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Negative Imaginary Lemmas for Descriptor Systems
Junlin Xiong, Alexander Lanzon, and Ian R. Petersen

Abstract—This technical note studies the negative imaginary
properties of descriptor linear systems based on state-space real-
izations. Under the assumption of a minimal realization, necessary
and sufficient conditions are established to characterize the nega-
tive imaginary properties of descriptor systems in terms of linear
matrix inequalities with equality constraints. In particular, a neg-
ative imaginary lemma, a strict negative imaginary lemma and a
lossless negative imaginary lemma are developed. A multiple-input
and multiple-output RLC circuit network is used as an illustrative
example to validate the developed theory.

Index Terms—Descriptor systems, linear matrix inequalities,
negative imaginary systems, RLC circuits.

I. INTRODUCTION

The negative imaginary property is often satisfied for linear dy-
namical systems stemming from flexible structures and passive linear
electrical circuits [1], [2]. The question of how to characterise negative
imaginary properties in terms of system matrices is one of the main
research problems in the study of negative imaginary systems theory.
Under the assumption of minimal state-space realizations, necessary
and sufficient conditions have been established, and are summarized
as the Negative Imaginary Lemma in [1], [3]. As a result, the negative
imaginary properties can be numerically tested efficiently. Along this
line of research, lossless and finite frequency negative imaginary
lemmas have been proposed in [4], [5], respectively. The negative
imaginary lemma in [1], [3] has also been generalized by removing
the minimality assumption [6]. Furthermore, the definition of negative
imaginary systems has been modified to symmetric transfer function
matrices in [7], and to allow poles at the origin in [8]. Negative
imaginary lemmas have been applied to the stability analysis of
interconnected negative imaginary systems [1], [3], [9], [10], and to
the synthesis of negative imaginary systems [2], [6].

In this technical note, we are interested in developing negative imag-
inary lemmas for descriptor systems. In practice, descriptor systems
provide a convenient way to model many realistic systems, such as
electrical circuits [11], and electric power grids [12]. In particular,
descriptor state-space models can be readily obtained via modified
nodal analysis [13], [14], compared to the standard state-space models,
for large-scale RLC circuit networks. The research in this technical
note is partially motivated by the model reduction problem of VLSI
circuits, where some particular structure properties need to be pre-
served in the reduced models. For example, the passivity property is
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one such property deserving preservation [11]. Because RLC circuits
may exhibit the negative imaginary property by choosing appropriate
inputs and outputs [2], it may also be desirable to preserve the negative
imaginary property when the order of descriptor models is reduced.
This expectation motivates the current study: how can we test negative
imaginary properties directly from the descriptor state-space models?
A simplified version of the negative imaginary lemma for descriptor
systems has been proposed in [15], and the lemma there is based on
the Weierstrass form of the system. Unfortunately, the Weierstrass
form is usually difficult to obtain. Another criteria to test the negative
imaginary property of descriptor systems is provided in [16], where
the criteria is given in terms of a Kronecker canonical decomposition
of a matrix pencil determined from the system matrices. Here, we aim
to develop negative imaginary lemmas for descriptor systems without
knowledge of the Weierstrass form, and in terms of the system matrices
directly.

The main results of the technical note give negative imaginary lem-
mas for descriptor systems. A negative imaginary lemma for descriptor
systems is derived under the assumption of minimal realizations. A
strict negative imaginary lemma and a lossless negative imaginary
lemma are also established in terms of system matrices based on
a spectral factorization result. These lemmas provide necessary and
sufficient conditions in terms of a set of LMIs with linear equality
constrains, and these conditions are numerically efficient to test the
negative imaginary properties of descriptor systems. When the descrip-
tor systems reduce to standard linear systems, our results coincide with
the results in the literature. The developed negative imaginary theory is
validated by an example from multiple-input and multiple-output RLC
networks, and can be applied to robust control of flexible structures
and passive circuit networks.

Notation: Let Rm×n and Rm×n denote the set of m× n real ma-
trices and real-rational proper transfer function matrices, respectively.
AT and A∗ denote the transpose and the complex conjugate transpose
of a complex matrix A, respectively. R∼(s) represents the adjoint of
transfer function matrix R(s) and is given by RT (−s). �[·] is the real
part of a complex number. The notation X > 0 or X ≥ 0, where X is
a real symmetric matrix, means that the matrix X is positive definite
or positive semidefinite.

