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Technical Notes and Correspondence

Bilinear Transformation for Discrete-Time Positive Real and Negative
Imaginary Systems
Mei Liu and Junlin Xiong

Abstract—This paper studies the connection between discrete-
time and continuous-time negative imaginary systems. First, we
analyze differences between two statements that are claimed to
provide equivalent conditions for systems to be discrete-time posi-
tive real. Our conclusion is that one is equivalent to the definition of
discrete-time positive real transfer matrices, the other is not. Sec-
ond, by means of the bilinear transformation, a connection between
discrete-time and continuous-time negative imaginary transfer ma-
trices is established. Third, the concept of discrete-time lossless
negative imaginary systems is introduced, and a discrete-time loss-
less negative imaginary lemma is developed to characterize the
lossless negative imaginary properties in terms of minimal state-
space realization. Some properties of discrete-time lossless nega-
tive imaginary transfer matrices are also studied. Several numerical
examples illustrate the developed theory.

Index Terms—Bilinear transformation, discrete-time (lossless)
negative imaginary systems, discrete-time positive real systems.

I. INTRODUCTION

Classical positive real (PR) systems have achieved great success both
in continuous-time (CT) and discrete-time (DT) cases. The concept of
DT-PR systems was first introduced in [1]. Subsequently, other versions
of DT-PR systems were proposed in [2] and [3]. All of them were
claimed to be equivalent to the definition of DT-PR systems. However,
it was shown in [4] that the two versions of DT-PR systems in [2] and [3]
were not consistent with the definition of DT-PR systems by using three
single-input single-output examples. Until now, some researchers still
adopt the one in [2] and, [3], e.g., see [5, Definition 3], [6, Th. 13.26],
and [7, Th. 3]. In this paper, we shall discuss the differences between
those versions, and present a detailed proof why the statement in [2]
and [3] is not equivalent to the definition of DT-PR systems.

In recent years, negative imaginary (NI) theory, emerged as a comple-
ment to PR theory, has attracted much attention of many researchers,
e.g., see [8]–[13]. This theory was first introduced in [14] to model
linear mechanical systems with force inputs and collocated position
outputs. Subsequently, the concept of NI systems was extended to al-
low poles on the imaginary axis [15]–[17], nonproper case [17], and
DT systems [18]–[21], respectively. Also, a mixed passivity, NI, and
small-gain approach in DT case have been used to design a resonance
compensator in hard disk drive servo system [18].
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In this paper, we are interested in establishing a connection between
CT-NI and DT-NI systems in terms of the bilinear transformation. It
is well known that a CT-PR transfer matrix transforms into a DT-PR
transfer matrix by such a transformation [1], [22], and vice versa.
This result motivates the following question: Does this result remain
true for NI systems? The answer is “Yes,” and a proof is given in
this paper. Meanwhile, the discrete-time lossless negative imaginary
(DT-LNI) systems, expressed as a special and important case of DT-
NI systems, are also studied in this paper. The concept of DT-LNI
systems is introduced. Similarly, a connection between CT-LNI and
DT-LNI systems is established, and a DT-LNI lemma is derived based
on this connection. In addition, a necessary and sufficient condition is
developed to characterize the DT-LNI properties.

The rest of this paper is organized as follows. Section II reviews the
definition of DT-PR transfer matrices, the DT-PR lemma, and two fre-
quently used “equivalent” conditions. Then, we analyze the differences
between those lemmas. Section III studies the connection between CT-
NI and DT-NI transfer matrices. Section IV studies the DT-LNI sys-
tems. One numerical example is presented in Section V. Section VI
concludes the paper.

Notation: Rm ×n and Rm ×n denote the sets of m × n real matri-
ces and real-rational proper transfer function matrices, respectively.
Re[.] denotes the real part of complex numbers. λm ax denotes the
maximum eigenvalue of a square complex matrix with only real eigen-
values. AT and A∗ denote the transpose and the complex conjugate
transpose of a complex matrix A, respectively. I denotes any identity
matrix with compatible dimensions. A > (≥)0 and A < (≤)0 denote
the symmetric positive (semi)definite matrix and the symmetric nega-
tive (semi)definite matrix, respectively.

II. DT-PR TRANSFER FUNCTION MATRICES

In this section, our goal is to discuss the differences between the
concept and “equivalent” conditions of DT-PR systems. First, we briefly
recall the definition of DT-PR systems in z-domain [1], two different
versions of DT-PR systems in terms of properties on the unit cycle
[1]–[3], and the DT-PR lemma in terms of state-space realization [1].

Definition 1: [1] A square matrix F (z) of real-rational proper func-
tions is called DT-PR if the following statements hold:
1) all elements of F (z) are analytic in |z| > 1; and
2) F ∗(z) + F (z) ≥ 0 for all |z| > 1.

