FDT condition is more
practical than the ADT condition. The relationship between the FDT condition
and the ADT condition has been studied in [43, section 3.2].

However, the Razumikhin-type stability conditions in Theorem 3.2 cannot guarantee
other stability properties of the system (2.1), such as SiISS, ISS in mean square, and
weighted ISS. In addition, \rho 1(v) is required to satisfy the small gain condition, which
also restricts the application range of Theorem 3.2 to some extent.

Remark 3.4. If there is no time delay, then Theorem 3.2 is similar to Theorem 1 in
[8]. In Theorem 3.2, the Razumikhin condition V\sigma (t)(t, x(t))>max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ),
\rho 2(| u(t)| )\} can be written as V\sigma (t)(t, x(t)) > max\{ \rho 1(V\sigma (t)(t+ s, x(t+ s))), \rho 2(| u(t)| )\} 
for all s \in [t - \tau , t]; see [9, 14].

In the following, we present an alternative Razumikhin-type stability criterion for
the systems (2.1) with synchronous switching. Different from the techniques used in
the proof of Theorem 3.2, the Halanay-like inequality [46] is applied, which provides
a new perspective on stability analysis of the system (2.1).

Proposition 3.3. Assume that all the conditions in Theorem 3.2 are satisfied
with \rho 1(v) := \=\rho v, where \=\rho \in (0, 1); then the system (2.1) is SISS.

Proof. Similar to the proof of Theorem 3.2, the stability analysis is divided into
two cases. The proof for Case 1 is the same as that of Theorem 3.2 and (3.30) holds.

For Case 2, if V\sigma (t, x(t)) \geq max\{ \=\rho | V\sigma (t, x(t))| \tau , \rho 2(| u(t)| )\} for some t \in \BbbR +
t0 , then

it follows from Case 1 that (3.30) holds. Otherwise, we have that

\BbbE [V\sigma (t)(t, x(t))] \leq \=\rho \BbbE [| V\sigma (t)(t, x(t))| \tau ] + \rho 2(| u(t)| ), t \in \BbbR +
t0 .(3.35)

Using Lemma 1 in [46], it can be obtained from (3.36) that

\BbbE [V\sigma (t)(t, x(t))] \leq e
ln \=\rho 
\tau (t - t0)\alpha 2(\BbbE [\| \xi \| \tau ]) + (1 - \=\rho ) - 2\rho 2(\| u\| ), t \in \BbbR +

t0 .(3.36)

Since \=\rho \in (0, 1), we get that ln \=\rho < 0.
Combining (3.30) in Case 1 and (3.36) in Case 2 yields that

\BbbE [V\sigma (t)(t, x(t))] \leq \beta (\BbbE [\| \xi \| \tau ], t - t0) + \gamma (\| u\| ) \forall t \in \BbbR +
t0 ,

where \beta (v, t) := \beta 3(\alpha 2(v), t)+e
ln \=\rho 
\tau t\alpha 2(v) and \gamma (v) := (1 - \=\rho ) - 2\rho 2(v). In the following,

the preceding analysis is the same as the proof of Theorem 3.2 and then SISS of the
system (2.1) is established. Hence, the proof is completed.

Remark 3.5. In Theorem 3.2 and Proposition 3.3, \rho 1(v) is required to satisfy the
small gain condition. However, the analysis techniques in Theorem 3.2 and Proposi-
tion 3.3 are different and cannot be transformed mutually. The reason is that \rho 1(v)
in Proposition 3.3 is required to be linear; see [46, Remark 1] for more details.
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4. Stochastic switched time-delay systems with asynchronous switch-
ing. In this section, the asynchronous switching case is studied. For this case,
both Krasovskii-type and Razumikhin-type conditions are established for SISS and
SiISS of the systems (2.1). First, some notation is introduced; see [8, 26]. For
each k \in \BbbN , denote by \scrT \downarrow (tk, tk+1) and \scrT \uparrow (tk, tk+1) separately the unions of dis-
persed intervals in [tk, tk+1) where LRFs decrease and increase. That is, [tk, tk+1) =
\scrT \downarrow (tk, tk+1)\cup \scrT \uparrow (tk, tk+1). Moreover, \scrT \downarrow (tk+1 - tk) and \scrT \uparrow (tk+1 - tk) denote the lengths
of \scrT \downarrow (tk, tk+1) and \scrT \uparrow (tk, tk+1), respectively.

4.1. Krasovskii approach based stability analysis. The Krasovskii-type
stability conditions are given in the following theorem, which is not just an extension
of Theorem 3.1 but also involves some additional technical difficulties.

Theorem 4.1. Consider the system (2.1). Assume that there exist LKFs Vi :
\BbbR +
t0 - \tau \times \BbbR nx \rightarrow \BbbR +

0 , i \in \scrM . If there exist functions \alpha 1, \varphi 1, \varphi 2, \varphi 3 \in \scrK \infty , \alpha 2 \in \scrC \scrK \infty 
and constants \lambda 1 > \lambda 2 \geq 0, \lambda 3, \lambda 4 > 0, \rho , \scrT 0 \geq 0, \mu > 1 such that (A.1) and (A.3) hold
with \mu and \varphi 3, and
(C.1) for all t \in \scrT \downarrow (tk, tk+1), k \in \BbbN , L V\sigma (t)(t, x(t)) \leq  - \lambda 1V\sigma (t)(t, x(t))+\lambda 2V\sigma (t - \tau (t))

(t - \tau (t), xt) + \varphi 1(| u(t)| );
(C.2) for all t \in \scrT \uparrow (tk, tk+1), k \in \BbbN , L V\sigma (t)(t, x(t)) \leq \lambda 3V\sigma (t)(t, x(t)) + \lambda 4V\sigma (t - \tau (t))

(t - \tau (t), xt) + \varphi 2(| u(t)| );
(C.3) \rho < \pi 

\pi +\lambda 3
, where \pi is the solution to \lambda  - \lambda 1 + \lambda 2e

\lambda \tau = 0;
(C.4) for arbitrary t \geq s \geq t0, \scrT \uparrow (t - s) \leq \scrT 0 + \rho (t - s);
(C.5) \rho and \scrT 0 satisfy  - \pi + \rho (\lambda 3 + \pi ) + \lambda 4e

(\lambda 3+\pi )\scrT 0 < 0;

(C.6) \tau a >
(\lambda 3+\pi )\scrT 0+ln\mu 

\lambda 0
, where \lambda 0 is the unique solution to  - \pi + \rho (\lambda 3 + \pi ) + \lambda +

\lambda 4e
(\lambda 3+\pi )\scrT 0e\lambda \tau = 0,

then the system (2.1) is both SISS and SiISS under the asynchronous switching case.