II. PROBLEM FORMULATION

Consider a class of dynamical systems described by{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1)

where x(t) ∈ R
n is the system state, u(t) ∈ R

m is the control input
and y(t) ∈ R

m is the measurement output. The matrices E ∈ R
n×n,

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n and D ∈ R

m×m are constant
matrices. The matrix E is often a singular matrix. The pair (E,A) is
called regular if det(sE −A) �= 0 for some s ∈ C; it is called stable
if the roots of det(sE −A) = 0 lie in the left half of the complex
plane. When (E,A) is regular, the descriptor system (1) has a transfer
function

R(s) = C(sE −A)−1B +D. (2)
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The regularity of (E,A) also ensures that there exist non-singular
matrices Q ∈ R

n×n, P ∈ R
n×n such that

QEP =

[
I 0
0 N

]
, QAP =

[
A1 0
0 I

]
(3a)

QB =

[
B1

B2

]
, CP = [C1 C2 ] (3b)

where N ∈ R
n2×n2 is a nilpotent matrix, A1 ∈ R

n1×n1 , B1 ∈
R

n1×m, B2 ∈ R
n2×m, C1 ∈ R

m×n1 , C2 ∈ R
m×n2 and n1 + n2 =

n. The matrices on the right sides of (3) are called the Weierstrass
form of the descriptor system (1).

Definition 1—[3]: A transfer function matrix R(s) ∈ Rm×m is
negative imaginary if

1) R(s) has no poles at the origin and in �[s] > 0;
2) j[R(jω)−R∗(jω)] ≥ 0 for all ω ∈ (0,∞) except values of ω

where jω is a pole of R(s);
3) If jω0, ω0 ∈ (0,∞), is a pole of R(s), it is at most a simple

pole, and the residue matrix K0 � lims→jω0
(s− jω0)jR(s) is

positive semidefinite Hermitian.

Remark 1: Both the negative imaginary and the positive real prop-
erties are concerned with the phase characteristics of transfer functions
over all frequencies. In contrast, the bounded real property is a property
about the gain characteristics of transfer functions over all frequencies
[17]. For example, the transfer function R1(s) = b1/(s+ 1) with
b1 > 0 is both negative imaginary and positive real for any b1 > 0,
and is bounded real with gain no greater than unity only for b1 ≤ 1.
The transfer function R2(s) = b2/(s

2 + 1) with b2 > 0 is always
negative imaginary, and is neither positive real nor bounded real for
any b2 > 0. The transfer function R3(s) = b3s/(s

2 + 1) with b3 > 0
is only positive real.

Definition 2—[1]: A transfer function matrix R(s) ∈ Rm×m is
termed strictly negative imaginary if:

1) R(s) has no poles in �[s] ≥ 0;
2) j[R(jω)−R∗(jω)] > 0 for ω ∈ (0,∞).

Remark 2: Because negative imaginary properties (see Definition 1
and 2) are defined for transfer function matrices R(s) ∈ Rm×m, they
are independent of the state-space realization of R(s). As a result, the
results expressed in terms of transfer functions in [1]–[4] are still valid
for the transfer functions of descriptor systems.

The objective of the technical note is to develop state-space negative
imaginary lemmas for descriptor systems.

III. NECESSARY AND SUFFICIENT NEGATIVE

IMAGINARY LEMMAS

In this section, three negative imaginary lemmas are developed for
descriptor systems under the minimal realization assumption of trans-
fer functions. These lemmas extend the negative imaginary lemma
(that is, [3, Lemma 7]), the strict negative imaginary lemma (that
is, [3, Lemma 8]), the lossless negative imaginary lemma (that is,
[4, Theorem 1]) to the descriptor systems case, respectively.

Assumption 1: The state-space realization (E,A,B,C,D) is both
controllable and observable.

