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Quantized Feedback Stabilization of Nonlinear Systems With
External Disturbance
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Abstract—This paper studies the quantized feedback stabiliza-
tion problem for nonlinear systems with external disturbance. A
dynamic quantizer with a quantization parameter is implemented in
this paper. To extract more information, the quantization parameter
is updated according to an updating protocol at the discrete-time
instants. Three quantization cases are studied in this paper, i.e.,
state quantization case, input quantization case, and output quan-
tization case. Based on the updating protocol and Lyapunov ap-
proach, sufficient conditions are developed for quantized feedback
stabilization of the closed-loop system.

Index Terms—Feedback stabilization, input-to-state stability,
nonlinear systems, quantized measurement.

I. INTRODUCTION

Quantized feedback control, which refers to feedback control of sys-
tems with discrete-valued signal measurements [1]–[3], arises in system
and control field due to limited capacity or security constraints on com-
munication between the plant and the controller. Quantized feedback
control has gradually become an active research area over the past few
decades and could be found in numerous applications, such as mechan-
ical systems [4], networked control systems [5], and switched systems
[6], [7]. One fundamental topic of quantized feedback control is how
to choose the quantizer and design the quantized control strategy. The
quantizers in the control systems are usually classified into two types:
static quantizers and dynamic quantizers. Results on feedback control
with static quantizers can be found in the literature like [8]–[10]. How-
ever, due to time-invariant quantization regions, static quantizers only
provide simple structures for coding/decoding schemes. Therefore, dy-
namic quantizers with quantization parameters are introduced, which
adjust the quantization levels dynamically; see [11]–[13]. In addition,
for dynamic quantizers, the quantization mechanism with zooming-out
stage and zooming-in stage is implemented; see [6], [12], and [14].
Following the similar line as in [12] and [14], the dynamic quantizer is
applied in this paper.

In a control system, quantization may cause many phenomena [2],
such as limit circle, saturation, chaos, and dead zone, which have great
impacts on system stability and performances. To study the effects of
the quantization on system stability, there are two approaches to sys-
tem modeling and stability analysis in the literature. The first approach
is based on discrete-time parameter-varying systems; see [15]–[20].
In such an approach, besides quantization (or encoding/decoding
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[18]–[20]), sampling is also considered, thereby leading to quantized
sampled-data control. In the sequel, system models are discrete-time
and parameter varying, and the stability analysis is trajectory-based.
It is not easy to apply such approach to nonlinear systems due to an
intrinsic difficulty: exact sampled-data models of nonlinear systems
cannot be found. For nonlinear systems, some additional conditions
are required; see [16] and [17] for more details. The second approach
is based on jump-flow systems; see [7], [12]–[14], and [21]. In this
approach, sampling is not studied and discrete-time events are treated
as the jumps in control systems. Hence, system models are hybrid and
system stability can be proceeded via the Lyapunov approach. Fur-
thermore, according to the second approach, quantization effects can
be studied together with other network-induced phenomena; see [5]
and [8]. In the literature, salient results based on the first approach
can be found for both linear systems [7], [19], [20] and nonlinear sys-
tems [16]–[18]. However, little attention has been given to quantized
feedback control of nonlinear systems using the second approach.

This paper studies the quantized feedback stabilization problem for
nonlinear systems with external disturbance using the second approach.
Based on the dynamic quantizer, the feedback control law is designed.
Three quantization cases are studied, that is, state quantization, input
quantization, and output quantization. For different quantization cases,
stability conditions are established based on Lyapunov approach. The
contributions of this paper are threefold. First, contrary to [16] and [18]
following the first approach, and [6] and [14] on linear systems, the sec-
ond approach is applied for nonlinear systems in this paper. Moreover,
we extend the quantization feedback stabilization results from the linear
system case [14] to the nonlinear system case. Second, the external dis-
turbance is studied in this paper. The external disturbance is inevitable
in control systems and may lead the systems state to escape from the
quantization regions, which further deteriorates system stability [13],
[14]. Therefore, it is necessary to study the effects of the disturbance on
system stability. However, the disturbance is not considered in [6] and
[12], thereby simplifying stability analysis. Third, besides state quanti-
zation [13], [14], input quantization and output quantization are studied
in this paper. In addition, the quantization mechanism with zooming-
out stage and zooming-in stage is applied in this paper, whereas the
encoding and the decoding processes are used in [13].

This paper is organized as follows. In Section II, the problem is
formulated and the updating protocol of the quantization parameter
is given. The main results, presented in Sections III, give sufficient
conditions for quantized feedback stabilization of nonlinear systems
with external disturbance. The aforementioned three cases are studied
sequentially. Conclusions and future works are stated in Section IV.