Proof. Because of the asynchronous switching, the LKFs decrease in \scrT \downarrow (tk, tk+1)
and increase in \scrT \uparrow (tk, tk+1). Hence, the following proof is partitioned into three parts.
The first part transforms the derivatives of the LKFs in [tk, tk+1) into an impulsive
switched time-delay system. The second part bounds the LKFs in [tk, tk+1) using
Proposition 2.4. The third part analyzes SISS and SiISS of the system (2.1) via the
bounds of the LKFs and the ADT condition (C.6).

Part 1. Based on (C.1)--(C.2), for all k \in \BbbN , the interval [tk, tk+1) is divided into
finite subintervals and the number of the subintervals is assumed to be even without
loss of generality. That is, [tk, tk+1) = \cup 0\leq j\leq 2N - 1[tkj , tkj+1

), where N, k \in \BbbN , tk0 = tk
and tk2N = tk+1. V\sigma (t)(t, x(t)) is right-hand continuous at tk and continuous at tkj ,
where j \in \{ 1, . . . , 2N  - 1\} . In addition, from (C.1)--(C.2), assume that
(a) for all j \in \{ 0, . . . , N  - 1\} , t \in [tk2j+1

, tk2j+2
), \BbbE [L V\sigma (t)(t, x(t))] \leq  - \lambda 1\BbbE [V\sigma (t)

(t, x(t))] + \lambda 2\BbbE [V\sigma (t - \tau (t))(t - \tau (t), xt)] + \varphi 1(| u(t)| );
(b) for all j \in \{ 0, . . . , N - 1\} , t \in [tk2j , tk2j+1), \BbbE [L V\sigma (t)(t, x(t))] \leq \lambda 3\BbbE [V\sigma (t)(t, x(t))]+

\lambda 4\BbbE [V\sigma (t - \tau (t))(t - \tau (t), xt)] + \varphi 2(| u(t)| ).
Similar to the proof of Theorem 3.1, we have that \BbbE [Vi(t, x(t))] \leq \alpha 2(\BbbE [\| \xi \| \tau ]) for

all t \in [t0  - \tau , t0] and i \in \scrM . Using Proposition 2.6 in [42] and Lemma 2 in [31], it
can be obtained from item (a) that there exist \pi > 0 and \=\varphi 1 \in \scrK \infty (maybe depending
on \varphi 1) such that for all t \in [tk2j+1 , tk2j+2), j \in \{ 0, . . . , N  - 1\} ,

\BbbE [V\sigma (t)(t, x(t))] \leq e - \pi (t - tk2j+1
)\BbbE [V\sigma (t)(tk2j+1

, x(tk2j+1
))] + \=\varphi 1(| u(t)| ),
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1058 WEI REN AND JUNLIN XIONG

where \pi > 0 is the unique solution to \pi  - \lambda 1 + \lambda 2e
\pi \tau = 0. Due to the constance

of \sigma (t) on [tk, tk+1) and the continuity of \BbbE [V\sigma (t)(t, x(t))] at the time instant tk2j+2
,

j \in \{ 0, . . . , N  - 2\} , one has

\BbbE [V\sigma (t)(tk2j+2 , x(tk2j+2))] \leq e - \pi \Delta 2j+1\BbbE [V\sigma (t)(tk2j+1 , x(tk2j+1))] + \=\varphi 1(| u(t - k2j+2
)| ),

where \Delta 2j+1 := tk2j+2
 - tk2j+1

.
Therefore, following the above analysis, we obtain from (A.3), (C.1)--(C.2) that\left\{                   

D+\BbbE [V\sigma (t)(t, x(t))] \leq \lambda 3V\sigma (t)(t, x(t)) + \lambda 4V\sigma (t - \tau (t))(t - \tau (t), xt)

+\varphi 2(| u(t)| ), t \in (tk2j , tk2j+1
), j \in \{ 0, . . . , N  - 1\} ,

\BbbE [V\sigma (tk)(tk2j+1
, x(tk2j+1

))] \leq e - \pi \Delta 2j+1\BbbE [V\sigma (t)(t - k2j+1
, x(t - k2j+1

))]

+ \=\varphi 1(| u(t - k2j+2
)| ), j \in \{ 0, . . . , N  - 1\} ,

\BbbE [V\sigma (tk)(tk, x(tk))] \leq \mu \BbbE [V\sigma (t - k )(t
 - 
k , x(t

 - 
k ))] + \varphi 3(| u(t - k )| ), k \in \BbbN ,

\BbbE [Vi(t, x(t))] \leq \alpha 2(\BbbE [\| \xi \| \tau ]), t \in [t0  - \tau , t0], i \in \scrM .