In view of [18, Theorem 2–6.3], Assumption 1 is equivalent to that
(E,A,B,C,D) is a minimal realization of the transfer function in (2);
see also [19, Theorem 6.3]. The system (1) is controllable if and only
if both (A1, B1) and (N,B2) are controllable. It is observable if and
only if both (A1, C1) and (N,C2) are observable.

Now, we are ready to state our first result, which extends
[3, Lemma 7] to the descriptor systems case.

Theorem 1: Consider a state-space realization (E,A,B,C,D) of
the transfer function R(s) ∈ Rm×m. Suppose Assumption 1 holds.
Then R(s) is negative imaginary if and only if:

1) det(A) �= 0, R(∞) = RT (∞);
2) there exist matrices X ∈ R

n×n, Y ∈ R
n×m such that

ATX +XTA ≤ 0 (4)

CT +XTEA−1B =ATY (5)

ETX = XTE ≥ 0 (6)

ETY =0. (7)

Proof: (=⇒) Because the transfer function R(s) has no poles at
the origin, one has that the system matrix A is non-singular. The non-
singularity of A further implies that the pair (E,A) is regular. Hence,
the transfer function R(s) has a Weierstrass form (3). Therefore,
we have

R(s) = C1(sI −A1)
−1B1 +D − C2B2 −

h−1∑
i=1

siC2N
iB2

where h < n2 is the smallest integer such that Nh = 0.
Because R(s) is proper, which implies that C2N

iB2 = 0 for i =
1, 2, . . . , h− 1, one has

C2N [B2 NB2 · · · Nn2−1B2] = 0.

Because (N,B2) is controllable, one has that [B2 NB2 · · ·
Nn2−1B2] is of full row rank. It follows from the above equality that
C2N = 0. On the other hand, the observability of (N,C2) implies that⎡

⎢⎢⎣
C2

C2N
...

C2N
n2−1

⎤
⎥⎥⎦

is of full column rank. Therefore, C2 must be of full column rank,
which implies that N = 0 from C2N = 0.

As a result, the transfer function R(s) has a standard state-space
realization

R(s) = C1(sI −A1)
−1B1 +D − C2B2. (8)

Assumption 1 ensures that the state-space realization (A1, B1, C1,
D − C2B2) is a minimal realization. In view of [3, Lemma 7], R(s)
is negative imaginary if and only if the following conditions hold:

1) det(A1) �= 0, D − C2B2 = (D − C2B2)
T ;

2) there exists a matrix X1 ∈ R
n1×n1 , X1 = XT

1 > 0, such that

AT
1 X1 +X1A1 ≤ 0 (9)

CT
1 +X1A

−1
1 B1 =0. (10)

Considering the Weierstrass form (3), the first condition above is
equivalent to the first condition in Theorem 1.

Now we prove that there exist matrices X and Y satisfying
(4)–(7). Let

X = QT

[
X1 0
0 0

]
P−1, Y = QT

[
0
CT

2

]

where the matrix X1 = XT
1 > 0 satisfies (9) and (10). We will verify

that X and Y satisfy (4)–(7).
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Equation (6) holds because of the following equivalences:

ETX = XTE ≥ 0

⇐⇒ PTETQTQ−TXP = PTXTQ−1QEP ≥ 0

⇐⇒
[
X1 0
0 0

]
=

[
XT

1 0
0 0

]
≥ 0

⇐= X1 = XT
1 > 0.

Equation (7) follows from the equivalences:

ETY = 0 ⇐⇒ PTETQTQ−TY = 0

⇐⇒
[
I 0
0 0

][
0
CT

2

]
= 0.

Equation (4) holds because

ATX +XTA ≤ 0

⇐⇒ PTATQTQ−TXP + PTXTQ−1QAP ≤ 0

⇐⇒
[
AT

1 X1 +X1A1 0
0 0

]
≤ 0

⇐⇒ AT
1 X1 +X1A1 ≤ 0.

Equation (5) is true due to

CT +XTEA−1B = ATY

⇐⇒ PTCT + PTXTQ−1QEPP−1A−1Q−1QB

= PTATQTQ−TY

⇐⇒
[
CT

1 +X1A
−1
1 B1

CT
2

]
=

[
0
CT

2

]

⇐⇒ CT
1 +X1A

−1
1 B1 = 0.

