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Stability Analysis of Impulsive Stochastic Nonlinear Systems
Wei Ren and Junlin Xiong, Member, IEEE

Abstract—This paper studies stochastic input-to-state stability
and stochastic global stability for impulsive stochastic nonlinear
systems. Using fixed dwell-time condition and Lyapunov-based
approach, sufficient conditions are established for the stability
properties. Two cases are studied: 1) the case that the continuous
dynamics is stable and 2) the case that the impulsive effects
are stable. Furthermore, the relations among different dwell-time
conditions are studied. Finally, two examples are used to illustrate
the developed theory.

Index Terms—Fixed dwell-time (FDT) condition, nonlinear impul-
sive systems, stochastic stability, stochastic systems.

I. INTRODUCTION

As a special class of hybrid systems, impulsive systems are dynam-
ical systems involving continuous-time dynamics and instantaneous
state jumps; see [1]–[3]. Impulsive systems have been studied exten-
sively in the literature [4]–[8], and have many practical applications
such as in networked control systems [9], synchronization of complex
network [10], and chaotic secure communication [11].

In practice, numerous physical systems are usually affected by the
random noises. For instance, the intervals of information transmission
in communication network may be random [9]; financial systems may
encounter abrupt changes of volatility rates [3]. These phenomena lead
to stochastic modeling and control, which results in impulsive stochas-
tic systems. Many salient results on the impulsive stochastic systems
could be found in the literature; see [12]–[16]. For instance, p-moment
stability criteria were presented in [13] for impulsive stochastic nonlin-
ear systems with Markovian switching. Stochastic stability and robust
control have been addressed in [15] for uncertain impulsive linear sys-
tems. Nevertheless, most previous results are for impulsive (stochastic)
linear systems [14], [15] or deterministic impulsive nonlinear systems
[4], [5], [13]. There are few works on impulsive stochastic nonlinear
systems. In this paper, we study the stability properties of impulsive
stochastic nonlinear systems.

To study stability of impulsive systems, Lyapunov functions and
dwell-time conditions are commonly used in the literature; see [4]–[6]
and [16]–[19]. In terms of Lyapunov function, Lyapunov–Krasovskii
functions (e.g., [10], [12], and [16]) and Lyapunov-Razumikhin func-
tions (e.g., [16], [19], and [20]) are implemented. However, both of
Lyapunov–Krasovskii functions and Lyapunov–Razumikhin functions
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are generally exponential; see [4], [10]–[13], and [20]. Because expo-
nential Lyapunov functions are not necessarily existent or easy to be
constructed [5], the exponential assumption limits the classes of the
impulsive systems that could be studied via Lyapunov approaches. On
the other hand, different types of dwell time have been considered in
the past decades, such as average dwell time (ADT) [4], [10], [12], [18],
minimum dwell time (also called fixed dwell time (FDT) in [18]) [5],
[14], maximum dwell time [5], [14], and constant dwell time [14], etc.
Based on the aforementioned types of dwell time, stability conditions
have been obtained in [14] for impulsive stochastic linear systems.
However, except for ADT [4], [12], [17], other types of dwell time are
seldom applied for impulsive stochastic nonlinear systems.

In this paper, we study a class of impulsive stochastic nonlinear sys-
tems using general Lyapunov function and FDT condition. Because the
external signals (e.g., external disturbances and controlled input) affect
the continuous evolution and/or the state jumps, two situations are con-
sidered. The first situation is that the continuous dynamics is stable;
the second situation is that the discrete impulses is stable. For these
two situations, sufficient conditions are established in Section III for
stochastic input-to-state stability (SISS) and stochastic global stability
(SGS) of impulsive stochastic nonlinear systems. Compared with the
previous works [4], [12], [18], the general Lyapunov function is applied
in this paper. That is, our results allow the Lyapunov function to be not
exponential, which is more practical. In addition, compared with the
ADT condition that could not guarantee the compactness or the sparse-
ness of the discrete jumps, the FDT condition is implemented, which
just gives a lower bound on the impulsive intervals. Furthermore, the re-
lation between the FDT condition and the (generalized) ADT condition
is discussed in this paper; see Section III-C. As a result, the obtained
results allow us to study a richer class of impulsive stochastic nonlin-
ear systems, especially those that cannot be analyzed using exponential
Lyapunov functions and ADT condition. Two numerical examples are
used in Section IV to illustrate the developed results. Both the two
examples could not be analyzed by exponential Lyapunov function and
ADT.

Notation: The notation used in this paper is fairly standard. Rn de-
notes the n-dimensional Euclidean space, R+ (or N+ ) stands for the
sets of the nonnegative numbers (or integers) and R+

t0
= {t ∈ R+ |t ≥

t0}. | · | represents the Euclidean vector norm; IP{·} denotes the proba-
bility measure; IE[·] denotes the mathematical expectation. Superscript
� denotes the transpose of the vectors or matrices. tr(A) denotes the
trace of a square matrix A. O represents the set of all functions that
are continuous, zero at zero; P denotes the set of the functions that
belong to O and are positive in R+ . C2 ,1 stands for the space of the
functions that are continuously twice differentiable on the first aug-
ment and continuously differentiable on the second augment. Denote
by α−1 (t) the inverse of the function α(t) : R+ → R+ . A function
α(t) : R+ → R+ is of class K if it belongs to class P and strictly
increasing; α(t) is of class K∞ if it is of class K and unbounded;
α(t) is of class L if it is continuous and strictly decreasing to zero
as t→ ∞. A function β(s, t) : R+ × R+ → R+ is of class KL if
β(s, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases to zero
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as t→ 0 for each fixed s ≥ 0. Ln
∞ denotes the set of all the measur-

able and locally essentially bounded signal x ∈ Rn on R+
t0

with norm
‖x‖ := supt≥t0 inf{A⊂Ω ,IP{A}=0} sup{|x(t, ω)||ω ∈ Ω \ A}.