(4.1)

Part 2. Let U\sigma (t)(t) \in \BbbR be the solution to the following equation:\left\{               

D+U\sigma (t)(t) = \lambda 3U\sigma (t)(t) + \lambda 4U\sigma (t - \tau (t))(t - \tau (t)) + \varphi 2(| u(t)| ) + \epsilon ,

t \in (tk2j , tk2j+1
), j \in \{ 0, . . . , N\} ,

U\sigma (tk)(tk2j+1
) = e - \pi \Delta 2j+1U\sigma (t)(t

 - 
k2j+1

) + \=\varphi 1(| u(t - k2j+2
)| ), j \in \{ 0, . . . , N\} ,

U\sigma (tk)(tk) = \mu U\sigma (t - k )(t
 - 
k ) + \varphi 3(| u(t - k )| ), k \in \BbbN ,

Ui(t) = \alpha 2(\BbbE [\| \xi \| \tau ]), t \in [t0  - \tau , t0], i \in \scrM ,

(4.2)

where \epsilon > 0 is arbitrarily small. Since \BbbE [Vi(t, x(t))] \leq Ui(t) for all t \in [t0  - \tau , t0] and
i \in \scrM , it can be obtained from Proposition 2.4 that \BbbE [V\sigma (t)(t, x(t))] \leq U\sigma (t)(t) for
all t \in [t0, t1). Furthermore, it follows from the third inequalities in (4.1)--(4.2) that
\BbbE [V\sigma (t1)(t1, x(t1))] \leq U\sigma (t1)(t1, x(t1)). Repeating such a mechanism, we have that
\BbbE [V\sigma (t)(t, x(t))] \leq U\sigma (t)(t) for all t \in [tk, tk+1), k \in \BbbN . In the following, we derive the
bound of \BbbE [V\sigma (t)(t, x(t))] for t \in [tk, tk+1).

We have from (C.3) that \pi  - \rho (\lambda 3 + \pi ) > 0 and from (C.4) that

e - \pi \scrT \downarrow (t - s)e\lambda 3\scrT \uparrow (t - s) \leq e - \pi (t - s)e(\lambda 3+\pi )(\scrT 0+\rho (t - s))

= e(\lambda 3+\pi )\scrT 0e - (\pi  - \rho (\lambda 3+\pi ))(t - s).(4.3)

Define \Lambda 1 := \pi  - \rho (\lambda 3 + \pi ) and \Lambda 2 := (\lambda 3 + \pi )\scrT 0. For the systems (4.1)--(4.2), using
(4.3) and similar to the proof strategy of Theorem 2 in [22], we get that for all k \in \BbbN 
and t \in [tk, tk+1),

\BbbE [V\sigma (t)(t, x(t))] \leq e\Lambda 2e - \lambda (t - tk)\BbbE [V\sigma (tk)(tk, x(tk))]

+

\int t

tk

J1e
 - \lambda 5(t - s)\varphi 2(| u(s)| )ds+

J2
1 - e - \Lambda 1\theta 2

sup
t\in [tk,t)

\=\varphi 1(| u(s)| )(4.4)

\leq e\Lambda 2e - \lambda (t - tk)\BbbE [V\sigma (tk)(tk, x(tk))]

+

\biggl( 
J1
\lambda 5

+
J2

1 - e - \Lambda 1\theta 2

\biggr) 
sup

s\in [tk,t)

\{ \=\varphi 1(| u(s)| ), \varphi 2(| u(s)| )\} ,(4.5)

where J1 \geq (\Lambda 1 - \lambda 5)e
\Lambda 2

 - \Psi (\lambda 5)
, J2 \geq \Lambda 1e

\Lambda 2

\Lambda 1 - \lambda 4e\Lambda 2
, 0 < \theta 2 \leq inf\{ tkj+1  - tkj | j \in \{ 0, . . . , 2N  - 1\} \} ,

\lambda 5 \in (0, \lambda 0) and \lambda 0 is the solution to \Psi (\lambda ) :=  - \Lambda 1 + \lambda + \lambda 4e
\Lambda 2e\lambda \tau = 0. Because
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\Psi (0) < 0 holds from (C.5), \Psi (\lambda ) \rightarrow \infty as \lambda \rightarrow \infty , and \Psi \prime (\lambda ) = 1 + \tau \lambda 4e
\Lambda 2e\lambda \tau > 0,

there exists a unique \lambda 0 > 0 such that \Psi (\lambda 0) = 0. Moreover, \Psi (\lambda ) < 0 for all
\lambda \in (0, \lambda 0).

Part 3. Define \Lambda := \lambda  - 1
5 J1 +

J2
1 - e - \Lambda 1\theta 1

and \^\varphi (| u(tk)| ) := sups\in [tk,tk+1)
\{ \=\varphi 1(| u(s)| ),

\varphi 2(| u(s)| )\} for each k \in \BbbN . Using (A.3) and repeating (4.5) in Part 2 from t0 to any
t \geq t0 yield that, for all t \in \BbbR +

t0 ,

\BbbE [V\sigma (t)(t, x(t))] \leq \mu N(t,t0)e\Lambda 2N(t,t0) - \lambda (t - t0)\BbbE [V\sigma (t0)(t0, x(t0))]

+

N(t,t0)\sum 
i=0

\mu N(ti,t0)e\Lambda 2N(ti,t0) - \lambda (ti - t0)[\Lambda \^\varphi (| u(ti)| ) + \varphi 3(| u(t - i )| )].(4.6)

According to Definition 2.2, we have that for all t \in \BbbR +
t0 ,

\mu N(t,t0)e\Lambda 2N(t,t0) - \lambda (t - t0) = e - \lambda (t - t0)eN(t,t0)(ln\mu +\Lambda 2)

\leq e - \lambda (t - t0)eN0(ln\mu +\Lambda 2)e(
ln\mu +\Lambda 2

\tau a
)(t - t0)

= eN0(ln\mu +\Lambda 2)e(t - t0)( - \lambda +
ln\mu +\Lambda 2

\tau a
).(4.7)

Define \varpi :=  - \lambda + ln\mu +\Lambda 2

\tau a
. It follows from (C.6) that \varpi < 0.