Notation: R := (−∞,+∞); R≥0 := [0,+∞); R> 0 := (0,+∞);
N := {0, 1, 2, . . .}; N> 0 := {1, 2, . . .}. Symbols ∧ and ∨ denote
“AND” and “OR” in logic, respectively. Given a piecewise continuous
function f : R → R and t ∈ R, f (t − ) := lims↗t f (s). f − denotes
f (t − ) simply if the time argument is ignored. | · | stands for Euclidean
norm; ‖f‖[a ,b ] := ess. supt∈[a ,b ] |f (t)| and ‖f‖[a ,b ] is denoted by ‖f‖
if a = t0 is given and b = ∞. A function α : R≥0 → R≥0 is of class K
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if it is continuous, zero at zero, and strictly increasing; it is of class K∞
if it is of class K and unbounded. A function β : R≥0 × R≥0 → R≥0

is of class KL if β(s, t) is of class K for each fixed t ≥ 0 and β(s, t)
decreases to zero as t→ 0 for each fixed s ≥ 0. For arbitrary functions
α1 , α2 and v ∈ R≥0 , α1 ◦ α2 (v) := α1 (α2 (v)).

II. PROBLEM FORMULATION

Consider the nonlinear system of the form

ẋ(t) = f (t, x, u, w) (1)

where x ∈ Rn x is the system state, u ∈ Rn u is the control input, and
w ∈ Rnw is an unknown disturbance. Suppose that both u and w
are Lebesgue measurable and locally bounded, and that f is locally
Lipschitz in x and w.

In this paper, the uncontrolled system ẋ(t) = f (t, x, 0, w) is as-
sumed to be forward complete, i.e., the solution x(t, x0 , w) from ini-
tial state x0 = x(t0 ) ∈ Rn x and locally bounded w ∈ Rnw exists for
all t ≥ t0 ; see [22]. Also, assume that there exists a feedback control
law u = κ(x) such that the closed-loop system is input-to-state stable
(ISS). That is, there exist a Lyapunov function V : R≥0 × Rn x → R≥0

and α1 , α2 , α3 , σ1 , σ2 ∈ K∞ such that for all x, e ∈ Rn x , w ∈ Rnw ,
(see also [12], and [23, Th. 4.19])

α1 (|x|) ≤ V (t, x) ≤ α2 (|x|) (2)

|x| ≥ σ1 (|e|) + σ2 (‖w‖) ⇒
Vt (t, x) + Vx (t, x)f (t, x, κ(x+ e), w) ≤ −α3 (|x|) (3)

where Vt (t, x) := ∂V (t, x)/∂t and Vx (t, x) := ∂V (t, x)/∂x.
In control systems, especially digital control systems, because of

the limited transmission captivity of the communication channel, the
signal has to be quantized before being transmitted. A quantizer is a
piecewise constant function q : Rn x → Q, where Q is a finite subset
of Rn x [12]. That is, the quantizer divides Rn x into a finite number of
quantization regions of the form {z ∈ Rn x : q(z) = j ∈ Q}. Assume
that the quantizer satisfies the following conditions [12], [14]:

|z| ≤M ⇒ |q(z) − z| ≤ Δ (4)

|z| > M ⇒ |q(z)| > M − Δ (5)

|z| ≤ Δ0 ⇒ q(z) ≡ 0 (6)

where M > Δ > 0; M is called the range of the quantizer, and Δ is
called the bound of the quantization error q(z) − z. The small number
Δ0 > 0 in (6) is called the dead-zone of q, in which the signal is so small
that it is reasonable to quantize the signal as zero directly. Condition
(4) implies that if the signal does not saturate, then the quantization
error is bounded by Δ. Condition (5) provides an approach to detecting
whether the signal saturates or not.

The dynamic quantizer used in this paper is given by

qμ (z) := μq

(
z

μ

)
, μ > 0 (7)

where μ is called the quantization parameter. For the quantizer (7),
the range is Mμ and the bound of the quantization error is Δμ. To
extract more information, μ is updated at the discrete-time instants and
evolved according to the following updating protocol.

In the continuous-time domain, the system state is evolved accord-
ing to (1) and μ is kept constant. In the discrete-time instants, the
updating protocol for μ is presented as follows; see [14]. Some aux-
iliary variables are introduced first. Let μ be initialized as μ0 > 0,
and Ωin ∈ (0, 1), Ωout > 1, Tout < log Ωout/Lx , whereLx is a given

constant. Let lout = M − Δ and lin = Ωin (M − 2Δ) − Δ. The time-
dependent logic variable c is used to distinguish zooming-out stage and
zooming-in stage. c ∈ {yes, no} and is initialized at no. Based on the
above auxiliary variables, μ gets update according to the following
three discrete-time events:

Zoom-out event:
If [(τ −

out = Tout ) ∧ (c − = no)] ∨ [(|qμ − (z)| ≥ loutμ
− ) ∧

(c − = yes)]
then set μ = Ωoutμ

− and τout = 0.
Capture event:

If (|qμ − (z)| ≤ loutμ
− ) ∧ (τ −

out ∈ (0, Tout )) ∧ (c − = no)
then set μ = Ωoutμ

− and c = yes.
Zoom-in event:

If (|qμ − (z)| ≤ linμ
− ) ∧ (min{τ −

out , τ
−

in } ≥ Tin ) ∧ (c − = yes)
then set μ = Ωinμ

− and τin = 0.
In the above updating protocol, τout and τin are two auxiliary vari-

ables to distinguish whether it is time to reset. Both τout and τin are
initialized at 0; τout ∈ [0, Tout ] and τin ∈ [0, Tin ], where Tout ≥ Tin .
The variables τout and τin evolve according to

τ̇out = 1, if τout < Tout ; τ̇in = 1, if τin < Tin .