II. PROBLEM FORMULATION

Consider the impulsive stochastic nonlinear system{
dx(t) = f (t, x, u)dt+ g(t, x, u)dw(t), t ∈ R+

t0
\T

x(t) = h(x(t−), u(t−)), t ∈ T
(1)

where x(t) ∈ X ⊆ Rn x is the system state, u(t) ∈ U ⊆ Ln u
∞ is the

external input, w(t) ∈ Rnw is a Brownian motion defined on a com-
plete probability space (Ω,F , {Ft}t≥t0 , IP). Impulsive time sequence
T := {t1 , t2 , . . .} is strictly increasing and approaches to infinity. The
functions f : R+

t0
×X × U → X and g : R+

t0
×X × U → Rn x ×nw

are assumed to be continuous with respect to t, x, u and uniformly
locally Lipschitz with respect to x, u; f (·, 0, 0) = 0, g(·, 0, 0) = 0.
The function h : X × U → X is continuous with respect to x and u.
Assume that given an initial condition, there is a unique stochastic
process satisfying the system (1); see [5] and [13].

Definition 1: Given an impulsive time sequence T , the impulsive
stochastic nonlinear system (1) is SISS, if for an arbitrary ε ∈ (0, 1),
there exist β ∈ KL, γ ∈ K∞ such that for all x(t0 ) ∈ X , u ∈ U

IP{|x(t)| ≤ β(|x(t0 )|, t− t0 ) + γ(‖u‖)} ≥ 1 − ε ∀t ∈ R+
t0
. (2)

Given a set S of the admissible impulsive time sequences, if the system
is SISS for every T ∈ S and β, γ do not depend on the choice of T ,
then the system (1) is uniformly SISS over S.

Definition 2: Given an impulsive time sequence T , the impulsive
stochastic nonlinear system (1) is SGS, if for an arbitrary ε ∈ (0, 1),
there exist γ1 , γ2 ∈ K∞ such that for all x(t0 ) ∈ X , u ∈ U

IP{|x(t)| ≤ γ1 (|x(t0 )|) + γ2 (‖u‖)} ≥ 1 − ε ∀t ∈ R+
t0
.

Given a set S of the admissible impulsive time sequences, if the system
is SGS for every T ∈ S and γ1 , γ2 do not depend on the choice of T ,
then the system (1) is uniformly SISS over S.

The aforementioned definitions are parallel to those given in [17]
for stochastic switched nonlinear systems, to those given in [5] for
deterministic impulsive nonlinear systems. To investigate the stochastic
stability properties of the system (1), a differential operator of the C2 ,1

functions and the SISS-Lyapunov function are introduced as follows.
Definition 3 (see[21]): Given any C2 ,1 function V : X × R+

t0
→

R+ , the differential operator L associated with the continuous stochas-
tic differential equation in (1), is defined as

L V (x, t) :=
∂V (x, t)

∂t
+
∂V (x, t)
∂x

f (t, x, u)

+
1
2

[
g�(t, x, u)

∂2V (x, t)
∂x2 g(t, x, u)

]
.

By Itô’s formula in [22, ch. IV. 3], it obtains that

dV (x, t) = L V (x, t)dt+
∂V (x, t)
∂x

g(t, x, u)dw(t), t ∈ R+
t0
\T .

Definition 4: A C2 ,1 function V : X × R+
t0

→ R+ is called an
SISS-Lyapunov function, if there exist α1 , α2 , ρ ∈ K∞, ψ ∈ P and
ϕ ∈ O such that for all x(t0 ) ∈ X , u ∈ U

α1 (|x|) ≤ V (x, t) ≤ α2 (|x|), t ∈ R+
t0

(3)

|x| ≥ ρ(‖u‖) ⇒
{

L V (x, t) ≤ −ϕ(V (x, t)), t ∈ R+
t0
\T

V (h(x, u), t) ≤ ψ(V (x, t)), t ∈ T .
(4)

In addition, if ϕ(v) = cv and ψ(v) = e−d v, where c, d ∈ R, then V is
called an exponential SISS-Lyapunov function.

The SISS-Lyapunov function in Definition 4 is parallel to the one for
the stochastic nonlinear systems in [17] and those for the deterministic
impulsive systems in [4] and [5]. If c, d > 0, then V is decreasing along
the time, which implies that the system (1) is SISS for all the impulsive
time sequences. If c, d < 0, then V is not decreasing along the time,
which means the system (1) is not stable. Therefore, we consider the
case of cd < 0 in this paper.

Remark 1: For the general stochastic nonlinear systems, SISS-
Lyapunov function is equivalent to the SISS property; see [21] and
[23]. Though this equivalent relationship does not hold for impul-
sive/switched stochastic systems, SISS-Lyapunov function still plays
an essential role in stability analysis of SISS; see [4], [13], [17], and
[24].

III. SISS ANALYSIS

In this section, sufficient conditions are established to guarantee the
SISS and SGS properties for the system (1). Both the situation that
the continuous dynamics is stable and the situation that the discrete
dynamics is stable are considered. In addition, the relationship be-
tween the (reverse) FDT condition and the (reverse) ADT condition is
discussed.