Combining (4.6) and (4.7) yields that

\BbbE [V\sigma (t)(t, x(t))] \leq eN0(ln\mu +\Lambda 2)e\varpi (t - t0)\alpha 2(\BbbE [\| \xi \| \tau ])

+ eN0(ln\mu +\Lambda 2)

N(t,t0)\sum 
i=0

e\varpi (ti - t0)[\Lambda \^\varphi (| u(ti)| ) + \varphi 3(| u(t - i )| )]

\leq eN0(ln\mu +\Lambda 2)e\varpi (t - t0)\alpha 2(\BbbE [\| \xi \| \tau ]) + eN0(ln\mu +\Lambda 2)(1 - e\varpi ) - 1\varphi (| u(t)| )
=: \beta (\BbbE [\| \xi \| \tau ], t - t0) + \gamma (\| u\| ),(4.8)

where \beta (v, t) := eN0(ln\mu +\Lambda 2)e\varpi t\alpha 2(v), \gamma (v) := eN0(ln\mu +\Lambda 2)(1 - e\varpi ) - 1\varphi (v) and

\varphi (| u(t)| ) := (1 + \Lambda ) sup
s\in [t0,t)

\{ \=\varphi 1(| u(s)| ), \varphi 2(| u(s)| ), \varphi 3(| u(s)| )\} .

In what follows, it follows from (4.8) and the Markov inequality that for any \varepsilon > 0,

\BbbP 
\bigl\{ 
| x(t)| \leq \=\beta (\BbbE [\| \xi \| \tau ], t - t0) + \=\gamma (\| u\| )

\bigr\} 
\geq 1 - \varepsilon \forall t \in \BbbR +

t0 ,

where \=\beta (v, t) := \alpha  - 1
1 (2\beta (v, t))/\varepsilon and \=\gamma (v) := \alpha  - 1

1 (2\gamma (v))/\varepsilon . As a result, the system
(2.1) is SISS.

On the other hand, (4.4) is rewritten as follows: for all t \in [tk, tk+1), k \in \BbbN ,

\BbbE [V\sigma (t)(t, x(t))] \leq e\Lambda 2e - \lambda (t - tk)\BbbE [V\sigma (tk)(tk, x(tk))]

+

\int t

tk

(J1\varphi 2(| u(s)| ) + J2\theta 
 - 1
2 \=\varphi 1(| u(s)| ))ds.

Along similar lines as the SISS analysis, the SiISS of the system (2.1) is
established.

Remark 4.1. In Theorem 4.1, if the LKFs increase in (tk2j , tk2j+1
) and decrease

in (tk2j+1
, tk2j+2

), then the similar equivalent impulsive switched time-delay system is
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1060 WEI REN AND JUNLIN XIONG

also obtained and the stability result is derived. If the number of the subintervals is
odd, then the stability analysis proceeds in the similar fashion but is more complex.
In the proof of Theorem 4.1, the essential technique is how to transform the evolution
of the LKF in the switching intervals into an impulsive switched time-delay system
(4.3). A similar transformation technique appeared in previous works like [22, 27].
Furthermore, the estimate of the system state of the impulsive switched time-delay
systems is involved; see [22, 38] for more details.

4.2. Razumikhin approach based stability analysis. As the counterpart of
Theorem 3.2, Razumikhin-type conditions are established in the following theorem
for SISS of the system (2.1) with asynchronous switching.

Theorem 4.2. Consider the system (2.1). There exist LRFs Vi : \BbbR +
t0 - \tau \times \BbbR nx \rightarrow 

\BbbR +
0 , i \in \scrM , \alpha 1, \rho 1, \rho 2 \in \scrK \infty , \psi 1 \in \scrV \scrK \infty , \alpha 2, \psi 2, \phi \in \scrC \scrK \infty and constants \bfittheta , \delta > 0 such

that (A.1), (B.2), and (B.4) hold and
(E.1) for all t \in \scrT \downarrow (tk, tk+1), k \in \BbbN , V\sigma (t)(t, x(t)) \geq max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ),

\rho 2(| u(t)| )\} implies L V\sigma (t)(t, xt) \leq  - \psi 1(V\sigma (t)(t, x(t)));
(E.2) for all t \in \scrT \uparrow (tk, tk+1), k \in \BbbN , V\sigma (t)(t, x(t)) \geq max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ),

\rho 2(| u(t)| )\} implies L V\sigma (t)(t, xt) \leq \psi 2(V\sigma (t)(t, x(t)));

(E.3) for an arbitrary a > 0, max\{ 
\int \phi (a)
a

\psi  - 1
1 (s)ds,

\int \phi (a)
a

\psi  - 1
2 (s)ds\} \leq \bfittheta  - \delta  - 2\scrT max,

where \scrT max := sup\{ \scrT \uparrow (tk+1  - tk)| k \in \BbbN \} ,
then the system (2.1) is SISS in the asynchronous switching case.

Proof. Similar to the proof of Theorem 3.2, the proof is divided into two cases:
the case that V\sigma (t)(t, x(t)) > max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ), \rho 2(| u(t)| )\} for all t \in \BbbR +

t0 and

the case that V\sigma (t)(t, x(t)) \leq max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ), \rho 2(| u(t)| )\} holds for all t \in \BbbR +
t0 .

The stability analysis for the second case is the same as that in Theorem 3.2. In
the following, we prove that for the first case, (3.26) still holds in the asynchronous
switching case.

Since \psi 1 \in \scrV \scrK , \psi 2 \in \scrC \scrK , using Jensen's inequality, (E.1)--(E.2) are rewritten as

\BbbE [L V\sigma (t)(t, xt)] \leq  - \psi 1(\BbbE [V\sigma (t)(t, x(t))]), t \in \scrT \downarrow (tk, tk+1),(4.9)

\BbbE [L V\sigma (t)(t, xt)] \leq \psi 2(\BbbE [V\sigma (t)(t, x(t))]), t \in \scrT \uparrow (tk, tk+1).(4.10)

Moreover, the interval [tk, tk+1) is divided into finite subintervals, that is, [tk, tk+1) =
\cup 0\leq j\leq 2N - 1[tkj , tkj+1

), where tk0 = tk and tk2N = tk+1. Assume for all j \in \{ 0, . . . , N - 1\} ,
(4.9) holds for t \in [t2j , t2j+1) and (4.10) holds for t \in [t2j+1, j2i+2).