The following two lemmas are two different restatements of Defini-
tion 1 in terms of properties on |z| = 1.

Lemma 1: [1, Lemma 2] A square matrix F (z) whose elements are
real-rational proper functions analytic in |z| > 1 is DT-PR if and only
if the following statements hold:
1) poles of elements of F (z) on |z| = 1 are simple;
2) F ∗(ej θ ) + F (ej θ ) ≥ 0 for all real θ at which F (ej θ ) exists; and
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3) if z0 = ej θ0 , θ0 is real, is a pole of an element of F (z), and if K0

is the residue matrix of F (z) at z0 , then the matrix e−j θ0 K0 is
positive semidefinite Hermitian.

Remark 1: One should note that the following condition is con-
tained in Condition 3 of Lemma 1: If F (z) has a simple pole at −1,
then the corresponding residue matrix limz→−1 (z + 1)F (z) is nega-
tive semidefinite Hermitian. This fact follows by a direct calculation
that e−j θ |θ=0 = 1 and e−j θ |θ=π = −1.

Lemma 2: [2], [3] A square real-rational proper transfer function
matrix F (z) is DT-PR if and only if the following statements hold:
1) F (z) is analytic in |z| > 1;
2) F ∗(ej θ ) + F (ej θ ) ≥ 0 for all real θ at which F (ej θ ) exists; and
3) the poles of F (z) on |z| = 1 are simple and the corresponding

residue matrices of F (z) at those poles are positive semidefinite
Hermitian.

Remark 2: According to Condition 3 in Lemma 2, we have the
following result: If F (z) has a simple pole at −1, then the corre-
sponding residue matrix limz→−1 (z + 1)F (z) is positive semidefinite
Hermitian.

Obviously, it follows from Remarks 1 and 2 that Condition 3 of
Lemma 1 is not equivalent to Condition 3 of Lemma 2. When F (z)
has poles on |z| = 1, Condition 3 of Lemma 1 requires that e−j θ0 K0

be positive semidefinite Hermitian, whereas Condition 3 of Lemma 2
requires that the associated residue matrix K0 be positive semidefinite
Hermitian.

The following lemma is a classical DT-PR lemma in terms of mini-
mal state-space realization.

Lemma 3: [1] Let F (z) be a square real-rational proper transfer
functions of z with no poles in |z| > 1 and simple poles only on
|z| = 1, and let (A, B, C, D) be a minimal realization of F (z). Then,
necessary and sufficient conditions for F (z) to be DT-PR are that there
exist a real matrix P = P T > 0 and real matrices L and W such that

AT PA − P = −LT L

CT − AT PB = LT W

DT + D − BT PB = W T W.

Remark 3: In [4], it has been pointed out that Definition 1 and
Lemmas 1 and 3 are agreeable with each other. Lemma 2 is not equiv-
alent to Definition 1 and Lemmas 1 and 3. Xiao and Hill [4] utilized
three counterexamples to show this result.

In this section, we provide the detailed reasons why Lemma 2 is
not equivalent to Definition 1 and Lemmas 1 and 3. As was mentioned
in [4], Lemma 3 plays an important role in the research of DT-PR
systems. Hitz and Anderson [1] proved Lemma 3 by applying the
bilinear transformation

s =
z − 1
z + 1

. (1)

So, if we use Lemma 3, one should admit that, via the bilinear trans-
formation in (1), the CT-PR transfer matrix F (s) is transformed into
a DT-PR transfer matrix F (z), and vice versa. Next, we will show
that: under the transformation in (1), Lemma 2 is not equivalent to
[23, Th. 2.7.2], which is the CT counterpart of Lemma 2.

According to Lemmas 1 and 2, it can be found that the main dis-
tinctions lie in Condition 3 when the transfer matrix F (z) has poles
on |z| = 1. Hence, without loss of generality, assume that the CT-
PR transfer matrix F (s) has some simple poles on the purely imag-
inary axis. Then, according to the minor decomposition theory in
[23, p. 216], F (s) can be written in the following form:

F (s) = Σi
Ki

s − jωi

+ sA +
C

s
+ F0 (s) (2)

where F0 (s) is analytic in Re[s] > 0; Ki = K∗
i ≥ 0, A = A∗ ≥ 0, and

C = C∗ ≥ 0 are the associated residue matrix at jωi (ωi > 0), 0, and
∞, respectively. By means of the transformation in (1), (2) transforms
into F (z) = Σi

(z +1)K i
(1−j ω i )z−(1+ j ω i ) + z−1

z +1 A + z +1
z−1 C + F0

(
z−1
z +1

)
. Be-

cause F (s) is CT-PR, it follows from [22, Th. 1] and Lemma 3 that
F (z) is DT-PR. However, when ej θ1 = 1+ j ω 1