A. Stable Continuous Dynamics Situation

We start with the first situation. Define S1θ := {T =
{t1 , t2 , . . .}|T ⊆ R+

t0
, tk+1 − tk ≥ θ ∀k ∈ N+ } for certain θ > 0. In

the following, based on the Lyapunov approach and FDT condition (5),
SISS of the system (1) is established.

Theorem 1: Consider the impulsive stochastic nonlinear system (1).
Suppose that V : X × R+

t0
→ R+ is an SISS-Lyapunov function for

(1), where ϕ ∈ P is convex and ψ ∈ P is concave. If there exist certain
θ, δ > 0 such that for all a > 0

∫ ψ (a )

a

ds

ϕ(s)
≤ θ − δ (5)

then the system (1) is SISS for all impulsive time sequences T ∈ S1θ .
Proof: Given an impulsive time sequence T ∈ S1θ , SISS of the

system (1) will be proven by constructing the functions β and γ such
that (2) holds. Therefore, the proof is divided into two cases: u ≡ 0
and u �= 0.

Case 1: u ≡ 0. In this case, using the FDT condition (5), we first
determine a function F : R+ → R such that F is decreasing along
the values of the Lyapunov function at the impulsive times, and then,
construct a β ∈ KL to bound IE[V (x(t), t)] for all t ∈ R+

t0
. Since

u ≡ 0, (4) is written as

L V (x, t) ≤ −ϕ(V (x, t)), t ∈ R+
t0
\T

V (h(x, u), t) ≤ ψ(V (x, t)), t ∈ T . (6)

Because ϕ ∈ P is convex and ψ ∈ P is concave, it follows from (5)
and Jensen’s inequality in [22, ch. II. 18.3] that

IE[L V (x, t)] ≤ −ϕ(IE[V (x, t)]), t ∈ R+
t0
\T (7)

IE[V (h(x, u), t)] ≤ ψ(IE[V (x, t)]), t ∈ T . (8)

If there exists a t̄ ∈ [tk , tk+1 ) such that IE[V (x(t̄), t̄)] = 0, then the
equilibrium point x = 0 implies that IE[V (x(t), t)] ≡ 0 for all t > t̄.
Next, only the case that IE[V (x(t), t)] > 0 needs to be studied.
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Based on the fact that d IE[V (x(t), t)] = IE[L V (x(t), t)]dt in [17],
integrating (7) leads to the fact that for all t ∈ [tk , tk+1 )∫ t

tk

IE[L V (x(s), s)]ds
ϕ(IE[V (x(s), s)])

≤ −(t− tk ). (9)

Based on (9), define the following function:

F () :=
∫ 

ν

ds

ϕ(s)
(10)

where ν > 0 is fixed and  > 0. Observe that F : R+ → R is contin-
uous and strictly increasing, so is its inverse F−1 : R → R+ .

Using Itô’s formula in [22, ch. IV. 3], Fubini’s Theorem in [22, ch.
II. 12.2] and (10), the inequality (9) can be rewritten as∫ IE [V (x (t) , t)]

IE [V (x (tk ) , t k )]

ds

ϕ(s)
≤ −(t− tk ), t ∈ [tk , tk+1 )

that is, for all t ∈ [tk , tk+1 )

F (IE[V (x(t), t)]) − F (IE[V (x(tk ), tk )]) ≤ −(t− tk ).

Letting t → t−k+1 yields that

F (IE[V (x(t−k+1 ), t
−
k+1 )]) − F (IE[V (x(tk ), tk )]) ≤ −θ.

Because of (8) and the FDT condition (5), it follows that

F (IE[V (x(tk+1 ), tk+1 )]) − F (IE[V (x(tk ), tk )])

≤ F (ψ(IE[V (x(t−k+1 ), t
−
k+1 )])) − F (IE[V (x(t−k+1 ), t

−
k+1 )])

+ F (IE[V (x(t−k+1 ), t
−
k+1 )]) − F (IE[V (x(tk ), tk )])

≤ θ − δ − θ = −δ.

That is

IE[V (x(tk+1 ), tk+1 )] ≤ F −1 (F (IE[V (x(tk ), tk )]) − δ). (11)

Iterating (11) from t1 to tk+1 , it obtains that

IE[V (x(tk+1 ), tk+1 )] ≤ F −1 (F (IE[V (x(t1 ), t1 )]) − kδ)

which is valid for all k ∈ K := {k ∈ N+ |F (IE[V (x(t1 ), t1 )]) − kδ ≥
lim↓0 F ()}. Denote k1 := maxk∈K k (if not exists, k1 := ∞) and
r := V (x(t0 ), t0 ).

In the following, based on (8) and (11), a class KL function β is
constructed as a bound of IE[V (x(t), t)]. Define

β1 (r, t1 − t0 ) := max{IE[V (x(t1 ), t1 )], ψ(IE[V (x(t1 ), t1 )])}

β1 (r, tk+1 − t0 ) := F −1 (F (β1 (r, tk − t0 )) − kδ), k ∈ {1, . . . , k1}.

In the interval (tk − t0 , tk+1 − t0 ), where k ∈ {1, . . . , k1}, β1 (r, s)
is required to be continuously decreasing and to lie above every solu-
tion of (7). In [0, t1 − t0 ), the requirement on β1 (r, s) is satisfied by
construction. If k1 < ∞, then β1 (r, s) in the interval [tk 1 − t0 ,∞) is
defined to be continuous and decreasing to zero as s → ∞.