Similar to the technique applied in the proof of Theorem 3.2, define the function

F (\varrho ) :=

\int \varrho 

\varsigma 

ds

\ell (s)\psi 1(s) + (1 - \ell (s))\psi 2(s)
,

where \varsigma > 0 is fixed, \varrho > 0, and \ell : \BbbR +
0 \rightarrow \{ 0, 1\} is a logical function. For each k \in \BbbN ,

\ell (t) = 1 if t \in \scrT \downarrow (tk, tk+1) and \ell (t) = 0 if t \in \scrT \uparrow (tk, tk+1). Observe that the function
F and its inverse F - 1 are continuous and strictly increasing. It follows from (E.3)
that for any t \in [tk2j , tk2j+1), j \in \{ 0, . . . , N  - 1\} ,

F (\BbbE [V\sigma (t)(t, x(t))]) - F (\BbbE [V\sigma (t)(tk2j , x(tk2j ))]) \leq  - (t - tk2j ),(4.11)

and for any t \in [tk2j+1 , tk2j+2), j \in \{ 0, . . . , N  - 1\} ,

F (\BbbE [V\sigma (t)(t, x(t))]) - F (\BbbE [V\sigma (t)(tk2j+1 , x(tk2j+1))]) \leq t - tk2j+1 .(4.12)
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As a result, it follows from (B.2) (E.3), (4.11), and (4.12) that, for tk, tk+1 \in \scrT ,

F (\BbbE [V\sigma (tk+1)(x(tk+1))]) - F (\BbbE [V\sigma (tk)(tk, x(tk))])
\leq F (\phi (\BbbE [V\sigma (tk)(t

 - 
k+1, x(t

 - 
k+1))])) - F (\BbbE [V\sigma (tk)(t

 - 
k+1, x(t

 - 
k+1))])

+ F (\BbbE [V\sigma (tk)(t
 - 
k+1, x(t

 - 
k+1))]) - F (\BbbE [V\sigma (tk)(tk, x(tk))])

\leq F (\phi (\BbbE [V\sigma (tk)(t
 - 
k+1, x(t

 - 
k+1))])) - F (\BbbE [V\sigma (tk)(t

 - 
k+1, x(t

 - 
k+1))])

+ F (\BbbE [V\sigma (tk)(t
 - 
k+1, x(t

 - 
k+1))]) - F (\BbbE [V\sigma (tk)(tk2N - 1

, x(tk2N - 1
))])

+

2N - 2\sum 
j=0

\bigl( 
F (\BbbE [V\sigma (tk)(tkj+1

, x(tkj+1
))]) - F (\BbbE [V\sigma (tk)(tkj , x(tkj ))])

\bigr) 
\leq \bfittheta  - \delta  - 2\scrT max  - \scrT \downarrow (tk+1  - tk) + \scrT \uparrow (tk+1  - tk) \leq  - \delta .

That is, it holds that \BbbE [V\sigma (tk+1)(tk+1, x(tk+1))] \leq F - 1(F (\BbbE [V\sigma (tk)(tk, x(tk))])  - \delta ).
The proceeding analysis is similar to the proof of Theorem 3.2 and is omitted here.
Hence, SISS of the system (2.1) is established in the asynchronous switching case.

The counterpart of Proposition 3.3 is given as follows. The proof is a combination
of the proof strategies of Theorem 4.2 and Proposition 3.3 and hence is omitted here.

Proposition 4.3. If all the conditions in Theorem 4.2 are satisfied with \rho 1(v) :=
\=\rho v and \=\rho \in (0, 1), then the system (2.1) is SISS in the asynchronous switching case.

5. Applications. In this section, the obtained results in the previous sections
are illustrated via two numerical examples from the mechanical rotational cutting
process and networked switched control systems.

5.1. Mechanical rotational cutting process. Consider the mechanical rota-
tional cutting process [48, 49], which can be modeled as the following classic form:

\"x(t) + 2\xi 0\omega 0 \.x(t) + \omega 2
0x(t) = F/m,(5.1)

where x(t) \in \BbbR is the displacement of the tool in the feed direction, \xi 0 \in \BbbR is the
damping ratio, \omega 0 \in \BbbR is the natural angular frequency of the tool, m > 0 is the
modal mass, and F > 0 is the cutting force.

During the cutting process, the cutting force needs to be adjusted according to
variations in the workpiece material. Moreover, there are fluctuations in the cutting
process, thereby affecting the cutting force. In this case, the fluctuations can be
modeled as a random disturbance. As a result, the cutting process can be modeled
as the following stochastic switched time-delay system:

\"x(t) + \gamma 1 \.x(t) + \gamma 2(x(t) + x3(t))

=  - \gamma 3\sigma (t)x(t - \tau ) + [\delta 1\sigma (t)x(t) + \delta 2\sigma (t)x(t - \tau )]
dB(t)

dt
,(5.2)

where \gamma 1 \in \BbbR is the term proportional to the product of natural frequency, the
damping ratio \gamma 2 \in \BbbR represents the tool stiffness, and \gamma 3\sigma (t) \in \BbbR is the delay term
proportional to effective cutting stiffness of the workpiece per unit of chip width.
\sigma : \BbbR +

0 \rightarrow \scrM := \{ 1, . . . ,M\} is the switching signal, B(t) is standard Brownian
motion, and \delta 1\sigma (t), \delta 2\sigma (t) \in \BbbR . Note that in (5.2), the cutting force is related to the
delayed displacement of the tool; see [48, 49] for the details.

