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Finite Frequency Negative Imaginary Systems

Junlin Xiong, Ian R. Petersen, and Alexander Lanzon

Abstract—This technical note is concerned with finite frequency negative
imaginary (FFNI) systems. Firstly, the concept of FFNI transfer function
matrices is introduced, and the relationship between the FFNI property and
the finite frequency positive real property of transfer function matrices is
studied. Then the technical note establishes an FFNI lemma which gives
a necessary and sufficient condition on matrices appearing in a minimal
state-space realization for a transfer function to be FFNI. Also, a time-do-
main interpretation of the FFNI property is provided in terms of the system
input, output and state. Finally, an example is presented to illustrate the
FFNI concept and the FFNI lemma.

Index Terms—Lightly damped systems, negative imaginary systems, pos-
itive real systems.

I. INTRODUCTION

Loosely speaking, negative imaginary linear systems are Lya-
punov stable dynamical systems whose transfer function matrices
satisfy the negative imaginary condition:
for all [1]–[4]. In the SISO case, a negative imagi-
nary transfer function has non-positive imaginary part when

where . In other words, the phase of the
transfer function satisfies where .
Negative imaginary systems can model many practical physical
systems. For example, a lightly damped flexible structure with col-
located position sensors and force actuators can be modeled by a
class of negative imaginary systems with transfer function given by

, where is the mode
frequency associated with the -th mode, is the damping
coefficient, and is determined by the boundary condition on the un-
derlying partial differential equation [1]–[3]. Also, a transfer function
of the form , which was used
to model the voltage subsystem in a piezoelectric tube scanner system
in [5], is negative imaginary. The negative imaginary theory is closely
related to the positive real theory [6]–[8]. The concept of systems
with counterclockwise input-output dynamics [9] is also related to the
concept of negative imaginary systems.
In [2]–[4], a complete state-space characterization of negative imag-

inary linear systems was established in terms of the solvability of a
linear matrix inequality and a linear matrix equation. A necessary and
sufficient condition was also derived to guarantee the internal stability
of a positive feedback interconnection of negative imaginary linear sys-
tems in terms of their DC loop gains. The stability result in [1]–[4]
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has been used in the case of a string of arbitrarily many coupled sys-
tems [10], where a sufficient stability condition is given in terms of a
continued fraction of the subsystem DC gains. The control synthesis
problem for negative imaginary systems has been explored in the full
state feedback case in [11] and in the output feedback case by reformu-
lating negative imaginary systems into systems that have bounded gain
as in [12]. Moreover, a lossless negative imaginary theory has been de-
veloped to model negative imaginary systems whose poles are purely
imaginary [13].
In this technical note, a new concept—finite frequency negative

imaginary (FFNI) transfer function matrices—will be introduced.
Roughly speaking, an FFNI transfer function matrix is a square
real-rational proper transfer function, which is not only stable in
the Lyapunov sense but also possesses the negative imaginary prop-
erty for a finite frequency range. This concept can be considered
as a generalization of the concept of negative imaginary transfer
function matrices. The study of FFNI transfer function matrices is
mainly motivated by the fact that many such transfer functions arise
in practical control problems. For example, the capacitance sub-
system of the piezoelectric tube scanner studied in [5] is modeled by

; this transfer func-
tion is FFNI with the parameter values obtained through experiment.
This example is also used in this technical note to illustrate the theory
to be developed. For some lightly damped flexible structures, taking
non-collocated position sensors and force actuators often leads to
FFNI transfer functions. The study of FFNI transfer function matrices
is also inspired by the finite frequency positive real (FFPR) theory
developed in [14], where the FFPR theory was successfully applied to
design dynamical systems with the FFPR property.
The organization of the technical note is as follows. Section II intro-