From the construction of β1 (r, s), we have that for all t ≥ t0

IE[V (x(t), t)] ≤ β1 (V (x(t0 ), t0 ), t− t0 ).

The function β1 (r, s) is continuous and decreasing with respect to s. If
k1 < ∞, then β1 (r, s) → 0 as s→ ∞ by the construction. If k1 = ∞,
then β1 (r, s) → 0 as s → ∞ needs to be proven.

Claim that if β1 (r, tk − t0 ) → 0 as k → ∞, then β1 (r, s) → 0 as
s → ∞. If the claim is invalid, then limk→∞ β1 (r, tk − t0 ) = ε > 0,
where ε is related to the choice of r. Denote ϑ := minε≤v≤β 1 (r,0) ϕ(v).

It obtains from the middle-value theorem that

δ ≤ F (β1 (r, tk − t0 )) − F (β1 (r, tk+1 − t0 ))

≤ β1 (r, tk − t0 ) − β1 (r, tk+1 − t0 )
ϑ

.

Thus, it follows that

β1 (r, tk − t0 ) − β1 (r, tk+1 − t0 ) ≥ δϑ > 0

which indicates that β1 (r, tk − t0 ) is decreasing to zero as k → ∞.
This contradicts with the assumption that limk→∞ β1 (r, tk − t0 ) =
ε > 0. Thus, the claim is valid. That is, given r > 0, β1 (r, s) ∈ L.

Define β2 (r, t) := sup0≤v≤r β1 (v, t). Then, β2 (r, t) ≥ β1 (r, t)
for all r > 0 and t > 0. Furthermore, define β3 (r, t) :=
1
r

∫ 2r
r
β2 (s, t)ds+ re−t . Note that β3 (r, t) ∈ KL and β3 (r, t) ≥

β2 (r, t) for all r > 0 and t > 0. It obtains that

IE[V (x(t), t)] ≤ β3 (V (x(t0 ), t0 ), t− t0 ) ∀t ≥ t0 . (12)

Applying Markov’s inequality in [22, ch. II, 18.1] to (12) yields
that for an arbitrary ε1 ∈ (0, 1), there exists a function β4 (v, t) :=
β3 (v, t)/ε1 ∈ KL such that for all t ≥ t0

IP{V (x(t), t) > β4 (V (x(t0 ), t0 ), t− t0 )}

≤ IE[V (x(t), t)]
β4 (V (x(t0 ), t0 ), t− t0 )

≤ ε1

which implies from (3) that for all t ≥ t0

IP{|x(t)| > β(|x(t0 )|, t− t0 )} ≤ ε1 (13)

where β(v, t) := α−1 (β4 (α2 (v), t)) ∈ KL.
Case 2: u �= 0. Define the set B1 := {x ∈ X ||x| ≤ ρ(‖u‖)}. Both

the case x ∈ B1 and the case x /∈ B1 are considered. If x /∈ B1 for all
t ≥ t0 , then (6) holds and it follows from Case 1 that

IP{|x(t)| ≤ β(|x(t0 )|, t− t0 )} ≥ 1 − ε1 . (14)

Define t̄ := inf{t ≥ t0 |x(t) ∈ B1}, then (14) holds for all t ≤ t̄.
For t > t̄, if the system state escapes from B1 , then it happens at

certain impulsive times. Moreover, there exists some t̃ > t̄ such that
x(t̃) ∈ ∂B1 , then x(t̃) ∈ B1 holds due to (4). Define

ψ̄1 (v) := max
{

max
0≤v≤ρ (v )

α−1
1 (ψ(α2 (v))), ρ(v)

}

B2 := {x ∈ X ||x| ≤ ψ̄1 (‖u‖)} ⊇ B1 .

Next we prove x(t) ∈ B2 holds for all t > tk . If there exist an
impulsive time tk ∈ T , tk > t̄, and ε2 > 0 such that x(tk ) /∈ B1

and x(t) ∈ B1 for t ∈ (tk − ε2 , tk ), then x(t) ∈ B2 by the construc-
tion of B2 . If x(t) /∈ B1 and t > tk , then it has been proven that
IE[V (x(t), t)] < IE[V (x(tk ), tk )]. Therefore, x(t) ∈ B2 for all t > t̄.
That is, for all t > t̄, we have

IE[V (x(t), t)] ≤ α2 (ψ̄1 (‖u‖)).

Using Markov’s inequality, there exist a κ ∈ K∞ and a sufficiently
small ε3 = ε3 (κ) > 0 such that for all t ∈ R+

t0

IP{V (x(t), t) > κ(α2 (ψ̄1 (‖u‖)))} ≤ IE[V (x(t), t)]
κ(α2 (ψ̄1 (‖u‖)))

≤ ε3 . (15)

Define γ̄(v) := α−1
1 (κ(α2 (ψ̄1 (v)))) and it can be majorized to be a

class K∞ function γ. Combining (13) and (15) yields that

IP{|x(t)| ≤ β(|x(t0 )|, t− t0 ) + γ(‖u‖)} ≥ 1 − max{ε1 , ε3}

for all t ∈ R+
t0

. Thus, the proof is completed. �
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Remark 2: The FDT condition (5) in Theorem 1 first appeared in
[7, ch. 3, Th. 48] for asymptotic stability of autonomous impulsive
systems. Contrary to the ADT condition bounding the interval of con-
secutive impulses on average [18], the FDT condition provides the
lower bound for the impulsive intervals. Some previous works [4], [5],
[20] are recovered as the special cases of Theorem 1. For instance, if
the considered system is deterministic, then Theorem 1 is reduced to
[5, Th. 1].