Define y1(t) := x(t), y2(t) := \.x(t) and y(t) = (y1(t), y2(t))
\top . Hence, the system

(5.2) is written as a general stochastic switched nonlinear time-delay system model:
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1062 WEI REN AND JUNLIN XIONG

dy(t) = f\sigma (t)(t, yt, u)dt+ g\sigma (t)(t, yt, u)dB(t)

=

\biggl[ 
y2(t) + U\sigma (t)(t)

 - \gamma 1y1(t) - \gamma 2(y1(t) + y31(t)) - \gamma 3\sigma (t)y1(t - \tau )

\biggr] 
dt

+

\biggl[ 
0

\delta 1\sigma (t)y1(t) + \delta 2\sigma (t)y1(t - \tau )

\biggr] 
dB(t),(5.3)

where the control input is U\sigma (t)(t) := \eta 1\sigma (t)y
3
1(t)y2(t) + \eta 2\sigma (t)y1(t) + \eta 3\sigma (t)y2(t) + u(t)

with \eta 1\sigma (t), \eta 2\sigma (t), \eta 3\sigma (t) \in \BbbR and the disturbance u(t) \in \BbbR .
To study SISS of the system (5.3), let the LKFs and LRFs be V1(t, y(t)) =

V2(t, y(t)) = y\top (t)y(t). For all t /\in \scrT , the derivatives of Lyapunov functions satisfy

L V\sigma (t)(t, yt) \leq (2\eta 1\sigma (t)  - 2\gamma 3\sigma (t))y
3
1(t)y2(t) + (\varepsilon + 2\eta 2\sigma (t) + 2\delta 21\sigma (t))y

2
1(t)

 - 2\gamma 1y
2
2(t) + (2 + 2\eta 3\sigma (t)  - 2\gamma 2)y1(t)y2(t) + 2\gamma 2y2(t)y1(t - \tau )

+ 2\delta 22\sigma (t)y
2
1(t - \tau ) + \varepsilon  - 1u2(t),(5.4)

and for the switching time instants, there exists \mu \geq 1 such that

V\sigma (tk)(tk, y(tk)) \leq \mu V\sigma (t - k )(t
 - 
k , y(t

 - 
k )), k \in \BbbN .

Let M = 2, \gamma 1 = 0.5, \gamma 2 = 1.5, and \mu = 1.1. Pick \gamma 31 = 0.5, \eta 11 = 1.5, \eta 21 =
 - 2, \eta 31 = 0, \delta 11 = 0.5, \delta 21 = 0.5 and \gamma 32 = 0.9, \eta 12 = 1, \eta 22 =  - 4, \eta 32 = 1, \delta 12 =
1, \delta 22 = 1. First, for the LKFs, we have from (5.4) that

L V1(t, yt) \leq  - 0.8V1(t, y(t)) + 0.7V1(t - \tau , yt) + 2u2(t),

L V2(t, yt) \leq  - 0.9V2(t, y(t)) + 0.6V2(t - \tau , yt) + 2u2(t).

From Theorem 3.1, if \tau a > 1.2929, then the system (5.3) is SISS. Second, consider the
LRFs. If V\sigma (t)(t, y(t)) \geq max\{ 0.5| V\sigma (t)(t, y(t))| \tau , u2(t)\} for all \sigma (t) \in \{ 1, 2\} , then

L V1(t, yt) \leq  - 0.5V1(t, y(t)), L V2(t, yt) \leq  - 0.9V2(t, y(t)).

From Theorem 3.2, the system (5.3) is SISS if \bfittheta  - \delta > 0.1906.
Set y(t) = [2, - 3]\top for t \in [0, 0.5], \tau = 0.5, u(t) = 0.1 sin(t) and the stochastic

perturbation is the Gaussian white noise with zero-mean and variance of 30. Under
the periodic switching time sequence, the state responses of the system (5.3) are
given in Figures 5.1--5.2. Figure 5.1 gives the state response of the system (5.3) under
Krasovskii-type conditions with the ADT \tau a = 1.5, whereas Figure 5.2 presents the
state response of the system (5.3) under Razumikhin-type conditions with \bfittheta = 0.3.

5.2. Networked switched control systems. Consider networked stochastic
switched control systems subject to network-induced delays in both the state mea-
surement and the switching signal. The system model is given by [5, 8]

dx(t) = (A\sigma (t)x(t) +B\sigma (t)u(t) + C\sigma (t)v(t))dt

+ (D\sigma (t)x(t) + E\sigma (t)u(t) + F\sigma (t)v(t))dB(t),(5.5)

where x(t) \in \BbbR nx is the system state, u(t) \in \BbbR nu is the controlled input, v(t) \in 
\BbbR nv is external disturbance, and B(t) is a one-dimensional Brownian motion defined
on a complete probability space (\Omega ,\frakF ,\BbbP , \{ \frakF t\} t\geq t0) and satisfies \BbbE [dB(t)] = 0 and
\BbbE [dB2(t)] = dt. The switching signal \sigma : \BbbR +

0 \rightarrow \scrM := \{ 1, . . . ,M\} is piecewise
continuous. Assume that the matrices in (5.5) have the appropriate dimensions.
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Fig. 5.1. State response of the system (5.3). The LKFs are applied with a periodic switching
time sequence and the period 1.5.

Fig. 5.2. State response of the system (5.3). The LRFs are applied with a periodic switching
time sequence and \bfittheta = 0.3.

Because of the network, the information to be transmitted needs to be sampled.
The sampling times and the switching times are assumed to be the same. However,
the network induces the delays at both the sensor and actuator sides, which in turn
leads the switching to be delayed [5]. The total delays of the state measurement
and the control actuation are augmented as \tau (t), which is bounded by \tau \leq hk :=
tk+1  - tk, k \in \BbbN ; see [3, 5]. As a result, the switching of the plant and the controller
is asynchronous in [tk, tk+ \tau (tk)) and synchronous in [tk+ \tau (tk), tk+1). That is, if the
ith subsystem is active in [tk, tk+1), then the jth controller is active in [tk, tk + \tau (tk))
and the ith controller is active in [tk + \tau (tk), tk+1), where i, j \in \scrM , i \not = j. Assume
that the transmission information is compressed as one single packet, the sensors are
time-driven, and the controllers and the actuators are event-driven. Therefore, the
networked switched control system (5.5) is modeled as

dx(t) = (A\sigma (t)x(t) +B\sigma (t)K\sigma (t+\tau (t))xt + C\sigma (t)v(t))dt

+ (D\sigma (t)x(t) + E\sigma (t)K\sigma (t+\tau (t))xt + F\sigma (t)v(t))dB(t).(5.6)

In the following theorem, based on LKFs, sufficient conditions are derived to
guarantee SISS of the system (5.6) and the stabilizing controller gains are given.