(⇐=) Because det(A) �= 0, the pair (E,A) is regular. This implies
that the Weierstrass form (3) exists for R(s). In view of the properness
of R(s) and the controllability and observability assumption, one can
conclude that N = 0 by following the same lines as in the necessary
part of the proof.

Suppose there exist matrices X and Y such that (4)–(7) hold. Let

Q−TXP =

[
X1 X2

X3 X4

]
, Q−TY =

[
Y1

Y2

]
.

We will first verify that X1 satisfies (9) and (10) and then prove X1 =
XT

1 > 0.
Firstly, it follows from (6) that

ETX = XTE ≥ 0

⇐⇒
[
X1 X2

0 0

]
=

[
XT

1 0
XT

2 0

]
≥ 0

⇐⇒ X1 = XT
1 ≥ 0, X2 = 0.

Therefore

Q−TXP =

[
X1 0
X3 X4

]
, X1 = XT

1 ≥ 0.

Secondly, it follows from (7) that

ETY = 0 ⇐⇒ PTETQTQ−TY = 0 ⇐⇒ Y1 = 0.

Therefore

Q−TY =

[
0

Y2

]
.

Inequality (9) follows from

ATX +XTA ≤ 0

⇐⇒
[
AT

1 X1 +X1A1 XT
3

X3 X4 +XT
4

]
≤ 0

=⇒ AT
1 X1 +X1A1 ≤ 0.

Equality (10) holds because

CT +XTEA−1B = ATY

⇐⇒
[
CT

1 +X1A
−1
1 B1

CT
2

]
=

[
0
Y2

]

⇐⇒ CT
1 +X1A

−1
1 B1 = 0, Y2 = CT

2 .

Because we have shown that X1 = XT
1 ≥ 0, we need to prove that

X1 is non-singular to obtain that X1 = XT
1 > 0. Suppose that X1 is

singular. Then there exists an orthogonal matrix U such that

UTX1U =

[
X11 0
0 0

]
, UTA1U =

[
A11 A12

A13 A14

]

UTB1 =

[
B11

B12

]
, C1U = [C11 C12 ]

where X11 = XT
11 > 0, UTU = UUT = I . Also note that A1 is non-

singular.
It follows from (9) that

AT
1 X1 +X1A1 ≤ 0

⇐⇒ UTAT
1 UUTX1U + UTX1UUTA1U ≤ 0

⇐⇒
[
AT

11X11 +X11A11 X11A12

AT
12X11 0

]
≤ 0

⇐⇒ AT
11X11 +X11A11 ≤ 0, X11A12 = 0

=⇒ A12 = 0 (because X11 is non-singular).

Following from (10), we have

CT
1 +X1A

−1
1 B1 = 0

⇐⇒ UTCT
1 + UTX1UUTA−1

1 UUTB1 = 0

⇐⇒
[
CT

11 +X11A
−1
11 B11

CT
12

]
= 0

=⇒ C12 = 0.

Therefore, one has

UTA1U =

[
A11 0
A13 A14

]
, C1U = [C11 0 ].

Hence⎡
⎢⎢⎣

C1

C1A1

...
C1A

n1−1
1

⎤
⎥⎥⎦U=

⎡
⎢⎢⎣

C1U
C1UUTA1U

...
C1U(UTA1U)n1−1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

C11 0
C11A11 0

...
...

C11A
n1−1
11 0

⎤
⎥⎥⎦.
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This means that

rank

⎛
⎜⎜⎝
⎡
⎢⎢⎣

C1

C1A1

...
C1A

n1−1
1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ < n1

which contradicts the observability assumption on (A1, C1). There-
fore, we have that X1 is non-singular; hence X1 > 0. Therefore, R(s)
is negative imaginary according to [3, Lemma 7]. This completes the
proof. �

Remark 3: Because the equality constraints in (5) and (7) are linear
constraints, the solution set for (4)–(7) is a convex set. Free toolboxes
such as YALMIP may be used to solve conditions (4)–(7) directly.
Also, optimization techniques could be used to find a feasible solution
to (4)–(7) by constructing the objective function from the equality
constraints.