Remark 3: For the FDT condition (5), the magnitude of θ affects
the SISS gain, which in turn contributes to the decay rate of V (x(t), t).
A numerical example is given in Example 1 of Section IV to show
the relation between θ and the SISS gain. In addition, because the
construction of the function β depends on the impulsive time sequence,
the system (1) is not uniform SISS.

Remark 4: Whether the discrete dynamics is stable or not, the re-
sult in Theorem 1 always holds. Especially, if the discrete dynamics
stabilizes the system (1), then ψ ≤ Id, which implies that the left-hand
side of (5) is not more than zero. Thus, the FDT condition (5) holds for
arbitrary θ > 0. In this case, the system (1) is SISS for all impulsive
time sequences. In addition, if the impulsive time sequence is periodic,
then the construction of the function β depends only on the period of
the impulsive intervals. As a result, the system (1) is uniformly SISS
over a set of periodic impulsive time sequences.

Theorem 2: Under the same assumptions as in Theorem 1, if the
FDT condition (5) holds for δ ≡ 0, then the system (1) is uniformly
SGS over S1θ .

Proof: Since all the assumptions in Theorem 1 hold for δ ≡ 0,
following the proof of Theorem 1, (11) holds for δ ≡ 0. Thus, define
χ1 (s) := max{s, ψ(s)}. Instead of (12), it holds that

IE[V (x(t), t)] ≤ χ1 (V (x(t0 ), t0 )) ≤ χ1 (α2 (|x(t0 )|)), t ≤ t̄.

For all t ≥ t0 , it obtains that

IE[V (x(t), t)] ≤ χ1 (α2 (|x(t0 )|)) + ρ(‖u‖). (16)

Exploiting Markov’s inequality to (16) gives that for an arbitrary
ε ∈ (0, 1) and all t ≥ t0

IP{V (x(t), t) ≤ χ1 (α2 (|x(t0 )|))/ε + ρ(‖u‖)/ε} ≥ 1 − ε

that is, IP{|x(t)| ≤ γ1 (|x(t0 )|) + γ2 (‖u‖)} ≥ 1 − ε, where γ1 (v) :=
α−1

1 (2χ1 (α2 (v))/ε) and γ2 (v) := α−1
1 (2ρ(v)/ε).

It obtains from the construction of χ1 and ρ that γ1 and γ2 are not
related to the impulsive time sequence T ∈ S1θ . Hence, the proof of
uniform SGS is completed. �

B. Stable Discrete Dynamics Situation

In this subsection, the second situation is studied, where the
continuous dynamics is unstable and the discrete dynamics is sta-
ble. Define S2θ := {T = {t1 , t2 , . . .}|T ⊆ R+

t0
, tk+1 − tk ≤ θ, ∀k ∈

N+ } for some θ > 0. The following theorems provide sufficient con-
ditions to guarantee SISS and SGS of the system (1).

Theorem 3: Consider the system (1). Suppose thatV : X × R+
t0

→
R+ is an SISS-Lyapunov function for (1), where−ϕ, ψ ∈ P is concave.
If there exist certain θ, δ > 0 such that for all a > 0

∫ a

ψ (a )

ds

−ϕ(s)
≥ θ + δ (17)

then the system (1) is SISS for all impulsive time sequences T ∈ S2θ .

Proof: Since −ϕ, ψ ∈ P are concave, for the case u ≡ 0, it follows
from (4) and Jensen’s inequality that

IE[L V (x, t)] ≤ −ϕ(IE[V (x, t)]), t ∈ R+
t0
\T

IE[V (h(x, u), t)] ≤ ψ(IE[V (x, t)]), t ∈ T . (18)

Integrating (18) implies that for any t ∈ [tk , tk+1 )∫ t

tk

IE[L V (x, s)]ds
−ϕ(IE[V (x, s)])

≤ t− tk .

Similar to the proof of Theorem 1, define the following function:

F () :=
∫ 

ν

ds

−ϕ(s)

where ν > 0 is fixed and  > 0. Thus, F : R+ → R and its inverse
F −1 : R → R+ are continuous and strictly increasing.

Analogous to the proof of Theorem 1, it follows from the reverse
FDT condition (17) that for all k > 1

F (IE[V (x(t), t)]) ≤ F (IE[V (x(tk ), tk )]) + θ, t ∈ (tk , tk+1 ) (19)

IE[V (x(tk+1 ), tk+1 )] ≤ F −1 (F (IE[V (x(t1 ), t1 )]) − kδ). (20)

Thus, by the similar construction of the function β1 (r, s) as in the proof
of Theorem 1, it holds that

IE[V (x(t), t)] ≤ β1 (V (x(t0 ), t0 ), t− t0 ). (21)

The remaining part is the same as the proof of Theorem 1 for the case
u ≡ 0. Thus, the inequality (13) is also obtained.

For the case that u �= 0, define B1 as in the proof of Theorem 1.
Therefore, for an arbitrary ε1 ∈ (0, 1), there exist a t̄ ≥ t0 and a β ∈
KL such that for all t ≤ t̄

IP{|x(t)| ≤ β(|x(t0 )|, t− t0 )} ≥ 1 − ε1 .