Theorem 5.1. Consider the system (5.6) and suppose that the constants \lambda 1 >
\lambda 2 \geq 0, \lambda 3, \lambda 4 \geq 0, \bfitrho 1,\bfitrho 2 \geq 0, \tau \in [0, \lambda  - 1

1 ), and \mu > 1 are given. If there exist
matrices Xi = X\top 

i > 0, Qi = Q\top 
i > 0, Ri = R\top 

i > 0, Yi with appropriate dimensions
such that for all (i, j) \in \scrM \times \scrM , i \not = j,\scrH i,\scrH j \leq 0 and
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Qj  - \mu Qi \geq 0, Rj  - \mu Ri \geq 0, Xj  - \mu Xi \leq 0,(5.7)

Ri  - \tau \lambda 1Ri  - \lambda 1Qi \leq 0, Rj  - \tau \lambda 1Rj  - \lambda 1Qj \leq 0,(5.8)

\scrH i=

\left[    
\Sigma i BiYi Ci XiD

\top 
i

\ast Qi  - \lambda 2Xi 0 Y \top 
i E

\top 
i

\ast \ast  - \bfitrho 1I F\top 
i

\ast \ast \ast  - Xi

\right]    ,\scrH j=

\left[    
\Sigma j BiYj Ci XjD

\top 
i

\ast  - Qj  - \lambda 4Xj 0 Y \top 
j E

\top 
i

\ast \ast  - \bfitrho 2I F\top 
i

\ast \ast \ast  - Xj

\right]    .
where \Sigma i = AiXi+XiA

\top 
i +\lambda 1Xi+Qi+\tau Ri and \Sigma j = AiXj+XjA

\top 
i  - \lambda 3Xj+Qj+\tau Rj,

then there exist stabilizing switched controllers such that the system (5.6) is SISS
for the switching signal satisfying the ADT condition (C.6) in Theorem 4.1, and the
controller gains are Ki = YiX

 - 1
i , i \in \scrM .

Proof. To prove the theorem, we consider the worst case: \tau (t) \equiv \tau . As a result,
in the switching interval [tk, tk+1), k \in \BbbN , the closed-loop system is divided into two
parts: for t \in [tk, tk + \tau ),

dx(t) = (Aix(t) +BiKjxt + Civ(t))dt+ (Dix(t) + EiKjxt + Fiv(t))dB(t);(5.9)

for t \in [tk + \tau , tk+1),

dx(t) = (Aix(t) +BiKixt + Civ(t))dt+ (Dix(t) + EiKixt + Fiv(t))dB(t).(5.10)

For all \sigma (t - \tau ) = i \in \scrM , the LKFs are defined as

Vi(t, x(t)) := x\top (t)Pix(t) +

\int t

t - \tau 
x\top (s) \=Qix(s)ds+

\int 0

 - \tau 

\int t

t+\theta 

x\top (s) \=Rix(s)dsd\theta ,

where \=Qi := PiQiPi, \=Ri := PiRiPi, and Pi, Qi, Ri \in \BbbR nx\times nx are positive definite.
Thus, it follows from Theorem 4.1 that if for all (i, j) \in \scrM \times \scrM and i \not = j,

\alpha 1(| x(t)| ) \leq Vi(t, x(t)) \leq \alpha 2(| x(t)| ), x(t) \in \BbbR nx ,(5.11)

L Vi(t, x(t)) \leq  - \lambda 1Vi(t, x(t)) + \lambda 2Vi(t - \tau , xt) + \bfitrho 1| v(t)| 2, t \in [tk + \tau , tk+1),(5.12)

L Vi(t, x(t)) \leq \lambda 3Vi(t, x(t)) + \lambda 4Vi(t - \tau , xt) + \bfitrho 2| v(t)| 2, t \in [tk, tk + \tau ),(5.13)

Vi(tk, x(tk)) \leq \mu Vj(tk, x(tk)) + \bfitrho 3| v(tk)| 2,(5.14)

where \bfitrho \imath \geq 0 and \imath = 1, 2, 3, then the system (5.6) is SISS under the ADT condition
(C.6).

Define \alpha 1(v) := mini\in \scrM \{ \lambda min(Pi)\} v2 and \alpha 2(v) := maxi\in \scrM \{ \lambda max(Pi) +
\tau (\lambda max( \=Qi) + \lambda max( \=Ri))\} v2; then (A.1) holds. For all t \in [tk + \tau , tk+1), we have
from (5.10) and (5.12) that

L Vi(t, x(t)) + \lambda 1Vi(t, x(t)) - \lambda 2Vi(t - \tau , xt) - \bfitrho 1v
\top (t)v(t)

\leq 2x\top (t)Pi(Aix(t) +BiKixt + Civ(t)) + (Dix(t) + EiKixt + Fiv(t))
\top Pi

\times (Dix(t) + EiKixt + Fiv(t)) + x\top (t)( \=Qi + \tau \=Ri + \lambda 1Pi)x(t)

 - x\top t ( \=Qi + \lambda 2Pi)xt  - 
\int t

t - \tau 
x\top (s)( \=Ri  - \lambda 1 \=Qi  - \tau \lambda 1 \=Ri)x(s)ds

 - \lambda 2

\int t - \tau 

t - 2\tau 

x\top s ( \=Qi + \tau \=Ri)xsds - \bfitrho 1v
\top (t)v(t)