If τout or τin reaches its upper bound, then it is reset as zero and restarts
to record the time, and μ is updated.

If a zoom-out or capture event occurs, then the quantizer enters into
the zooming-out stage. In the zooming-out stage, μ increases and the
quantization regions are expanding to recover the system state. As a
result, the quantization error is enlarged accordingly. If a capture event
occurs, it means that the quantizer will enter into the zooming-in stage
in the finite time. That is, the capture event is the switch from the
zooming-out stage to the zooming-in stage. If a zoom-in event occurs,
then μ decreases and the quantization regions are contracted to drive
the system state to converge to the neighbor of the origin sequentially.
Based on the variable c, the feedback control law applied in this paper
is of the following form:

u(t) =
{

0, c(t) = no

κ
(
qμ (t) (x(t))

)
, c(t) = yes .

(8)

That is, the system is open-loop in the zooming-out stage and closed-
loop in the zooming-in stage.

In this paper, our objective is to find sufficient conditions such that
under the dynamic quantizer (7) with the preceding updating protocol
and the control law (8), the quantized closed-loop system is ISS with
respect tow ∈ Rnw . In view of [24] and [25], system (1) is ISS if there
exist β ∈ KL, γ1 , γ2 ∈ K∞ such that for all x0 ∈ Rn x and all bounded
w ∈ Rnw

|x(t)| ≤ β(|x0 |, t− t0 ) + γ1 (‖w‖) ∀t ≥ t0 (9)

lim sup
t→∞

|x(t)| ≤ γ2

(
lim sup
t→∞

|w(t)|
)
. (10)

Because of μ, the closed-loop system is not continuous all the time.
As an additional discrete state, μ needs to be considered. With a slight
abuse of terminology, properties (9) and (10) are thought of as ISS of
the considered quantized closed-loop system.

III. STABILIZATION OF NONLINEAR SYSTEMS WITH QUANTIZATION

In this section, sufficient conditions are derived to guarantee ISS
of nonlinear quantized systems. Three quantization cases are studied
sequentially, i.e., state quantization case, input quantization case, and
output quantization case. In what follows, the state quantization case
is studied.
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A. State Quantization Case

For the state quantization case, the following theorem implies that,
under the appropriate conditions, input-to-state stability of the quan-
tized closed-loop system is guaranteed by the control law (8).

Theorem 1: Consider system (1) satisfying conditions (2) and (3).
Suppose that the quantizer (7) satisfies conditions (4)–(6) and that the
control law (8) is applied. If the following conditions hold:

α−1
2 ◦ α1 ((M − 2Δ)μ) > 2Δμ + σ1 (Δμ) (11)

Ωoutα1 ((M − 2Δ)μ) > α2 (Mμ) (12)

Ωinα1 ((M − 2Δ)μ) > α2 ◦ σ1 (Δμ) + α1 (2Δμ) (13)

where α1 , α2 , σ1 , and σ2 are from (2) and (3), then for the nonlinear
quantized closed-loop system, the continuous dynamics is ISS, and the
quantization parameter μ is bounded for all t ≥ t0 .

Remark 1: In Theorem 1, inequality (11) guarantees the existence
of all the variables and quantities defined in Section II. It also implies
that for the quantizer (7), compared with the bound Δμ, the rangeMμ
should be large enough. If the system state is always in the quantization
regions, then (11) can be relaxed to only hold for some bounded μ like
μ ∈ (ε, μ0 ] with some small ε > 0; see [26].

To prove Theorem 1, some preliminary lemmas are necessary. In
the following, all the assumptions in Theorem 1 are assumed to be
satisfied. The next lemma implies that there exists a time instant such
that the system state enters into the quantization regions and c switches
to yes.

Lemma 1: There exists t1 ≥ t0 such that for some ρx , ρμ ∈ KL,
γx , γμ ∈ K

‖x‖[t0 , t1 ] ≤ ρx (|x0 |, t1 − t0 ) + γx (‖w‖) (14)

μ(t1 ) ≤ ρμ (|x0 |, t1 − t0 ) + γμ (‖w‖). (15)

In addition, c(t) = yes and |x(t)| ≤Mμ(t) for all t ≥ t1 .
Proof: At the initial time t0 , c(t0 ) = no. There is no control in-

put and μ starts to increase. Thus, the nonlinear system is ẋ(t) =
f (t, x, 0, w). Let us introduce the autonomous systems as follows:

˙̂x(t) = f (t, x̂, 0, 0) (16)

and the initial observer state is x̂(t0 ) = x0 .
Based on the forward completeness of the function f , the system

state x(t) and the observer state x̂(t) exist on [t0 ,∞). Furthermore,
it follows from the local Lipschitz property of f that, for all locally
bounded w ∈ Rnw , there exist ť1 > t0 and δ1 > 0 such that, for all
t ∈ [t0 , ť1 ], x(t), x̂(t) ∈ B(δ1 ) := {z ∈ Rn x : |z − x0 | ≤ δ1}

|ẋ(t) − ˙̂x(t)| = |f (t, x, 0, w) − f (t, x̂, 0, 0)|
≤ Lx1 |x(t) − x̂(t)| + Lw 1‖w‖[t0 , ť1 ] (17)

where Lx1 , Lw 1 ≥ 0 are local Lipschitz constants in [t0 , ť1 ). Accord-
ing to [23, Th 3.1] and the standard comparison lemma, it follows from
(17) that for all t ∈ [t0 , ť1 ]

|x(t)| ≤ |x̂(t)| + eLx 1 (t−t0 )Lw 1L
−1
x1 ‖w‖[t0 , ť1 ] .