1−j ω 1
is a simple pole of

F (z), the residue matrix of F (z) at ej θ1 is given by

K0 = lim
z→ 1 + j ω 1

1−j ω 1

(
z − 1 + jω1

1 − jω1

)
F (z) =

2K1

1 − ω2
1 − 2jω1

which is not positive semidefinite Hermitian, where K1 =
lims→j ω 1 (s − jω1 )F (s) is positive semidefinite. This contradicts
Condition 3 in Lemma 2. Moreover, the matrix

e−j θ1 K0 =
(

1 − ω2
1 − 2ω1 j

1 + ω2
1

)
2K1

1 − ω2
1 − 2ω1 j

=
2K1

1 + ω2
1

is positive semidefinite Hermitian. This coincides with Condition 3 in
Lemma 1. Although some researchers adopt Lemma 2 in their research
and the form of Lemma 2 is similar to the CT case, it follows from
above theoretical analysis that Lemma 1 is correct and Lemma 2 cannot
be used to test DT-PR properties when the system has poles on |z| = 1.
In addition, it is noteworthy that some inconsistencies in [3] have been
corrected in [24].

Example 1: To illustrate the main results in this section, consider

a CT-PR transfer matrix F (s) = (
s

s 2 + 1
1

s 2 + 1−1
s 2 + 1

s
s 2 + 1

). Using the bilinear

transformation in (1) transforms F (s) to F (z) = (
z 2 −1

2 ( z 2 + 1 )
( z + 1 ) 2

2 ( z 2 + 1 )
−( z + 1 ) 2

2 ( z 2 + 1 )
z 2 −1

2 ( z 2 + 1 )

).

A calculation shows that the residue matrix of F (z) at z = j

is given by K = (
j
2

1
2

− 1
2

j
2

), which is not positive semidefinite Her-

mitian and contradicts Condition 3 in Lemma 2. However, the

matrix e−j θ K |θ= π
2

= −jK = (
1
2 − j

2
j
2

1
2

) is positive semidefinite Her-

mitian and satisfies Condition 3 in Lemma 1.

III. DT-NI TRANSFER FUNCTION MATRICES

In this section, our goal is to establish the connection between DT-NI
and CT-NI systems. First, the definitions of CT-NI and DT-NI transfer
matrices are introduced, respectively.

Definition 2: [17] A square real-rational transfer function matrix
G(s) is called CT-NI if the following statements hold:
1) G(s) has no poles in Re[s] > 0;
2) j[G(jω) − G∗(jω)] ≥ 0 for all ω > 0 except values of ω where

jω is a pole of G(s);
3) if s = 0 is a pole of G(s), then lims→0 s2G(s) is positive semidef-

inite Hermitian, and lims→0 sm G(s) = 0 for all m ≥ 3;
4) if s = jω0 with ω0 > 0 is a pole of G(s), ω0 is finite, it is at most a

simple pole and the residue matrix K = lims→j ω 0 (s − jω0 )jG(s)
is positive semidefinite Hermitian; and

5) if s = j∞ is a pole of G(s), then limω→∞
G (j ω )
(j ω )2 is negative

semidefinite Hermitian, and limω→∞
G (j ω )
(j ω )m = 0 for all m ≥ 3.

Definition 3: [20] A square real-rational proper transfer function
matrix G(z) is called DT-NI if the following statements hold:
1) G(z) has no poles in |z| > 1;
2) j[G(ej θ ) − G∗(ej θ )] ≥ 0 for all θ ∈ (0, π) except values of θ

where ej θ is a pole of G(z);
3) if z0 = ej θ0 , θ0 ∈ (0, π), is a pole of G(z), then it is at most a

simple pole and the residue matrix K̃ = limz→z 0 (z − z0 )jG(z)
satisfies that e−j θ0 K̃ is positive semidefinite Hermitian;
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4) if z = 1 is a pole of G(z), then it is at most a double pole,
limz→1 (z − 1)2G(z) is positive semidefinite Hermitian, and
limz→1 (z − 1)m G(z) = 0 for all m ≥ 3; and

5) if z = −1 is a pole of G(z), then it is at most a double pole,
limz→−1 (z + 1)2G(z) is negative semidefinite Hermitian, and
limz→−1 (z + 1)m G(z) = 0 for all m ≥ 3.

The following lemma characterizes a connection between CT-NI and
DT-NI transfer matrices.