\leq 2x\top (t)Pi(Aix(t) +BiKixt + Civ(t)) + (Dix(t) + EiKixt + Fiv(t))
\top Pi

\times (Dix(t) + EiKixt + Fiv(t)) + x\top (t)( \=Qi + \tau \=Ri + \lambda 1Pi)x(t)

 - x\top t ( \=Qi + \lambda 2Pi)xt  - \bfitrho 1v
\top (t)v(t),(5.15)
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where the first ``\leq "" holds due to Jensen's inequality and the second ``\leq "" holds because
of (5.8) and positive definite matrices Pi, \=Qi, \=Ri. As a result, the right-hand side of

(5.15) can be rewritten as
\bigl[ 
x\top (t) x\top t v\top (t)

\bigr] 
\Phi 1i

\bigl[ 
x\top (t) x\top t v\top (t)

\bigr] \top 
, where

\Phi 1i :=

\left[  \Xi 1i PiBiKi + \=D\top 
i PiEiKi PiCi + \=D\top 

i PiFi
\ast K\top 

i E
\top 
i PiEiKi  - \lambda 2Pi  - \=Qi K\top 

i E
\top 
i PiFi

\ast \ast F\top 
i Fi  - \bfitrho 1I

\right]  ,
\Xi 1i := A\top 

i Pi + PiAi +D\top 
i PiDi + \lambda 1Pi + \=Qi + \tau \=Ri, i \in \scrM , and \ast denotes symmetric

terms in block matrix. From the Schur complement lemma, \Phi 1i \leq 0 equals to

\Phi 2i :=

\left[    
\Xi 2i PiBiKi PiCi D\top 

i Pi
\ast  - \=Qi  - \lambda 2Pi 0 K\top 

i E
\top 
i Pi

\ast \ast  - \bfitrho 1I F\top 
i Pi

\ast \ast \ast  - Pi

\right]    \leq 0,(5.16)

where \Xi 2i := \=A\top 
i Pi + Pi \=Ai + \lambda 1Pi + \=Qi + \tau \=Ri and i \in \scrM . Pre- and postmultiplying

\Phi 2i by diag\{ P - 1
i , P - 1

i , I, P - 1
i \} , respectively, yield that

\Phi 3i :=

\left[    
\Xi 3i BiKiP

 - 1
i Ci P - 1

i D\top 
i

\ast  - Qi  - \lambda 2P
 - 1
i 0 P - 1

i K\top 
i E

\top 
i

\ast \ast  - \bfitrho 1I F\top 
i

\ast \ast \ast  - P - 1
i

\right]    \leq 0,(5.17)

where \Xi 3i := P - 1
i

\=A\top 
i + \=AiP

 - 1
i + \lambda 1P

 - 1
i + Qi + \tau Ri, and i \in \scrM . Define Xi := P - 1

i

and Yi := KiP
 - 1
i . Thus, \scrH i \leq 0 implies (5.17).

Similarly, for all t \in [tk, tk + \tau ), we obtain from (5.9) that (5.13) equals to

L Vj(t, x(t)) - \lambda 3Vi(t, x(t)) - \lambda 4Vi(t - \tau , xt) - \bfitrho 2v
\top (t)v(t)

\leq x\top (t)Pj(Aix(t) +BiKixt + Civ(t)) + (Dix(t) + EiKixt + Fiv(t))
\top Pj

\times (Dix(t) + EiKixt + Fiv(t)) + x\top (t) \=Qjx(t) - x\top t \=Qjxt + \tau x\top (t) \=Rjx(t)

 - \lambda 3x
\top (t)Pjx(t) - \lambda 4x

\top 
t Pjxt  - \bfitrho 2v

\top (t)v(t).

Just like the case for t \in [tk + \tau , tk+1), we obtain that \scrH j \leq 0 implies (5.13).
For all k \in \BbbN , Vi(tk, x(tk)) \leq \mu Vj(tk, x(tk))+\bfitrho 3v

\top (tk)v(tk) holds if Pi \leq \mu Pj , \=Qi \leq 
\mu \=Qj , \=Ri \leq \mu \=Rj . From the Schur complement lemma and the proof of Theorem 3
in [8], Pi  - \mu Pj \leq 0 holds if and only if  - Xi + \mu  - 1Xj \leq 0. That is, if (5.7)
holds, then Pi  - \mu Pj \leq 0, which implies \=Qi  - \mu \=Qj \leq Pj(\mu 

2Qi  - \mu Qj)Pj \leq 0 and
\=Ri  - \mu \=Rj \leq Pj(\mu 

2Ri  - \mu Rj)Pj \leq 0. In addition, if there is a feasible solution sat-
isfying \scrH i,\scrH j \leq 0 and (5.7)--(5.8), then the controller gains are Ki = YiX

 - 1
i , where

i \in \scrM .

If the switching is synchronous, then the conditions in Theorem 5.1 can be reduced
according to Theorem 3.1. Similarly, if there exist \rho 1, \rho 2 \in \scrK \infty satisfying the small
gain condition such that V\sigma (t)(t, x(t)) \geq max\{ \rho 1(| V\sigma (t)(t, x(t))| \tau ), \rho 2(| u(t)| )\} holds for

all t \in \BbbR +
t0 , then according to Theorem 4.2 and in the same fashion as the proof of

Theorem 5.1, similar conditions can be derived to establish SISS of the system (5.6).

6. Conclusions. In this paper, stochastic stability was studied for stochastic
switched nonlinear time-delay systems without/with asynchronous switching. Based
on two extended Lyapunov approaches, both Krasovskii-type and Razumikhin-type
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1066 WEI REN AND JUNLIN XIONG

stability conditions were established for both the synchronous and the asynchronous
switching case. Finally, mechanical systems and networked switched control systems
were used to illustrate the obtained theory. A direct extension of this paper is to
analyze stochastic stability of stochastic impulsive switched time-delay systems.
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