In addition, x̂(t) is bounded in [t0 , ť1 ) based on [22, Section 2.1]. We
can write the bound of x̂(t) as a function of t− t0 and |x0 |.

With the increase of the time, the system state and the observer
state will escape the region B(δ1 ). Then, for all locally bounded w ∈
Rnw , there exist δ2 > δ1 and ť2 > ť1 such that, for all t ∈ [ť1 , ť2 ),
x(t), x̂(t) ∈ B(δ2 ) := {z ∈ Rn x : |z − x0 | ≤ δ2}

|ẋ(t) − ˙̂x(t)| ≤ Lx2 |x(t) − x̂(t)| + Lw 2‖w‖[ ť1 , ť2 ]

whereLx2 , Lw 2 ≥ 0 are local Lipschitz constants in [ť1 , ť2 ). Similarly,
it obtains that for all t ∈ [ť1 , ť2 ), x̂(t) is bounded and

|x(t)| ≤ |x̂(t)| + eLx 2 (t−ť1 ) [|x(ť1 ) − x̂(ť1 )|
+ Lw 2L

−1
x2 ‖w‖[ ť1 , ť2 ] ]

≤ |x̂(t)| + em ax{Lx 1 ,L x 2 }(t−t0 )

× (Lw 1L
−1
x1 + Lw 2L

−1
x2 )‖w‖[t0 , ť2 ] .

Repeating the above mechanism, it follows that for all t ≥ t0

|x(t)| ≤ |x̂(t)| + eLx (t−t1 )Lw ‖w‖ (18)

whereLx := supi∈N> 0
{Lxi} andLw :=

∑
i∈N> 0

Lw iL
−1
xi . Since the

bound of x̂(t) can be written as a function of t− t0 and |x0 |, there exist
ρx , ρμ ∈ KK, and γx , γμ ∈ K∞ such that (14) and (15) hold.

Next, suppose c = no for all t ≥ t0 . Because zoom-out events oc-
cur successively at least every Tout units of time, it obtains that
μ(t0 + kTout ) = Ωk

outμ0 , where k ∈ N. Combining the bounded-
ness of the disturbance, Tout < log Ωout/Lx and (18), it follows that
μ(t0 + kTout ) grows faster than ‖x‖[t0 + kT o u t , t0 + (k+1)T o u t ) . As a
result, if μ stays in zooming-out stage all the time, there exists an
infinite time sequence {kTout + Tc : Tc ∈ (0, Tout ), k > k1 ∈ N> 0}
such that at these time instants, |qμ (x)| > (M − Δ)μ, which implies
that |x| > (M − 2Δ)μ. This is a contradiction to (18). Therefore,
c = no does not hold for all t ≥ t0 , and there exists t1 ≥ t0 such that
c(t1 ) = yes.

Since |qμ (t −
1 ) (x(t −1 ))| ≤ (M − Δ)μ(t −1 ) at t1 ≥ t0 , it follows

that |x(t1 )| ≤Mμ(t −1 ) < Mμ(t1 ). Claim that |x(t)| ≤Mμ(t) for
all t ≥ t1 . The claim does not fail at the zoom-out event, because μ(t)
increases at the zoom-out event. Due to the definition of lin and condi-
tions (4) and (5), the claim also does not fail at the zoom-in event. Even
between two successive discrete-time events, if |x(t − )| ≥Mμ(t − )
holds for some t > t1 , then the zoom-out events occur, which in turn
implies that |x(t)| ≤Mμ(t). Therefore, the system state is in the quan-
tization regions and c = yes for all t ≥ t1 .

Finally, based on the state trajectory in [t0 , t1 ], ρx and ρμ can be
majorized to be of class KL. �

Lemma 1 provides bounds for the overshoots of the system state and
the quantization parameter. Thanks to these bounds, the capture event
does not last infinitely. As long as the capture event occurs, we do not
need to repeat it more than twice. For the linear case, Lemma 1 is more
direct because conditions (2) and (3) hold simply for each stabilizing
feedback; see [14, Lemma IV.1].

After t1 ≥ t0 , c = yes and the state feedback law (8) is imple-
mented, then the closed-loop system becomes

ẋ(t) = f (t, x, κ(qμ (x)), w) = f (t, x, κ(x+ e), w)

where e = qμ (x) − x is the quantization error. If the system state
satisfies |x| ≥ σ1 (|e|) + σ2 (‖w‖) for t ≥ t1 , then it follows from (3)
that V̇ (t, x) < −α3 (|x|). In the sequel, define a ball B := {x ∈ Rn x :
|x| = σ1 (|e|) + σ2 (‖w‖)}. Based on the definition of the invariant set
and the properties of the Lyapunov function in [23, Ch. 4.2], if the
sublevel set {x ∈ Rn x : V (t, x) ≤ α(|x|), α ∈ K} of V contains B
and is contained in the quantization regions, then the sublevel set of
V is invariant for the system. Based on the sublevel sets of V , the
occurrence of the zoom-in event is studied in the following lemma.