duces the FFNI concept for square real-rational proper transfer func-
tion matrices. Several properties of such matrices are studied. The rela-
tionship between the FFNI property and the FFPR property of transfer
function matrices is established. In Section III, the FFNI lemma—the
main result of the technical note—is provided in terms of a linearmatrix
inequality and two linear matrix equations. The FFNI lemma gives a
complete state-space characterization for systems to be FFNI in terms
of their minimal realizations. When the limit frequency of an FFNI
transfer function matrix approaches infinity, the FFNI lemma is shown
to reduce to the negative imaginary lemma developed in [2]–[4]. More-
over, a time-domain interpretation of the FFNI property is presented
in terms of the system input, output and state. Such an interpretation
opens a door to develop the negative imaginary theory for nonlinear
systems. An illustrative example is provided in Sections IV. Section V
concludes the technical note.
Notation: , and denote the complex conjugate, the trans-

pose and the complex conjugate transpose of a complex matrix ,
respectively.

II. FINITE FREQUENCY NEGATIVE IMAGINARY
TRANSFER FUNCTION MATRICES

The idea behind the definition of FFNI transfer function matrices is
that the negative imaginary conditions, which are used in [4] to define
negative imaginary systems, are only required to hold on a finite fre-
quency range.
Definition 1: A square real-rational proper transfer function matrix
is said to be finite frequency negative imaginary with limit fre-

quency if it satisfies the following conditions:
1) has no poles at the origin and in the open right-half of the
complex plane;

2) for all , where
;

3) Every pole of on , if any, is simple and the corresponding
residue matrix of is positive semidefinite Hermitian, where

;
4) .
Remark 1: A complex number is called a pole of order of a

transfer function matrix , if some element of has a pole of
order at and no element has a pole of order larger than at [15].
A simple pole is a pole of order one. Let be a minimal
state-space realization of , the poles of are the eigenvalues
of [16].
Lemma 1: If is an FFNI transfer function matrix with limit

frequency , then the following properties hold:
1) for all .
2) Every pole of in , if any, is simple and the cor-
responding residue matrix of is negative semidefinite
Hermitian.
Proof: (Property 1) For any such that is not a pole

of , we know that . Following along the
similar lines as in the proof of the necessity part of Lemma 3 in [4], we
have for when is not a pole
of .
(Property 2) Firstly, note that can be factored into

whenever is a pole of . Actually,
may be simply defined as so that the

factorization is obtained. In addition, needs not to be a proper
transfer function matrix. Suppose is a pole of .
Then following along the similar lines as in the proof of Lemma 3 in [4],
we have that the corresponding residue matrix of at
is given by .
The FFNI concept is closely related to the FFPR concept devel-

oped in [14]. Before formally establishing the relationship between
these concepts, let us recall the concept of FFPR transfer function
matrices.
Definition 2: [14, Def. 4]: A square real-rational proper transfer

function matrix is said to be finite frequency positive real with
limit frequency if it satisfies the following conditions:
1) has no poles in the open right-half of the complex plane;
2) , for all , where

;
3) Every pole of in , if any, is simple and the corresponding
residue matrix is positive semidefinite Hermitian, where

.
In the above definition, the expression “limit frequency” is used in-

stead of the term “bandwidth”, which was used in [14]. Now, we are
ready to state the relationship between FFNI transfer function matrices
and FFPR transfer function matrices based on their definitions.
Lemma 2: Given a square real-rational proper transfer function ma-

trix , suppose has no poles at the origin, and
. Then the following statements are equivalent:

1) is FFNI with limit frequency .
2) is FFNI with limit frequency .
3) is FFPR with limit frequency .
Proof: The proof is similar to that of Lemma 4 in

[4], and hence omitted.
Note that and have the same set of

poles. When is not a pole of , we have
. When is a pole of , we have

. Then
the equivalence follows from the definitions and the properties in
Lemma 1.
Lemma 2 allows us to translate an FFNI problem to an FFPR

problem. In the next section, the FFNI lemma will be developed in
this way.
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III. FINITE FREQUENCY NEGATIVE IMAGINARY LEMMA