Define t̃ := inf{tk |tk > t̄}. Thus, for t ∈ [t̄, t̃), combining |x| ≤
ρ(‖u‖) and (19) implies that

IE[V (x(t), t)] ≤ F −1 (F (IE[V (x(t̄), t̄)]) + θ)

≤ F −1 (F (α2 (ρ(‖u‖))) + θ). (22)

Because IE[V (x(t̃), t̃)] < IE[V (x(t̄), t̄)] from (11), the inequality (22)
also holds for all t > t̄. Applying Markov’s inequality to (22), there
exist a κ ∈ K∞ and a sufficiently small ε3 = ε3 (κ) > 0 such that

IP{V (x(t), t) > κ(ψ̄2 (‖u‖))} ≤ IE[V (x(t), t)]
κ(ψ̄2 (‖u‖))

≤ ε3

where ψ̄2 (v) := F −1 (F (α2 (ρ(v))) + θ), which means that

IP{|x(t)| ≤ α−1
1 (κ(ψ̄2 (‖u‖)))} ≥ 1 − ε3 .

Based on the aforementioned analysis and similar to the proof of
Theorem 1, we conclude that, for a given impulsive time sequence
T ∈ S2θ , the system (1) is SISS. Therefore, the proof is completed. �

The inequality (17) in Theorem 3 is called the reverse fixed dwell-
time (RFDT) condition, which corresponds to the reverse average
dwell-time (RADT) condition in [4]. The RFDT condition provides
the upper bound for the impulsive intervals. Similar to Theorem 2, a
counterpart result is obtained as follows.

Theorem 4: Under the same assumptions as in Theorem 3, if the
RFDT condition (17) holds for δ ≡ 0, then the system (1) is uniformly
SGS over S2θ .

Proof: Since all the assumptions in Theorem 3 hold for δ ≡ 0,
following the proof of Theorem 3, the inequality (20) holds for δ ≡ 0.
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Thus, define χ1 (v) := max{v, ψ(v)}. Instead of (21), it holds that

IE[V (x(t), t)] ≤ χ1 (V (x(t0 ), t0 )) ≤ χ1 (α2 (|x(t0 )|)), t ≤ t̄.

Similar to the proof of Theorem 2, it obtains that IE[V (x(t), t)] ≤
χ1 (α2 (|x(t0 )|)) + ρ(‖u‖) for all t ≥ t0 . Applying Markov’s inequal-
ity yields that for an arbitrary ε ∈ (0, 1) and all t ≥ t0

IP{V (x(t), t) ≤ χ1 (α2 (|x(t0 )|))/ε + ρ(‖u‖)/ε} ≥ 1 − ε

that is, IP{|x(t)| ≤ γ1 (|x(t0 )|) + γ2 (‖u‖)} ≥ 1 − ε, where γ1 (v) :=
α−1

1 (2χ1 (α2 (v))/ε) and γ2 (v) := α−1
1 (2ρ(v)/ε).

It follows from the construction of χ1 and ρ that γ1 and γ2 are not
related to the impulsive time sequence T ∈ S2θ . Hence, the proof of
uniform SGS is completed. �

C. Relationship Between FDT Condition and ADT Condition

In this subsection, we first establish the uniform SISS of the system
(1) through the exponential SISS-Lyapunov function and the general-
ized ADT condition. Then, based on the generalized ADT condition,
the relation between the FDT (or RFDT) condition and the ADT (or
RADT) condition is established.

Proposition 1: Consider the system (1). Suppose that V : X ×
R+
t0

→ R+ is an exponential SISS-Lyapunov function for (1) with the
coefficients c, d ∈ R. If there exists a class L function φ : R+ → R+

such that φ(v) ≤ ψ(v) for all v > 0 and

−dN (t, s) − c(t− s) ≤ ln φ(t− s), t ≥ s ≥ t0 (23)

where N (t, s) denotes the number of state jumps in (s, t], then the
system (1) is uniformly SISS over a given set S[φ] of impulsive time
sequences satisfying the generalized ADT condition (23).

Proof: Based on the magnitudes of |x| and ρ(‖u‖), the interval
[t0 ,∞) is divided to be ∪∞

k=0 [t̂k , t̂k+1 ), k ∈ N+ , such that

|x| ≥ ρ(‖u‖), t ∈ [t̂2 i , t̂2 i+1 ), i ∈ N+

|x| < ρ(‖u‖), t ∈ [t̂2 i+1 , t̂2 i+2 ), i ∈ N+ .

In the interval I2 i = [t̂2 i , t̂2 i+1 ), i ∈ N+ , there are N (t̂2 i+1 , t̂2 i )
state jumps at tij , where j ∈ {1, 2, . . . , N (t̂2 i+1 , t̂2 i )}. Thus, |x| ≥
ρ(‖u‖) holds in each interval (tij , t

i
j+1 ]. Along the same line as the

proof of Theorem 1, it obtains that

IE[L V (x(t), t)] ≤ −cV (x(t), t), t ∈ (tij , t
i
j+1 )

IE[V (x(tij+1 ), t
i
j+1 )] ≤ e−d IE[V (x(ti−j+1 ), t

i−
j+1 )]

which implies that

IE[V (x(tij+1 ), t
i
j+1 )] ≤ e

−d−c (t i
j + 1 −t

i
j
) IE[V (x(tij ), t

i
j )].