Lemma 2: Suppose there exists t ≥ t1 such that x(t) ∈ R1 (μ) :=
{x ∈ Rn x : V (t, x) < α1 ((M − 2Δ)μ)}. If μ(t) satisfies

α1 ((M − 2Δ)μ(t)) > α2 ◦ [σ1 (Δμ(t)) + σ2 (‖w‖)] (19)
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then the next can only be a zoom-in event. Moreover, if μ(t) satisfies

Ωinα1 ((M − 2Δ)μ(t)) − α1 (2Δμ(t))

> α2 ◦ [σ1 (Δμ(t)) + σ2 (‖w‖)] (20)

then the next zoom-in event will occur in the finite time.
Proof: It follows from Lemma 1 that c = yes and the system state

is in the quantization regions for all t ≥ t1 . Thus, |e(t)| ≤ Δμ(t) for
all t ≥ t1 .

Define two balls and an ellipsoid as follows:

B1 (μ) := {x ∈ Rn x : |x| ≤ (M − 2Δ)μ}
B2 (μ) := {x ∈ Rn x : |x| ≤ σ1 (Δμ) + σ2 (‖w‖)}
R2 (μ) :={x ∈ Rn x : V (t, x) ≤ Ωinα1 ((M − 2Δ)μ) − α1 (2Δμ)}.
It can be observed from (19) thatB2 (μ) ⊂ R1 (μ) ⊂ B1 (μ). BecauseB
is contained in B2 (μ), it is observed that as long as μ remains constant,
R1 (μ) is the invariant set for the continuous dynamics. Hence, the
zoom-out event cannot occur in the next update, which implies that the
next discrete-time event is a zoom-in event.

After finite zoom-in events, there exists t̄ > t ≥ t1 such that x(t̄) ∈
R2 (μ(t̄)). Define the following ball:

B3 (μ) := {x ∈ Rn x : |x| ≤ Ωin (M − 2Δ)μ − 2Δμ}.
It can be observed from (20) that B2 (μ) ⊂ R2 (μ) ⊂ B3 (μ) ⊂ R1 (μ).
Observe that R2 (μ) is an invariant set for the continuous dynamics and
contained inB3 (μ). Since the next event is zoom-in event, the trajectory
of the system state from R1 (μ) will converge to R2 (μ). Therefore, the
arrival time from R1 (μ) to R2 (μ) is earlier than t̄+ Tin . That is, the
next zoom-in event happens in finite time. �

Because the zoom-in events occur successively, the sublevel sets
of V become smaller gradually and converge to the ball B. In addi-
tion, the ball B becomes smaller with the decrease of the quantization
error e. Therefore, the next lemma shows that if the external disturbance
is sufficiently small, then the origin is stable.

Lemma 3: For every ε > 0, there exists δ > 0 such that if |x0 | ≤ δ
and ‖w‖ ≤ δ, then there exists certain t2 ≥ t1 such that the following
properties hold.
1) R1 (μ(t2 )) ⊂ {x : |x| ≤ ε}.
2) If t = t2 , then inequality (19) holds.
3) x(t) ∈ R1 (μ(t2 )) for all t ∈ [t0 , t2 ].

Proof: First, for a fixed ε > 0, since the zoom-in event oc-
curs and Ωin ∈ (0, 1), there exists k ∈ N> 0 such that μ̃ = μ(t0 +
(k + 1)Tin ) = Ωk

inΩoutμ0 and (M − 2Δ)μ̃ < ε. Thus,R1 (μ̃) ⊂ {x :
|x| < ε}, which implies that the first property holds.

Second, It follows from (11) thatα−1
2 ◦ α1 ((M − 2Δ)μ) > 2Δμ +

σ1 (Δμ). Thus, there exists δw > 0 such thatσ2 (δw ) ≤ 2Δμ̃ andα−1
2 ◦

α1 ((M − 2Δ)μ̃) > σ1 (Δμ̃) + σ2 (δw ). That is, the second property
is valid.

Third, pick a δx > 0 such that x̃ = x(t0 + (k + 1)Tin +
Tc ) = eLx (T c + kT in ) (δx + Lw L

−1
x δw ). Moreover, x̃ satisfies |x̃| ≤

Ωk−1
in μ0Δ0 and α2 (|x̃|) < α1 ((M − 2Δ)μ̃).
Define δ := max{δx , δw } and t2 := t0 + Tc + kTin . It follows that

the first and second properties are established at t = t2 . At the initial
time t0 , a zoom-out event happens. After Tc units of time, a capture
event follows. Sequentially, there are k zoom-in events occurring at
t0 + Tc + iTin successively, where i ∈ {1, 2, . . . , k}. If the system
state and the disturbance are sufficiently small, then because of (6) and
(8), the closed-loop system has no control law. Therefore, the system
state remains in R1 (μ̃) = R1 (μ(t2 )) for all t ∈ [t0 , t2 ]. It implies that
the third property is guaranteed. �

Based on Lemmas 1–3, the proof of Theorem 1 is given as follows.