The FFNI Lemma to be developed in this section gives a necessary
and sufficient condition for a transfer function matrix to be FFNI in
terms of the matrices appearing in a minimal state-space realization of
the transfer function. This lemma could be considered as a generaliza-
tion the Negative Imaginary Lemma [2]–[4] and is analogous to the
FFPR Lemma [14].
Theorem 1 (Finite Frequency Negative Imaginary Lemma): Con-

sider a real-rational proper transfer function matrix with a min-
imal state-space realization . Suppose all poles of
are in the closed left-half of the complex plane, and the poles on the
imaginary axis, if any, are simple. Let a positive scalar be given.
Also, suppose that if has eigenvalues such
that , the residue of at is given by

. Then the following statements
are equivalent:
1) The transfer function matrix is FFNI with limit frequency

.
2) , , and the transfer function matrix
with a minimal state-space realization is FFPR
with limit frequency .

3) , , and for
all if has any eigenvalues on where

. Also, there exist real symmetric matrices
and such that

(1)

(2)

(3)

4) , , and for
all if has any eigenvalues on where

. Also, there exist real symmetric matrices
and such that

(4)

(5)

(6)

Proof: Let
. We have . Hence,

this equivalence follows from the definitions and Lemma 2.
In view of the FFPR Lemma (that is, Theorem 3 of

[14]), the statement in 2) is true if and only if the following conditions
hold:
a) for all if has any
eigenvalues on ;

b) There exist real symmetric matrices and
such that

(7)

Hence, we only need to prove that the inequality in (7) is equivalent to
the inequality in (1) and the equations in (2), (3).
Note that the inequality in (7) can be rewritten as

Pre- and post-multiplying this inequality by and its

transpose, respectively, we obtain

where . Therefore, we
must have , which is equivalent to (3). Fur-
thermore, the above inequality becomes

which is equivalent to (1), (2) as the matrix is nonsingular. Now we
can conclude that the inequality in (7) is equivalent to the inequality in
(1) and the equations in (2) and (3).

The proof is similar to the proof for by
invoking duality.
Remark 2: In Theorem 1, an alternative method to compute the

residue matrix is to use the formula where and are
column vectors such that , , and
(see Theorem 3 and Lemma 6 of [14] for more details).
Remark 3: Theorem 1 can also be derived from the generalized KYP

lemma [8] by following the approach used here and paying attention
to the case where the system has poles in the frequency range of in-
terest. Furthermore, some versions of middle and high frequency neg-
ative imaginary lemmas could be derived similarly.
It follows from the definitions that when the limit frequency
, an FFNI transfer function matrix reduces to a normal negative

imaginary transfer function matrix. In the next result, we show that the
conditions in the Finite Frequency Negative Imaginary Lemma will
reduce to the conditions in the Negative Imaginary Lemma as .
Corollary 1: Under the same assumptions as in Theorem 1, let the

limit frequency . Then the necessary and sufficient conditions
in the finite frequency negative imaginary lemma lead to the necessary
and sufficient conditions in the negative imaginary lemma.

Proof: To complete the proof, we need to show, under the as-
sumptions of Theorem 1, that
a) the inequality in (4) and the equations in (5) and (6) are reduced
to

(8)

b) the real symmetric matrix is positive definite;
c) the matrix is positive semidefinite Hermitian.

The proof is accordingly divided into three steps.
Step 1: Using similar techniques to [14], [17], the parameter in

(4) must approach zero as the limit frequency approaches
infinity. Hence, we have . Then the inequality in (4)
and the equations in (5) and (6) reduce to (8).

Step 2: Under the condition that all the eigenvalues of are in the
closed left-half of the complex plane, we will prove that the
real symmetric matrix must be positive definite.
Because all poles of are assumed to be in the closed
left-half plane, it follows from the inequality in (8) that

. Next, we prove that is nonsingular by
contradiction.
Suppose is singular. Then a unitary congruence transfor-
mation can be used to give
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where is nonsingular and is a unitary
matrix. Hence, we can assume that the matrices , ,
and in (8) are of the following forms without loss of
generality:

Now, the inequality in (8) can be re-written as

Because the block of the above LMI is zero, we
must have . Furthermore, the non-singularity
of leads to . Therefore, the matrix is of the

form . Also, the equation in (8) can be

re-written as . Because ,

we have . Therefore, the matrix is of the form

. It follows from the matrix forms obtained

above that the matrix pair is not controllable. This
contradicts the controllability of . Hence must be
nonsingular.
In summary, we have both that and that is
nonsingular. Hence, .