Thus, by iterating, we have that for all t ∈ I2 i

IE[V (x(t), t)] ≤ e−dN (t , t̂2 i )−c (t−t̂2 i ) IE[V (x(t̂2 i ), t̂2 i )]

combining which with (23) gives that

IE[V (x(t), t)] ≤ φ(t− t̂2 i ) IE[V (x(t̂2 i ), t̂2 i )].

Pick t̂2 i = t0 and define β(v, t) := φ(t− t̂2 i )α2 (v) ∈ KL and t̄ :=
inf{t ≥ t0 ||x(t)| ≤ ρ(‖u‖)}, it holds that for all t ∈ [t0 , t̄]

IE[V (x(t), t)] ≤ β(|x(t0 )|, t− t0 ).

For all t ∈ I2 i+1 = [t̂2 i+1 , t̂2 i+2 ), it obtains that IE[V (x(t), t)] <
α2 (ρ(‖u‖)). If there is an impulse at t̂2 i+2 , then it follows that

IE[V (x(t̂2 i+2 ), t̂2 i+2 )] < max{e−d , 1}α2 (ρ(‖u‖)).

Consider the situation at t̂2 i+1 and the property of the function φ, one
has that, for all t ∈ I2 i+1 and t > t̄

IE[V (x(t), t)] < φ(0) max{e−d , 1}α2 (ρ(‖u‖)).

Therefore, for the overall interval [t0 ,∞) = ∪∞
i=0 (I2 i ∪ I2 i+1 ), the

estimate of IE[V (x(t), t)] is given by

IE[V (x(t), t)] < β(|x(t0 )|, t− t0 ) + γ(‖u‖) (24)

where γ(v) := max{e−d , 1}φ(0)α2 (ρ(v)). Using Markov’s inequal-
ity to (24) obtains that for all t ∈ R+

t0
and any ε ∈ (0, 1)

IP{|x(t)| ≤ β̄(|x(t0 )|, t− t0 ) + γ̄(‖u‖)} ≥ 1 − ε

where β̄(v, t) := α−1
1 (2β(v, t))/ε and γ̄(v) := α−1

1 (2γ(v))/ε. This
completes the proof. �

The inequality (23) is called the generalized ADT condition. If
φ(t) = eμ−λt for certain μ, λ > 0, then the generalized ADT condi-
tion is same as the ADT condition obtained in [4] and [18]. In this case,
denote by S[μ, λ] the class of the impulsive time sequences.

In the following, to connect the ADT condition and the FDT con-
dition, we assume that there exists an exponential SISS-Lyapunov
function for the system (1), that is, ϕ(v) = cv, ψ(v) = e−d v, where
c, d ∈ R. For the stable discrete dynamics case, it follows that c < 0
and d > 0. As a result, the RFDT condition (17) is equivalent to∫ ψ (a )

a

ds

ϕ(s)
=

d

−c ≥ θ + δ (25)

which implies that there exists a λ > 0 such that d
−c−λ

≥ θ. Define
θ2 := d

−c−λ
, thus θ ≤ θ2 . That is, given λ, θ2 is the largest, then the

set S2θ2 is the largest. The following lemma provides the relationship
between the RADT condition and the RFDT condition.

Proposition 2: If there exists an exponential SISS-Lyapunov func-
tion for the system (1) with c < 0 and d > 0, then S2θ2 = S[d, λ].

Proof: First, we prove S2θ2 ⊆ S[d, λ]. Based the definition of the
reverse ADT in [4], if T ∈ S2θ2 , then it follows that

N (t, s) ≥ N0 +
−c − λ

d
(t− s) ∀t ≥ s ≥ t0 (26)

where N0 ∈ N+ . The inequality (26) is equivalent to

−dN (t, s) − (c + λ)(t− s) ≤ −N0d ∀t ≥ s ≥ t0 . (27)

Second, we prove S[d, λ] ⊆ S2θ2 . Assume T ∈ S[d, λ], it obtains
that (27) holds. If t− s = �θ2 and � ≥ 0, then it follows from (27)
that N (t, s) ≥ N0 + �, which means that N (t, s) ≥ N0 + �− 1 for
all t− s ∈ [(�− 1)θ2 , �θ2 ).

In the sequel, S2θ2 = S[d, λ] and the proof is completed. �
For the stable continuous dynamics case, it obtains that c > 0 and

d < 0. As a result, the FDT condition (5) is equivalent to∫ ψ (a )

a

ds

ϕ(s)
=

−d
c

≤ θ − δ. (28)

It follows from (28) that there exists a λ > 0 such that −d
c−λ

≤ θ. Define
θ1 := −d

c−λ
, thus θ ≥ θ1 . That is, if λ is given, then θ1 is the smallest,

which indicates the set S1θ1 is the largest. Similar to Lemma 2, the
following lemma gives the relationship between the ADT condition
and the FDT condition and the proof is omitted here.

Proposition 3: If there exists an exponential SISS-Lyapunov func-
tion for the system (1) with c > 0 and d < 0, then S1θ1 = S[−d, λ].

Remark 5: If N (t, s) denotes the number of state jumps in [s, t],
then the results in Lemmas 2 and 3 are still valid according to [16,
Lemma 3.12].
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Fig. 1. State response of the system H with a periodic impulsive time
sequence and θ = 4.

IV. ILLUSTRATIVE EXAMPLES

In this section, two numerical examples are presented to illustrate
the developed results in the previous section.