Proof of Theorem 1 Let inequality (19) be the following equation:

α1 ((M − 2Δ)μ(t)) = α2 ◦ [σ1 (Δμ(t)) + σ2 (‖w‖)]. (21)

The solution to (21) is denoted by μ̄(t). Thus, it is easy to verify that
(19) holds as long as μ(t) > μ̄(t).

First, claim that μ(t) ≤ Ωout max{μ(t1 ), μ̄(t)} for all t ≥ t1 . If
not, then there exists t′ > t1 such that μ(t′) > max{μ(t1 ), μ̄(t′)}.
The existence of t′ implies that there is at least one zoom-out event
occurs after t1 with μ(t − ) > max{μ(t1 ), μ̄(t)} for certain t > t1 .
Before this zoom-out event is either a zoom-out event or a zoom-
in event, which results in the fact that μ(t) ≥ max{μ(t1 ), μ̄(t)} for
t > t1 by the virtue of right continuity of μ. However, it follows from
Lemma 1 that |x(t)| ≤Mμ(t) for all t ≥ t1 . Under the condition that
|x(t)| ≤Mμ(t), it is a zoom-in event that after a zoom-out or zoom-in
event by Lemma 2. This contradicts with the occurrence of the zoom-
out event after either a zoom-out or a zoom-in event, which implies
that the claim is true.

According to Lemma 1, the boundedness of the system state and
the quantization parameter is established in [t0 , t1 ]. Because of the
above claim, the boundedness of the system state and the quantization
parameter is valid in [t1 ,∞). Therefore, it follows that (9) holds with
continuous and increasing functions β and γ1 .

Furthermore, consider the neighborhood of the origin. For every
ε > 0, there exists δ > 0 such that the three properties in Lemma 3
hold. From Lemma 2, the next event after t2 ≥ t1 is a zoom-in event.
Thus, μ(t) ≤ μ(t2 ) for all t ≥ t2 . Otherwise, it follows from Lemma 2
that the whole system can still be kept in zooming-in stage from certain
time instant, which guarantees the boundedness of μ. Furthermore, it
implies from Lemmas 1 and 3 that if |x0 | and ‖w‖ are sufficient small,
then an arbitrarily small bound on |x(t)| can be obtained for all time.
Therefore, we can choose appropriate functions β and γ1 such that they
are of class KL and class K∞, respectively. That is, inequality (9) is
proven.

In the following, inequality (20) is written into the equation as
follows:

Ωinα1 ((M − 2Δ)μ(t)) − α1 (2Δμ(t))

= α2 ◦
[
σ1 (Δμ(t)) + σ2

(
lim sup
t→∞

|w(t)| + ε

)]
(22)

where ε > 0 is arbitrarily small. The solution to (22) is denoted by
μ̂(t). By the boundedness ofw(t), there exists t̂1 ≥ t1 (t̂1 may depend
on ε) such that ‖w‖ ≤ lim supt→∞ |w(t)| + ε for all t ≥ t̂1 . Hence, as
long as t ≥ t̂1 and μ(t) > μ̂(t), (20) holds by the fact that ess. sup ≤
lim sup.

Assert that μ(t) ≤ Ωout μ̂(t) for all t ≥ t̂1 . If not, there exists t ≥ t̂1
such that μ(t) > μ̂(t). If x(t) ∈ R1 (μ), then the zoom-in events occur
repeatedly by Lemma 2 and μ(t) ≤ Ωout μ̂(t) holds from some t̂ ≥ t̂1 .
Otherwise, the following two cases may occur. The first case is that the
system state x(t) enters into R1 (μ) directly before the next event. The
second case is that a zoom-out event happens. For both of the cases,
x(t) will enter into R1 (μ) with a new value μ(t) = Ωoutμ(t − ) for
certain t ≥ t̂1 . Once x(t) ∈ R1 (μ), it obtains from Lemma 2 that the
zoom-in events occur repeatedly and μ(t) ≤ Ωout μ̂(t). Thus, along
the same argument, the zoom-out event does not occur. Therefore, the
assertion is true.

Above assertion provides the bound for μ from t̂ ≥ t̂1 ≥ t1 . Since
the system state remains in the quantization regions for all t ≥ t1 ,
it follows that |x(t)| ≤ (M − 2Δ)μ(t). Taking the upper limit from
both sides yields inequality (10). The gain function γ2 is obtained
by lim supt→∞ |x(t)| ≤ lim supt→∞(M − 2Δ)Ωout μ̂(t), where the
solution μ̂(t) to (22) is related to lim supt→∞ |w(t)|.
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In the above analysis, μ is also proven to be bounded for all t ≥ t0 .
As a result, the proof is completed. �

Remark 2: Theorem 1 recovers the previous works [12], [14] as
the special cases. For instance, quantized control for linear systems
with external disturbance was considered in [14]; quantized control for
nonlinear systems without external noise was studied in [12].