Lemma 4: A CT-NI transfer matrix G(s) transforms into a DT-NI
transfer matrix G(z) by the bilinear transformation s = z−1

z +1 . Con-
versely, a DT-NI transfer matrix G(z) transforms into a CT-NI transfer
matrix G(s) by the bilinear transformation z = 1+ s

1−s
.

Proof: Assume that G(s) is CT-NI. Then, under the bilinear trans-
formation s = z−1

z +1 , we will show that the five conditions in Definition 3
are satisfied. Conditions 1 and 2 of Definition 3 are immediate.

If s = 0 is a pole of G(s), then z = 1 is also a pole of G(z). Ac-
cording to the minor decomposition theory in [17], G(s) is of the form
G(s) = A 2

s2 + A 1
s

+ G0 (s), where A2 = A∗
2 ≥ 0, A1 + AT

1 ≥ 0, and
G0 (s) has no poles in Re[s] > 0 and at s = 0. By means of the bilinear
transformation s = z−1

z +1 , G(s) transforms into G(z) =
(

z +1
z−1

)2
A2 +

z +1
z−1 A1 + G0

(
z−1
z +1

)
. Then, limz→1 (z − 1)2G(z) = 4A2 ≥ 0, and

limz→1 (z − 1)m G(z) = 0 for all m ≥ 3.
If s = jω0 , ω0 > 0, is a pole of G(s), then z = 1+ j ω 0

1−j ω 0
is also a pole

of G(z). Decompose G(s) to the form

G(s) =
−jK

s − jω0
+

jK∗

s + jω0
+ G0 (s) (3)

where K is the residue matrix of jG(s) at jω0 , K = K∗ ≥ 0,
and G0 (s) has no poles in Re[s] > 0 and at ±jω0 . By means of
the transformation s = z−1

z +1 , G(s) in (3) transforms into G(z) =
−jK (z +1)

(1−j ω 0 )z−(1+ j ω 0 ) + jK ∗(z +1)
(1+ j ω 0 )z−(1−j ω 0 ) + G0

(
z−1
z +1

)
. The residue ma-

trix of jG(z) at ej θ0 = 1+ j ω 0
1−j ω 0

is given by

K̃ = lim
z→ 1 + j ω 0

1−j ω 0

(
z − 1 + jω0

1 − jω0

)
jG(z) =

2K

1 − ω2
0 − 2ω0 j

which is not positive semidefinite Hermitian unless ω0 = 0. Then, we

have e−j θ0 = 1−ω 2
0 −2ω 0 j

1+ω 2
0

, and the matrix e−j θ0 K̃ = 2K
1+ω 2

0
is positive

semidefinite Hermitian. Similarly, the residue matrix at 1−j ω 0
1+ j ω 0

has the
same property.

If s = j∞ is a pole of G(s), then z = −1 is also a pole of G(z).
Decompose G(s) to the form: G(s) = s2C2 + sC1 + G0 (s), where
C2 = C∗

2 ≤ 0, C1 + CT
1 ≤ 0, and G0 (s) has no poles in Re[s] > 0

and at infinity. Under the transformation s = z−1
z +1 , G(s) transforms

into G(z) =
(

z−1
z +1

)2
C2 + z−1

z +1 C1 + G0
(

z−1
z +1

)
. Then, limz→−1 (z +

1)2G(z) = 4C2 ≤ 0, and limz→−1 (z + 1)m G(z) = 0 for all m ≥ 3.
Conversely, assume that G(z) is DT-NI. We will show that the

five conditions in Definition 2 are satisfied by means of the bilinear
transformation z = 1+ s

1−s
. Also, Conditions 1 and 2 of Definition 2 are

immediate.
If z = ej θ0 , θ0 ∈ (0, π), is a pole of G(z), then s = j sin θ0

1+cos θ0
> 0

is also a pole of G(s). Similar to the minor decomposition of CT case

in [17], we decompose G(z) as G(z) = −j K̃ 0
z−e j θ 0

+ j K̃ ∗
0

z−e−j θ 0
+ G0 (z),

where K̃0 is the residue matrix of jG(z) at ej θ0 , e−j θ0 K̃0 is positive
semidefinite Hermitian, and G0 (z) has no poles in |z| > 1 and at e±j θ0 .
Consider the transformation z = 1+ s

1−s
. G(z) transforms into G(s) =

−j K̃ 0 (1−s)
(1+ e j θ 0 )s+(1−e j θ 0 )

+ j K̃ ∗
0 (1−s)