Remark 4: Theorem 1 can be considered as an extension of the
negative imaginary lemma to the descriptor systems case. When
E = I , [3, Lemma 7] can be recovered.

Remark 5: It follows from (8) that R(∞) = D − C2B2, which
seems dependent on the Weierstrass form (3). However, it follows from
the sufficient part of the proof that if X and Y satisfy the equations in

(4)–(7), then one has Q−TY =

[
0
CT

2

]
. This leads to Y TB = C2B2.

Therefore, we have R(∞) = D − Y TB. In other words, the condition
R(∞) = RT (∞) in Theorem 1 can be replaced by D − Y TB =
(D − Y TB)T .

The next result is an extension of [3, Corollary 1], and gives a
spectral factorization of negative imaginary transfer function matrices.
This result will be used to prove the strict negative imaginary lemma
for descriptor systems.

Corollary 1: Consider a state-space realization (E,A,B,C,D)
of the transfer function R(s) ∈ Rm×m. Suppose Assumption 1 is
satisfied. If R(s) is negative imaginary, then there exists a real rational
strictly proper transfer function matrix

M(s) = LA−1E(sE −A)−1B (11)

such that

R(s)−R∼(s) = −sM∼(s)M(s) (12)

for all s with s not a pole of R(s). Here, L ∈ R
n×n is a matrix satis-

fying LTL = −(ATX +XTA), where X is a solution to conditions
(4)–(7) in Theorem 1. In particular, one has

j [R(jω)−R∗(jω)] = ωM∗(jω)M(jω) (13)

for all ω ∈ [0,∞) with jω not a pole of R(s).
Proof: Note that Assumption 1, together with the properness of

R(s), implies that N = 0, as shown in the proof of Theorem 1. Let
LP = [L1 L2]. We first have that M(s) is strictly proper by noting

M(s) = L1A
−1
1 (sI −A1)

−1B1. (14)

Because R(s) is negative imaginary, it follows from Theorem 1
that there exist two matrices X , Y satisfying (5)–(7) and a matrix L
satisfying ATX +XTA+ LTL = 0.

In a similar way to the sufficiency part of the proof of Theorem 1,
one can conclude that there exist matrices X1 ∈ R

n1×n1 , X1 =
XT

1 > 0, L1 ∈ R
n1×n1 such that

AT
1 X1 +X1A1 + LT

1 L1 = 0, and CT
1 +X1A

−1
1 B1 = 0.

Let Ỹ1 = X−1
1 > 0 and L̃1 = L1X

−1
1 . The above conditions are

equivalent to

A1Ỹ1 + Ỹ1A
T
1 + L̃T

1 L̃1 = 0, and B1 +A1Ỹ1C
T
1 = 0.

Then we have

M(s) = L̃1Ỹ
−1
1 A−1

1 (sI −A1)
−1B1.

Let M1(s) = L̃1Ỹ
−1
1 A−1

1 (sI −A1)
−1B1 and R1(s) = R(s)−

R(∞) = C1(sI −A1)
−1B1. Then

R(s)−R∼(s) =R(s)−RT (−s)

= [R1(s) +R(∞)]− [R1(−s) +R(∞)]T

=R1(s)−RT
1 (−s) = R1(s)−R∼

1 (s)

= −sM∼
1 (s)M1(s) = −sM∼(s)M(s)

for all s with s not a pole of R(s). The second last equality follows
from [3, Corollary 1] and [3, Remark 6]. This proves that (12) holds.
By letting s = jω, (12) becomes

R(jω)−R∗(jω) = −jωM∗(jω)M(jω).

Multiplying both sides of the above equation by j leads to (13). �
The next result is an extension of [3, Lemma 8], and gives a strict

negative imaginary lemma for descriptor systems.
Theorem 2: Consider a state-space realization (E,A,B,C,D) of

the transfer function R(s) ∈ Rm×m. Suppose Assumption 1 is satis-
fied. Then R(s) is strictly negative imaginary if and only if:

1) (E,A) is stable, R(∞) = RT (∞);
2) there exist matrices X ∈ R

n×n, Y ∈ R
n×m such that (4)–(7)

hold;
3) rank(M(jω)) = m for all ω ∈ (0,∞), where M(s) is defined

in (11).