Example 1: Consider the nonlinear system of the following form:

ẋ = x3 + xu + w

where x ∈ R is the state, u ∈ R is the control input, and w ∈ R
is the external disturbance. Based on the example in [27, Section
V], the controller u = −x2 − 1 is designed to stabilize the sys-
tem without disturbance. Moreover, set V (t, x) = x2/2, α1 (v) =
α2 (v) = v2/2, α3 (v) = av2 , σ1 (v) = bv, σ2 (v) = cv, where b >
1, c > 1, 0 < a < 1 − 1/c. The differential of V satisfies

V̇ (t, x) ≤ −x2 + |x|‖w‖ ≤ −(1 − 1/c)x2

which implies that conditions (2) and (3) hold. Moreover, it obtains
from Theorem 1 that M > (c + 4)Δ, Ωout > M 2/(M − 2Δ)2 , and
Ωin > (c2 + 4)Δ2/(M − 2Δ)2 .

B. Input Quantization Case

We study the input quantization case in this section. In the input
quantization case, the available information for the plant is the quan-
tized state feedback law qμ (u). Thus, different from (8), the control
law in this case is of the following form:

u(t) =

{
0, c(t) = no

qμ (t) (κ(x(t))), c(t) = yes .
(23)

Assume that there exists a continuous differential Lyapunov function
V : R≥0 × Rn x → R≥0 and α1 , α2 , α3 , σ1 , σ2 ∈ K∞ such that for all
x ∈ Rn x , e ∈ Rn u , and w ∈ Rnw , (2) holds and

|x| ≥ σ1 (|e|) + σ2 (‖w‖) ⇒
Vt (t, x) + Vx (t, x)f (t, x, κ(x) + e, w) ≤ −α3 (|x|). (24)

Hence, the closed-loop system ẋ(t) = f (t, x, κ(x) + e, w) is ISS with
respect to e ∈ Rn u and w ∈ Rnw .

In the following, pick a function ϕ ∈ K∞ such that ϕ(r) ≥
max0≤|x |≤r |κ(x)| for all r ≥ 0. Choosing r = |x|, it follows that
|κ(x)| ≤ ϕ(|x|) for all x ∈ Rn x . With the quantized feedback con-
trol law (23), the quantized closed-loop system is given by

ẋ(t) = f (t, x, qμ (κ(x)), w) = f (t, x, κ(x) + e, w) (25)

where e := qμ (t) (κ(x)) − κ(x).
In the stability analysis, the following lemma plays the similar role

as Lemma 2. Its proof is proceeded along the similar proof strategy of
Lemma 2, and hence omitted here.

Lemma 4: Suppose there exists t ≥ t1 such that x(t) ∈ R1 (μ) :=
{x ∈ Rn x : V (t, x) < α1 ◦ ϕ−1 ((M − 2Δ)μ)}. If μ(t) satisfies

α1 ◦ ϕ−1 ((M − 2Δ)μ(t)) > α2 ◦ [σ1 (Δμ(t)) + σ2 (‖w‖)] (26)

then the next can only be a zoom-in event. Moreover, if μ(t) satisfies

Ωinα1 ◦ ϕ−1 ((M − 2Δ)μ(t)) − α1 ◦ ϕ−1 (2Δμ(t))

> α2 ◦ [σ1 (Δμ(t)) + σ2 (‖w‖)] (27)

then the next zoom-in event will occur in finite time.
According on Lemmas 1, 3, and 4, the following theorem is estab-

lished for the input quantization case.

Theorem 2: Consider system (1) satisfying (2) and (24). Suppose
that the quantizer (7) satisfies (4)–(6) and the control law (23) is applied.
If the following hold:

α−1
2 ◦ α1 ◦ ϕ−1 ((M − 2Δ)μ) > 2Δμ + σ1 (Δμ)

Ωoutα1 ◦ ψ−1 ((M − 2Δ)μ) > α2 (Mμ)

Ωinα1 ◦ ϕ−1 ((M − 2Δ)μ) > α2 ◦ σ1 (Δμ) + α1 ◦ ϕ−1 (2Δμ)

where α1 , α2 , σ1 , and σ2 are given in (2) and (24), then the continuous
dynamics of system (25) is ISS and μ is bounded for all t ≥ t0 .

Proof: First, (26) is transformed to be the equation as follows:

α1 ◦ ϕ−1 ((M − 2Δ)μ(t)) = α2 ◦ [σ1 (Δμ(t)) + σ2 (‖w‖)]. (28)

Denote by μ̄1 (t) the solution to (28). Similar to the proof of Theorem
1, we can prove that μ(t) ≤ Ωout max{μ(t1 ), μ̄1 (t)} for all t ≥ t1 .

Second, (27) is written as the following equation:

Ωinα1 ◦ ϕ−1 ((M − 2Δ)μ(t)) − α1 ◦ ϕ−1 (2Δμ(t))

= α2 ◦
[
σ1 (Δμ(t)) + σ2

(
lim sup
t→∞

|w(t)| + ε1

)]
(29)

where ε1 > 0 is arbitrarily small. The solution to (29) is denoted by
μ̂1 (t). There exists t̂2 > t1 such that if t ≥ t̂2 and μ(t) > μ̂1 (t), then
(27) holds. As a result, μ(t) ≤ Ωout μ̂1 (t) for all t ≥ t̂2 .