(1+ e−j θ 0 )s+(1−e−j θ 0 )
+ G0

( 1+ s
1−s

)
. Then, the

residue matrix of jG(s) at s = e j θ 0 −1
e j θ 0 +1

is given by

K = lim
s→ e j θ 0 −1

e j θ 0 + 1

(
s − ej θ0 − 1

ej θ0 + 1

)
jG(s) =

2K̃0

(ej θ0 + 1)2

=
e−j θ0 2K̃0

e−j θ0 (1 + 2ej θ0 + e2j θ0 )
=

e−j θ0 K̃0

1 + cos θ0

which is positive semidefinite Hermitian.
If z = 1 is a pole of G(z), then s = 0 is a pole of G(s). We decom-

pose G(z) as G(z) = A 2
(z−1)2 + A 1

z−1 + G0 (z), where A2 = A∗
2 ≥ 0

and G0 (z) has no poles in |z| > 1 and at z = 1. By the same trans-
formation, G(z) transforms into G(s) = A 2

4s2 + A 1 −A 2
2s

+ G1
( 1+ s

1−s

) −
A 1
2 + A 2

4 . Then, lims→0 s2G(s) = A 2
4 ≥ 0, and lims→0 sm G(s) = 0

for all m ≥ 3.
If z = −1 is a pole of G(z), then s = j∞ is a pole of G(s). We

write G(z) in the form G(z) = C 2
(z +1)2 + C 1

z +1 + G0 (z), where C2

= C∗
2 ≤ 0. Using the same transformation, G(z) transforms

into G(s) = C 2
4 s2 + −C 1 −C 2

2 s + G0
( 1+ s

1−s

)
+ C 1

2 + C 2
4 . Then,

limω→∞
G (j ω )
(j ω )2 = C 2

4 ≤ 0, and limω→∞
G (j ω )
(j ω )m = 0 for all m ≥ 3. �

Example 2: To illustrate the usefulness of Lemma 4, consider a non-

symmetric CT-NI transfer function matrix G(s) = ( −s2 − s −s2 − s
−s2 + s −2s2 − s

).

By the bilinear transformation in (1), G(s) transforms into G(z) =

(
−2 ( z 2 −z )
( z + 1 ) 2

−2 ( z 2 −z )
( z + 1 ) 2

2 z −2
( z + 1 ) 2

−3 z 2 + 4 z −1
( z + 1 ) 2

). Conditions 1 and 2 of Definition 3 are im-

mediate after a direct calculation. G(z) has a double pole at −1,

and limz→−1 (z + 1)2G(z) = (−4 −4
−4 −8 ) is negative definite Hermitian,

limz→−1 (z + 1)m G(z) = 0 for all m ≥ 3. Hence, G(z) is DT-NI in
view of Definition 3.

In the following lemma, we present an alternative method to prove
the DT-NI lemma in [20].

Lemma 5: [20] Let (A, B, C, D) be a minimal state-space realiza-
tion of a real-rational proper DT transfer matrix G(z) ∈ Rm ×m , where
A ∈ Rn×n , B ∈ Rn×m , C ∈ Rm ×n , D ∈ Rm ×m , and m ≤ n. Sup-
pose det(I + A) �= 0 and det(I − A) �= 0. Then, G(z) is DT-NI if
and only if the following statements hold:
1) C(I + A)−1B − D = BT (I + AT )−1CT − DT ; and
2) there exists a matrix Y = Y T > 0, Y ∈ Rn×n , such that

Y − AY AT ≥ 0 and B = (I − A)Y (I + AT )−1CT .

Proof: By means of the bilinear transformations s = z−1
z +1 and

z = 1+ s
1−s

, the DT transfer matrix G(z) = C(zI − A)−1B + D is
transformed into a CT transfer matrix G(s) = H(sI − F )−1G + J ,
and vice versa, where

{
F = (A + I)−1 (A − I), G =

√
2(I + A)−1B

H =
√

2C(A + I)−1 , J = D − C(I + A)−1B.
(4)

According to [22, Th. 1], (F, G, H, J) is a minimal realization of G(s).
Then, one has the following equivalent statements:

G(z) ∼ (A, B, C, D) is DT-NI.
⇔G(s) ∼ (F, G, H, J) is CT-NI. This equivalence is via Lemma 4.
⇔ J = JT and there exists a real matrix Y = Y T > 0, Y ∈ Rn×n ,

such that FY + Y F T ≤ 0 and G + FY HT = 0. This equivalence is
via the CT-NI lemma in [15, Lemma 7].

⇔ D − C(I + A)−1B = DT − BT (I + AT )−1CT and there ex-
ists a matrix Y = Y T > 0, Y ∈ Rn×n , such that Y − AY AT ≥
0 and B = (I − A)Y (I + AT )−1CT . �

Remark 4: It is worthwhile noting that the proof of Lemma 5 is
based on the connection between CT-NI and DT-NI transfer matrices
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developed in Lemma 4. However, the proof of DT-NI lemma in [20,
Lemma 11] and [19, Th. 3.2] is based on the relation between DT-
PR and DT-NI systems. Lemma 5 is equivalent to [20, Lemma 11]
according to [19, Corollary 3.1]. Moreover, Lemma 4 can be used to
develop other properties of DT-NI systems, such as the internal stability
results in [19] and [20], and the residue matrix properties with simple
pole at z = ±1 [20, Lemma 4]. The more detailed proofs of Lemmas 4
and 5 can be found in [21].