Proof: It can be seen from Definition 1 and Definition 2 that a
strictly negative imaginary transfer function is also a negative imagi-
nary one, but the converse is not true. Hence, the results in Theorem 1
and Corollary 1 are applicable to strictly negative imaginary transfer
functions. The proof here will concentrate on the differences.

(=⇒) It follows from Definition 2 that R(s) has no poles in �[s] ≥
0. Therefore, the matrix A1 in (3) is Hurwitz, and (E,A) is stable.

Because R(s) is strictly negative imaginary, it is also negative
imaginary. According to Theorem 1, we have that R(∞) = RT (∞)
and the second condition holds.

Furthermore, in view of Corollary 1 and Definition 2, respectively,
we have

j [R(jω)−R∗(jω)] = ωM∗(jω)M(jω) > 0, ∀ω ∈ (0,∞).

Therefore, M(jω) is of full column rank for ω ∈ (0,∞).
(⇐=) Firstly, the condition that (E,A) is stable means that R(s)

has no poles in �[s] ≥ 0. Secondly, in view of Theorem 1, the first
and second conditions in the theorem imply that R(s) is negative
imaginary. Then according to Corollary 1, we have

j [R(jω)−R∗(jω)] = ωM∗(jω)M(jω), ∀ω ∈ (0,∞).

Finally, the third condition implies that M∗(jω)M(jω) > 0. There-
fore j[R(jω)−R∗(jω)] > 0 for all ω ∈ (0,∞). Therefore, R(s) is
strictly negative imaginary. �

The third condition in Theorem 2 can be replaced by other condi-
tions as shown in the following lemma.
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Lemma 1: The third condition in Theorem 2 and the following
statements are equivalent:

1) rank(R(jω)−R∗(jω)) = m for all ω ∈ (0,∞).

2) rank

([
A− jωE B
LA−1E 0

])
= n+m for all ω ∈ (0,∞).

3) rank

([
A− jωE 0 B

0 −AT − jωET CT

C BT D −DT

])
=2n+

m for all ω ∈ (0,∞).

Proof: Condition 3 in Theorem 2 ⇐⇒ 1). It follows from
Corollary 1 that

j [R(jω)−R∗(jω)] = ωM∗(jω)M(jω), ω ∈ (0,∞).

Hence R(jω)−R∗(jω) is non-singular if and only if M(jω) is of
full column rank.

Condition 3 in Theorem 2 ⇐⇒ 2). Note that[
A− jωE B
LA−1E 0

]
=

[
I 0

LA−1E(A− jωE)−1 I

]

×
[
A− jωE 0

0 M(jω)

][
I (A− jωE)−1B
0 I

]
.

Hence

rank

([
A−jωE B
LA−1E 0

])
=rank(A−jωE)+rank (M(jω))

=n+ rank (M(jω)) .

Therefore,

rank

([
A− jωE B
LA−1E 0

])
=n+m ⇐⇒ rank (M(jω))=m.

1) ⇐⇒ 3). Firstly, note that

G(s)
Δ
=R(s)−R∼(s)

= [C BT ]

(
s

[
E 0
0 ET

]
−
[
A 0
0 −AT

])−1 [
B
CT

]

+D −DT .

By noting G(jω) = R(jω)−R∗(jω), statement 1 ⇐⇒
rank(G(jω)) = m ⇐⇒ statement 3. The last equivalence follows
from applying the result of the equivalence between the third condition
in Theorem 2 and the second statement in this lemma. �

Next result extends [4, Theorem 1] to the descriptor systems case,
and gives us a lossless negative imaginary lemma for descriptor
systems.

Theorem 3: Consider a state-space realization (E,A,B,C,D) of
the transfer function R(s) ∈ Rm×m. Suppose Assumption 1 is satis-
fied. Then R(s) is lossless negative imaginary if and only if

1) det(A) �= 0, R(∞) = RT (∞);
2) there exist matrices X ∈ R

n×n, Y ∈ R
n×m such that ATX +

XTA = 0 and (5)–(7) hold.