Step 3: Under the assumption that the purely imaginary poles
of , if any, are simple, we will prove that the
matrix is positive semidefinite Hermitian.
Firstly, in view of the equation in (8), we have that

. In the sequel, it suffices to
show that is negative semidefinite Hermitian.
Suppose that has a purely imaginary pole pair at

, . Then there exists a nonsingular real matrix
(e.g., considering the real Jordan canonical form of

the matrix ) such that , where

has no eigenvalues at , and

is of the form . Hence, we

can assume that the matrices , , and in (8) are of
the following forms without loss of generality:

where is nonsingular and has no eigenvalues at ,

.

Now through direct calculation, we obtain

On the other hand, the inequality in (8) can be re-written as

(9)

Let . Then it follows from (9) that

Therefore, we must have and . That is,

the matrix is of the form where .

In this case, . That is, the block
of (9) is zero. Hence

(10)

Because the matrices and have no common eigen-
values, the Sylvester (10) has a unique solution which is
given by . Therefore, the matrix is of the form

.

Now, we can calculate

Therefore, . Hence

Therefore, we have
. This completes the proof.

The following theorem provides a time-domain interpretation of the
FFNI properties in terms of the system input, output and state. It is
expected that this result may give us a deeper understanding of FFNI
systems.
Theorem 2: Consider a proper stable transfer function matrix

with . Let , and be the input, the output and the
state of a minimal realization of . Then, the following statements
are equivalent:
1) is FFNI with limit frequency .
2) The inequality

(11)

holds for all square integrable and differentiable inputs such that

(12)

Proof: Let be a minimal state-space realization of
. Then the linear system whose transfer function is given by

can be represented as

(13)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 11, NOVEMBER 2012 2921

Let us consider a new transfer function matrix
. Then is a minimal state-space realization of
and the corresponding dynamical system can be represented by

(14)

In view of Lemma 2, the transfer function matrix is FFNI with
limit frequency if and only if the transfer function matrix is
FFPR with limit frequency . In view of Theorem 4 of [14], is
FFPR with limit frequency if and only if the passivity property

holds for all square integrable inputs such that the inequality (12)
holds.
On the other hand, it follows from the system equations in (13) and

(14) that

Therefore, is FFPR with limit frequency if and only if the in-
equality in (11) holds for all square integrable and differentiable inputs
such that (12) holds.
Remark 4: When the transfer function matrix in Theorem 2

is strictly proper, (i.e., ), the requirement of differentiability of
inputs can be removed.
Remark 5: The statement 2) can be directly obtained from FFNI

lemma. Pre- and post-multiplying the inequality (1) by and
its transpose, respectively, we have

In view of the equations in (2) and (3), we obtain

Hence, the above inequality can be written as

Next, following similar lines to the proof of [14, Theorem 4], the state-
ment 2) in Theorem 2 can be obtained.
Remark 6: In view of statement 2) in Theorem 2, FFNI systems may

be considered as systems that possess the property (11) with respect to
control inputs that do not drive the states too quickly; here the quick-
ness is quantified by in the sense of (12), and it follows from (12)
that . Similar interpretations have been given for FFPR
systems in [17].
Remark 7: A frequency domain interpretation of the above result

can be obtained via Parseval’s Theorem. Assume that to sim-
plify the argument. Then the time domain property (11) can be written
as a frequency domain property

(15)

and the property (12) can be written as

(16)

where and are the Fourier transforms of the control input
and the system state , respectively; denotes the real part

of a complex matrix. Therefore, FFNI systems are systems that possess
the frequency domain property (15) with respect to control inputs that
mainly excite the system with natural frequency below in the sense
of (16). Similar interpretations have been given for FFPR systems in
[14].
Remark 8: As the limit frequency approaches to infinity, the fol-

lowing can be observed:
1) The statement 1) in Theorem 2 will reduce to that is negative
imaginary.