IV. DT-LNI TRANSFER FUNCTION MATRICES

In this section, our goal is to introduce the concept of DT-LNI
systems, study some properties of such systems, and present the DT-
LNI lemma in terms of minimal state-space realization. First, we recall
the definition of CT-LNI systems.

Definition 4: [17] A square real-rational transfer function matrix
G(s) is called CT-LNI if the following statements hold:
1) G(s) is CT-NI; and
2) j[G(jω) − G∗(jω)] = 0 for all ω > 0 except values of ω where

jω is a pole of G(z).
Definition 5: A square real-rational proper transfer function matrix

G(z) is called DT-LNI if the following statements hold:
1) G(z) is DT-NI; and
2) j[G(ej θ ) − G∗(ej θ )] = 0 for all θ ∈ (0, π) except values of θ

where ej θ is a pole of G(z).
The following lemma characterizes a connection between CT-LNI

and DT-LNI transfer matrices.
Lemma 6: A CT-LNI transfer matrix G(s) transforms into a DT-

LNI transfer matrix G(z) by the bilinear transformation s = z−1
z +1 .

Conversely, a DT-LNI transfer matrix G(z) transforms into a CT-LNI
transfer matrix G(s) by the bilinear transformation z = 1+ s

1−s
.

Proof: Suppose G(s) is CT-LNI. Condition 1 of Definition 4 im-
plies that G(s) is CT-NI. According to Lemma 4, G(z) is DT-NI by
the bilinear transformation s = z−1

z +1 . Furthermore, if s = jω, ω > 0,

is not a pole of G(s), then z = 1+ s
1−s

= 1+ j ω
1−j ω

= 1−ω 2 +2ω j
1+ω 2 is not a pole

of G(z). Then, for all ω > 0 with jω not a pole of G(s), j[G(jω) −
G∗(jω)] = 0 implies that j[G( 1−ω 2 +2ω j

1+ω 2 ) − G∗( 1−ω 2 +2ω j
1+ω 2 )] = 0 for

all θ ∈ (0, π) with ej θ = 1−ω 2 +2ω j
1+ω 2 not a pole of G(z). Therefore, it

follows from Definition 5 that G(z) is DT-LNI.
Conversely, suppose G(z) is DT-LNI. Condition 1 of Definition 5

implies that G(z) is DT-NI. It follows from Lemma 4 that G(s) is
CT-NI under the transformation z = 1+ s

1−s
. Also, for all θ ∈ (0, π)

with ej θ not a pole of G(z), j[G(ej θ ) − G∗(ej θ )] = 0 implies that
j[G(j sin θ

1+cos θ
) − G∗(j sin θ

1+cos θ
)] = 0 for all real ω > 0 such that jω =

e j θ −1
e j θ +1 = j sin θ

1+cos θ
is not a pole of G(s). Hence, G(s) is CT-LNI by

Definition 4. �
Example 3: To illustrate the usefulness of Lemma 6, con-

sider a nonsymmetric CT-LNI transfer matrix G(s) = (
2

s 2 + 1
−s

s 2 + 1
s

s 2 + 1
2

s 2 + 1
).

By the bilinear transformation s = z−1
z +1 , G(s) transforms into

G(z) = (
( z + 1 ) 2

( z 2 + 1 )
1−z 2

2 ( z 2 + 1 )
z 2 −1

2 ( z 2 + 1 )
( z + 1 ) 2

( z 2 + 1 )

). After a direct calculation, it follows that

j[G(ej θ ) − G∗(ej θ )] = 0 for all θ ∈ (0, π) with ej θ not a pole of
G(z). The residue matrix of jG(z) at ej θ = j ( θ = π

2 ) is given by

K̃ = ( j 1
2− 1

2 j
), which is not positive semidefinite Hermitian. Then, the

matrix e−j θ K̃ = −jK̃ = ( 1 − j
2

j
2 1

) is positive semidefinite Hermitian,

which satisfies Condition 3 in Definition 3. It follows from Definitions 3
and 5 that G(z) is DT-LNI.

The following lemma provides a necessary and sufficient condition
for a system to be DT-LNI.