Proof: Similar to the proof of Theorem 1, Assumption 1 and
R(s) ∈ Rm×m imply that N = 0. Hence, (8) holds. Then in view of
[4, Theorem 1], one has that R(s) is lossless negative imaginary if and
only if the following conditions hold:

1) det(A1) �= 0, D − C2B2 = (D − C2B2)
T ;

2) there exists a matrix X1 ∈ R
n1×n1 , X1 = XT

1 > 0 such that
AT

1 X1 +X1A1 = 0 and CT
1 +X1A

−1
1 B1 = 0.

Fig. 1. Multiple-input multiple-output RLC circuit.

The above two conditions can be proved to be equivalent to the two
conditions in this theorem by following similar lines as in the proof for
Theorem 1. The only differences between the two proofs are that the
inequality signs “≤” in “ATX +XTA ≤ 0” and “AT

1 X1 +X1A1 ≤
0” need to be replaced with equality signs “=”. �

Remark 6: Sufficiency in Theorem 1–3 also holds when weakening
Assumption 1 to either (N,C2) being observable or NB2 = 0, which
allows the system to have impulse modes.

IV. ILLUSTRATIVE EXAMPLE

In this section, a multiple-input and multiple-output RLC network
as shown in Fig. 1 is used to illustrate the negative imaginary lemma
for descriptor systems.

Consider the circuit in Fig. 1. The inputs are the outputs of the
controlled voltage sources Vi(t), and the outputs are the charges on
the capacitances Qi(t), i = 1, 2, 3. A system of ordinary differential
equations can be constructed, and a standard state-space model can be
used for the negative imaginary lemmas. However, a descriptor state-
space system model is much more easily obtained by modified nodal
analysis [13], [14]. The following matrices are constructed from the
topology structure of the circuit network by modified nodal analysis:

AR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, AL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
−1 0 0
0 −1 0
0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, AV =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
0 0 0
0 −1 0
0 0 0
0 0 −1
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

After defining the resistance, inductance and capacitance matrices as
follows, respectively,

R =

[
R1 0 0
0 R2 0
0 0 R3

]
, L =

[
L1 0 0
0 L2 0
0 0 L3

]

C =

[
C1 0 0
0 C2 0
0 0 C3

]
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a descriptor state-space system model (1) can be constructed, and the
system matrices are given by

E =

[
ACCAT

C 0 0
0 L 0
0 0 0

]
, A =

[−ARR−1AT
R −AL −AV

AT
L 0 0

AT
V 0 0

]

B = [ 0 0 −I ]T , C = [−CAT
C 0 0 ] , D = 0.

In this model, the system state, the system input and the system output
are, respectively,

x(t) =

[
v(t)
iL(t)
iV(t)

]
, u(t) =

[
V1(t)
V2(t)
V3(t)

]
, y(t) =

[
Q1(t)
Q2(t)
Q3(t)

]
.

Here v(t) ∈ R
9 is a vector of node potentials, iL(t) ∈ R

3 and iV(t) ∈
R

3 are vectors of currents through inductors and voltage sources,
respectively. It can be verified that rank(A) = 15, R(∞) = 0, E =
ET ≥ 0, A+AT ≤ 0 and EA−1B = −CT . Hence a feasible so-
lution to the inequalities in (4)–(7) is given by X = I ∈ R

15×15

and Y = 0 ∈ R
15×3. Note that the solution is usually not unique.

Using Theorem 1, it follows that the descriptor system is negative
imaginary for any Ri > 0, Li > 0 and Ci > 0, i = 1, 2, 3; that is, the
corresponding transfer function satisfies the conditions in Definition 1.

V. CONCLUSION

In this technical note, negative imaginary properties have been stud-
ied for descriptor linear systems. Under the assumption of a minimal
realization, necessary and sufficient conditions have been obtained in
each of the negative imaginary lemma, the strict negative imaginary
lemma and the lossless negative imaginary lemma. Finally, an example
from RLC circuits was presented to illustrate the developed theory.

A limitation of this study is that the transfer functions have to be
proper. The question of how to develop negative imaginary lemmas
for descriptor systems with non-proper transfer functions demands
a careful revision of the definitions of negative imaginary transfer
functions, and will be considered in future research.
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