Example 1: Consider the impulsive stochastic nonlinear system H
with the following form:

{
dx(t) = [−x5 (t) + x2 (t)u3 (t)/2]dt+ (x(t)u(t))3/2dw(t), t /∈T
x(t) = x3 (t−) + x(t−)/

√
3 + u3 (t−), t ∈ T

where T is an impulsive time sequence. Choose Lyapunov function
V (x(t), t) = x2 (t) and the function ρ(v) = b−1/3 |v|, where b ∈
[0, 1). Thus, it follows that L V (x(t), t) = −2x6 (t) + 2x3 (t)u3 (t)
≤ −2(1 − b)(V (x(t)))3 , for t /∈ T and V (h(x(t−), u(t−)), t) =
(x3 (t−) + x(t−)/

√
3 + u3 (t−))2 ≤ 3(1 + b2 )(V (x(t−), t))3 + V (x

(t−), t), for t ∈ T . Therefore, V (x(t), t) is not exponential.
Computing the FDT condition (5) in Theorem 1 gives that

I(a, b) =
∫ (3+3b2 )a 3 +a

a

ds

2(1 − b)s3

=
3 + 3b2

4(1 − b)
2 + (3 + 3b2 )a2

[1 + (3 + 3b2 )a2 ]2
≤ 3 + 3b2

2(1 − b)
≤ θ − δ. (29)

There exists an appropriate ε such that I(a, b(ε)) ≤ 1 + 2ε. Thus,
choose θ = 1 + ε, and the system H is SISS. It follows from (29) that
the smaller θ is, the smaller b is, which implies that the SISS gain is
larger. Therefore, the dependence between θ and the SISS gain implies
that there is a tradeoff between the density of allowable impulsive times
and the magnitude of the SISS. Let b = 0.5 and u(t) = 2−1/3x(t), it
obtains that θ − δ ≥ 3.75. Therefore, under the periodic impulsive
time sequence with the period θ = 4, the initial state x(0) = −1 and
the Gaussian white noise w with zero-mean and variance of 10, the
state response of H is given in Fig. 1 .

Example 2: Consider a mass–spring system in [25, Sec. 1.2.3] with
a hardening spring and linear viscous damping, which is modeled by
the Duffing’s equation mÿ(t) + cẏ(t) + ky(t) + ka2y3 (t) = A(t),
where cẏ(t) is the resistive force, ky(t) + ka2y3 (t) models hardening
spring andA(t) is the external force. Define x�(t) := [x1 (t), x2 (t)] =
[y(t), ẏ(t)] and A(t) = B(t) + C(t)ẇ(t), where ẇ(t) is a 2-D white

Fig. 2. State response of the system (30)–(31) with an aperiodic im-
pulsive time sequence and θ = 0.14.

noise, the Duffing’s equation is rewritten as[
dx1 (t)
dx2 (t)

]
=

[
x2 (t)

−[cx2 (t) + kx1 (t) + ka2x3
1 (t) −B(t)]/m

]
dt

+
[

0
C(t)/m

]
dw(t). (30)

For experiments in a viscous medium such as air or lubricant, there
exists a external force to keep the mass–spring moving on at the
discrete-time sequence T := {tk : k ∈ N+ }. The transfer of kinetic
energy between the external force and the mass–spring is modeled as
the following state impulsive:[

x1 (tk )
x2 (tk )

]
=

[
b1x1 (t−k )

b2x2 (t−k ) + z(t−k )

]
, tk ∈ T (31)

where 1 ≤ b1 , b2 ≤ 2, and z(t−k ) represents the change in velocity
because of the additional force at tk . As a result, combining (30) and
(31) yields the impulsive stochastic system model of the form (1).

Define B(t) := 2ka2x3
1 (t)/3 + 0.01 m, C(t) :=

√
2amx3

1 (t)x2

(t), and z(t) = 0.2x2 (t); let k = 3m, c = 1.5m and a = 1. Choose
the Lyapunov function V (x(t), t) = x�(t)Px(t) + 0.5x4

1 (t),
where P =

[ 1 .5
0 .5

0 .5
1

]
, then it obtains that for t /∈ T ,

L V (x(t), t) = −x4
1 (t) − 3x2

1 (t) − 2x2
2 (t) − 4.5x1 (t)x2 (t) + 0.01

[x1 (t) + 2x2 (t)] ≤ −2V (x(t)) + 1.5
√

2V (x(t)) and V (x(tk ), tk )
≤ bV (x(t−k , tk )), where b = max{b4

1 , (b2 + 0.2)4}. Thus, V (x(t), t)
is not exponential. Because ψ(v) = 2v − 1.5

√
2v is convex, we have

I(a) =
∫ ba

a

ds

2s− 1.5
√

2s
≤ θ − δ. (32)

If the aforementioned equation holds, then the system is SISS. Let
b1 = 1.5, b2 = 1, and choose θ = 0.14 by computation. Under the
initial state x(0) = [1,−1]�, the Gaussian white noise w with zero-
mean and variance of 50 and the aperiodic impulsive time sequence,
the state response of the system (30)–(31) is presented in Fig. 2 .

V. CONCLUSION

In this paper, stochastic stability properties were studied for impul-
sive stochastic nonlinear systems. Both the situation that the contin-
uous dynamics is stable and the situation that the discrete dynamics
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is stable were considered. Based on the FDT condition and general
Lyapunov function, sufficient conditions were achieved. Moreover, the
relation between FDT condition and average dwell-time condition was
discussed. Finally, two examples are given to illustrate the developed
theory. Future research could be directed to controller/observer de-
sign for impulsive stochastic nonlinear systems and stability analysis
of impulsive stochastic nonlinear systems with delays or Markovian
switching.
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