Lemma 7: A square real-rational proper transfer function matrix
G(z) is DT-LNI if and only if the following statements hold:
1) all poles of elements of G(z) lie on |z| = 1 and the poles at ej θ ,

θ ∈ (0, π), are simple, and the residue matrix K̃ = limz→z 0 (z −
z0 )jG(z) at any pole z0 = ej θ0 , θ0 ∈ (0, π), satisfies that e−j θ0 K̃
is positive semidefinite Hermitian;

2) if z = 1 is a pole of G(z), then limz→1 (z − 1)2G(z) is posi-
tive semidefinite Hermitian, and limz→1 (z − 1)m G(z) = 0 for all
m ≥ 3;

3) if z = −1 is a pole of G(z), then limz→−1 (z + 1)2G(z) is negative
semidefinite Hermitian, and limz→−1 (z + 1)m G(z) = 0 for all
m ≥ 3; and

4) G(z) = GT (z−1 ) for all z such that z is not a pole of G(z).
Proof: (Necessity) Suppose G(z) is DT-LNI. Condition 2 of Defi-

nition 5 implies that j[G(ej θ ) − G∗(ej θ )] = 0 for all θ ∈ (0, π) with
ej θ not a pole of G(z). By taking the complex conjugate, we have
j[G(ej θ ) − G∗(ej θ )] = 0. That is, j[G(ej θ ) − G∗(ej θ )] = 0 for all
θ ∈ (0,−π). When G(z) has no poles at θ = 0, π, one has that
j[G(ej θ ) − G∗(ej θ )] = 0 for θ = 0, π due to the continuity of G(z).
Hence, we have

j[G(ej θ ) − G∗(ej θ )] = 0 (5)

for all θ ∈ [0, 2π] with ej θ not a pole of G(z). In view of the fact that
G(z) is real-rational function, one has that G∗(ej θ ) = GT (e−j θ ), and
so (5) implies that

j[G(z) − GT (z−1 )] = 0

for all |z| = 1, where z is not a pole of any element of G(z). Because
j[G(z) − GT (z−1 )] is an analytic function of z, it follows from maxi-
mum modulus theorem ([25, Th. A4-3]) that j[G(z) − GT (z−1 )] = 0
for all z with z not a pole of G(z). Hence, G(z) = GT (z−1 ) for all z
such that z is not a pole of G(z). Condition 4 holds.

Suppose z0 is a pole of G(z). Then, it follows from G(z) =
GT (z−1 ) that z−1

0 is also a pole of G(z). However, we know that
G(z) has no poles in |z| > 1. If |z0 | < 1, then |z−1

0 | > 1. So, the only
case is that all poles of elements of G(z) lie on |z| = 1. Moreover,
Condition 3 of Definition 3 implies that the poles at ej θ , θ ∈ (0, π), are
simple, and the matrix e−j θ0 K̃ at any pole ej θ0 , θ0 ∈ (0, π), is positive
semidefinite Hermitian. Thus, Condition 1 holds. Also, Conditions 4
and 5 of Definition 3 imply that Conditions 2 and 3 hold.

(Sufficiency) Suppose Conditions 1–4 hold. First, Conditions 1–3
imply that Condition 1 and Conditions 3–5 of Definition 3 hold.
Second, Condition 4 implies that G(z) = GT (z−1 ). It follows that
G(ej θ ) = G∗(ej θ ), and so implies that j[G(ej θ ) − G∗(ej θ )] = 0 for
all θ ∈ (0, π) with ej θ not a pole of G(z). Thus, G(z) is DT-LNI
according to Definitions 3 and 5. �

The following lemma characterizes the properties of a sum of DT-
LNI transfer matrices.

Lemma 8: Given two DT-LNI transfer matrices G1 (z), G2 (z), and
a DT-NI transfer matrix G(z). Then
1) G1 (z) + G2 (z) is DT-LNI; and
2) G1 (z) + G(z) is DT-NI.

Proof: The proof is trivial according to the definition of DT-LNI
and DT-NI transfer matrices. �

The DT-LNI lemma proposed in the following provides a necessary
and sufficient condition for a system to be DT-LNI in terms of minimal
state-space realization.

Lemma 9: Let (A, B, C, D) be a minimal state-space realization
of a real-rational proper DT transfer function matrix G(z) ∈ Rm ×m ,
where A ∈ Rn×n , B ∈ Rn×m , C ∈ Rm ×n , D ∈ Rm ×m , and m ≤ n.
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Suppose det(I + A) �= 0 and det(I − A) �= 0. Then, G(z) is DT-LNI
if and only if the following statements hold:
1) C(I + A)−1B − D = BT (I + AT )−1CT − DT ; and
2) there exists a matrix Y = Y T > 0, Y ∈ Rn×n , such that

Y − AY AT = 0 and B = (I − A)Y (I + AT )−1CT .