2) The constraint in (12) will always hold for any square integrable
input ( is assumed). Hence, the statement 2) in Theorem 2
will reduce to the condition that the inequality (11) holds for all
square integrable inputs.

Because the two statements in Theorem 2 are equivalent, they provide
us with an approach to characterize the negative imaginary property in
the time domain. Theorem 2 also makes it possible to generalize the
negative imaginary results for linear systems to the case of nonlinear
systems. Although nonlinear systems usually do not have transfer func-
tions in the frequency domain, they do have the input, the state and the
output in the time domain. It should be noticed that the time domain in-
terpretation of negative imaginary systems is related to the property of
counter-clockwise input-output dynamical systems introduced in [9].

IV. ILLUSTRATIVE EXAMPLE

To illustrate the FFNI concept and the FFNI lemma, the piezoelec-
tric tube example studied in [5], [18] is considered in this section. The
piezoelectric tube is used in the scanning unit of scanning tunneling
microscopes and atomic force microscopes. The inputs to the piezo-
electric tube are two voltage signals: and , which are applied
to the input ends of the electrodes of the piezoelectric tube. The outputs
to the piezoelectric tube are classified into two groups. The first group
is the voltages and , which are the voltages at the output ends
of the electrodes. The second output group is the distances ( -axis
direction) and ( -axis direction) between an aluminum cube and ca-
pacitive sensor heads. These distances are measured by capacitive sen-
sors in terms of the change in the capacitance between the aluminum
cube and the heads of the capacitive sensors. Accordingly, the transfer
function from input to output is called
the voltage subsystem transfer function of the tube; the transfer func-
tion from input to output is called the ca-
pacitance subsystem transfer function of the tube.
For the capacitance subsystem of the tube, the experiment in [5]

shows that the transfer functions form to and from to
are given by

Note that the equality is expected because of
the symmetric alignment of the capacitive sensors and the aluminum
cube faces in the and directions [5]. The parameter values of the
transfer function are given by , ,

, and (see [5, Table I]).
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Fig. 1. Nyquist plot of piezo tube frequency response .

Now, we show that the above transfer function is actually FFNI, and
determine the corresponding limit frequency. Since the transfer func-
tion has no purely imaginary poles, we only need to consider

the imaginary part of on . It follows from a direct
computation that

where denotes the imaginary part of a complex
number. Therefore, is FFNI with limit frequency

. The limit frequency can
also be obtained through a Nyquist plot as shown in Fig. 1. It can be
seen from Fig. 1 that the imaginary part of is negative for

.
To verify the FFNI Lemma for this example, we first found aminimal

state-space realization of with

Now, solving the linear matrix inequality in (1) and the linear matrix
equations in (2), (3) with , we found a feasible solution is
given by

If we set the limit frequency to be a slightly larger number, say
5419.5, then (1)–(3) have no feasible solutions. According to the FFNI
lemma, the transfer function is FFNI with limit frequency

but not FFNI with limit frequency . This con-
firms the above findings via both direct computations and the Nyquist
plot.

V. CONCLUSIONS

This technical note has studied the FFNI property of dynamical sys-
tems. The concept of FFNI transfer function matrices was first intro-
duced. Then an FFNI lemma was derived for dynamical systems to be

FFNI in terms of their minimal state-space realizations. A time-domain
interpretation of the FFNI property was also proposed in terms of the
system input, output and state. Finally, the FFNI lemma was illustrated
by an example found in a piezoelectric tube scanner system. The time
domain interpretation opens a door to generalize the negative imagi-
nary theory from linear systems to nonlinear systems. Another area for
future research is to develop a stability result for interconnected FFNI
systems.
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