Proof: Similar to the proof of Lemma 5, the proof follows from the
following sequence of equivalent reformulations:

G(z) ∼ (A, B, C, D) is DT-LNI.
⇔ G(s) ∼ (F, G, H, J) is CT-LNI, where F , G, H , and J are

defined in (4). This equivalence is according to Lemma 6.
⇔ J = JT and there exists a real matrix Y = Y T > 0, Y ∈ Rn×n ,

such that FY + Y F T = 0 and G + FY HT = 0. This equivalence is
via the CT-LNI lemma in [8, Th. 1].

⇔ D − C(I + A)−1B = DT − BT (I + AT )−1CT and there ex-
ists a matrix Y = Y T > 0, Y ∈ Rn×n , such that Y − AY AT =
0 and B = (I − A)Y (I + AT )−1CT . �

In the following result, we consider the internal stability of a posi-
tive feedback interconnection of two DT-NI systems in terms of loop
gain at z = 1. The positive feedback interconnection is denoted by
[G(z), Gs (z)], where G(z) is DT-LNI.

Corollary 1: Given a DT-LNI transfer matrix G(z), and a DT
strictly NI transfer matrix Gs (z). Suppose G(z) and Gs (z) have
no poles at −1 and 1, and that also satisfy G(−1)Gs (−1) =
0 and Gs (−1) ≥ 0. Then, the positive feedback interconnection
[G(z), Gs (z)] is internally stable if and only if λm ax (G(1)Gs (1)) < 1.

Remark 5: The DT-LNI lemma in Lemma 9 can be considered as
a modification of the DT-NI lemma in [20] by replacing the inequality
with equality. The DT-LNI systems can be considered as a special case
of the DT-NI systems with all the systems poles on |z| = 1. As a result,
all results developed in [20] are valid for DT-LNI systems. The results
in Corollary 1 are actually a special case of [19, Th. 8] or [20, Th. 1]
with one system being DT-LNI, and hence proof is omitted here. Similar
to [8, Corollaries 1 and 2], Corollary 1 can be written in the same form
as the small-gain theorem, where one system is DT-LNI; details are
omitted here.

V. NUMERICAL EXAMPLES

In this section, one numerical example is given to illustrate the DT-
(L)NI lemma of the paper.

Example 4: To illustrate Lemmas 5 and 9, consider the DT-(L)NI
transfer matrix G(z) in Example 3 (DT-LNI system is also DT-NI
system). A minimal state-space realization of G(z) in Example 3 is as
follows:

A =

⎛

⎜⎜
⎜
⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞

⎟⎟
⎟
⎠

, B =

⎛

⎜⎜
⎜
⎝

1 0
0 1
0 0
0 0

⎞

⎟⎟
⎟
⎠

C =

(
2 0 0 1
0 2 −1 0

)

, D =

(
1 − 1

2
1
2 1

)

.

A calculation shows that C(I + A)−1B − D = ( 0 0
0 0 ). Thus,

Condition 1 in Lemmas 5 and 9 holds, respectively. Because G(s) in Ex-
ample 3 is strictly proper, it leads to J = 0, and hence C(I + A)−1B −
D = 0 always holds. If G(s) is proper, but not strictly proper, then
J �= 0, and also C(I + A)−1B − D �= 0. Then, YALMIP and SeDuMi
were used to solve the Condition 2 in Lemma 9, and we obtained the

following solution:

Y =

⎛

⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

2
3

0 0 −1
3

0
2
3

1
3

0

0
1
3

2
3

0

−1
3

0 0
2
3

⎞

⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

> 0.

Condition 2 in Lemmas 5 and 9 holds, respectively.
Consider the transfer matrix G(z) in Example 2. Because G(s) in

Example 2 is nonproper and has a double pole at infinity, G(z) in
Example 2 has a double pole at −1. The minimal state-space realiza-
tion of such G(z) always has poles at −1, and hence the condition
det (I + A) �= 0 does not hold. In this case, we cannot use Lemma 5
to judge whether G(z) is DT-NI. Furthermore, consider the robotic arm
example in [16]. The finite dimensional model Gf (s) in [16, eq. (23)]
is CT-NI. A calculation shows that Gf (z) is also DT-NI by the bilinear
transformation in (1).

VI. CONCLUSION

This paper has studied three related problems. First, it was shown
by theoretical analysis that only the original necessary and sufficient
conditions were equivalent to the definition of DT-PR transfer matrices
and DT-PR lemma. This result is in line with conclusions in [4]. Second,
motivated by the DT-PR case, it was found that DT-NI and CT-NI
transfer matrices were equivalent by bilinear transformations. Third,
the DT-LNI systems were studied. Finally, the developed theory in this
paper was illustrated by examples.
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