The rest of the proof is proceeded along the similar line as the proof
of Theorem 1, and hence omitted here. �

Remark 3: For the input quantization case, the initial state is not
necessarily known exactly. Thus, the control input is unknown and
has to be quantized before transmitted. However, if the system state
is known exactly, then whether the control input is in the quantization
regions can be identified directly. In this case, the updating protocol is
simplified greatly. For instance, the variable c is not needed, and the
zooming-out stage is only introduced when the effects of the distur-
bance on the convergence of the system state cannot be ignored.

If both the state and the control input are quantized, then a direct
approach is to combine the results of Theorems 1 and 2. In the sequel,
the feedback control law is of the following form:

u(t) =

{
0, c(t) = no

quμ (t) (κ(qxμ (t) (x(t)))), c(t) = yes

where qxμ and quμ are a state quantizer and an input quantizer, respec-
tively. For the state quantizer and the input quantizer, the ranges are
Mxμ and Muμ; the bounds of the quantization errors are Δxμ and
Δu μ. Assume that there exists a controller u = κ(x) such that the
closed-loop system ẋ(t) = f (t, x, κ(x+ e1 ) + e2 , w) is ISS with re-
spect to e1 , e2 , w, where e1 := qxμ (x) − x and e2 := quμ (κ(qxμ (x))) −
κ(qxμ (x)). Combining the state quantizer and the input quantizer yields
that if |x| ≤ min{Mxμ,Muμ, ϕ

−1 (Muμ) − Δu μ}, then |e1 | ≤ Δxμ
and |e2 | ≤ Δu μ. The proceeding analysis is a combination of the anal-
ysis strategies for Theorems 1 and 2.

C. Output Quantization Case

The quantized output feedback case is studied in this section. That
is, the system output is quantized and sent to the controller to generate
the control input. Assume that the output of nonlinear system (1) is of
the form y(t) = h(x(t)), where y ∈ Rn y and h is locally Lipschitz.
The system output is initialized as zero.

To study ISS of system (1) in the output quantization case, the
observer-based quantized output feedback controller is given by [26]

ṗ(t) = g(t, p, u, qμ (y)), u(t) = κ(p(t)) (30)
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where p ∈ Rn c is the controller state. Combining (1) and (30) yields
the augmented quantized closed-loop system

{
ẋ(t) = f (t, x, κ(p), w)
ṗ(t) = g(t, p, κ(p), h(x) + e) (31)

where e := qμ (h(x)) − h(x). Moreover, assume that the p-subsystem
is a full-order state observer for the x-subsystem.

Assume that conditions (2) and (3) are satisfied for the augmented
state X := (x�, p�)�, i.e.,

α1 (|X|) ≤ V (t,X) ≤ α2 (|X|) (32)

|X| ≥σ1 (|e|) + σ2 (‖w‖) ⇒Vt (t,X) + Vx (t,X)f (t, x, κ(p), w)

+ Vp (t,X)g(t, p, κ(p), h(x) + e) ≤ −α3 (|X|) (33)

which means that system (31) is ISS with respect to e and w. Pick
ψ ∈ K∞ such that ψ(r) ≥ max|x |≤r |h(x)| for all r ≥ 0. As a result,
|h(x)| ≤ ψ(|x|) holds for all x ∈ Rn x .

Just like Lemma 4 and Theorem 2, the following lemma and theorem
are established, and the proofs are omitted here.

Lemma 5: Suppose there exists t ≥ t1 such that X(t) ∈ R1 (μ) :=
{X : V (t,X) < α1 ◦ ψ−1 ((M − 2Δ)μ)}. If μ(t) satisfies α1 ◦
ψ−1 ((M − 2Δ)μ(t)) > α2 ◦ (σ1 (Δμ(t)) + σ2 (‖w‖)), then the next
is a zoom-in event. If μ(t) satisfies Ωinα1 ◦ ψ−1 ((M − 2Δ)μ(t)) −
α1 ◦ ψ−1 (2Δμ(t)) > α2 ◦ (σ1 (Δμ(t)) + σ2 (‖w‖)), then the next
zoom-in event will occur in the finite time.

Theorem 3: Consider systems (1) and (30). Suppose that conditions
(32) and (33) hold for (x, p), and that the quantizer qμ (y) satisfies
conditions (4)–(6). If the following conditions hold:

α−1
2 ◦ α1 ◦ ψ−1 ((M − 2Δ)μ(t)) > 2Δμ(t) + σ1 (Δμ(t))

Ωout >
α2 (Mμ(t))

α1 ◦ ψ−1 ((M − 2Δ)μ(t))

Ωinα1 ◦ ψ−1 ((M − 2Δ)μ(t)) − α1 ◦ ψ−1 (2Δμ(t))

> α2 ◦ σ1 (Δμ(t))

where α1 , α2 , σ1 , and σ2 are the same as those in (32) and (33); then,
the continuous dynamics of system (31) is ISS, and μ is bounded for
all t ≥ t0 .

Remark 4: For the output quantization case, the ISS property is
achieved by two steps. First, there exists a state feedback law such that
the x-subsystem is ISS with respect to the measurement disturbance
and the external disturbance. Second, a full-order state observer is con-
structed for the x-subsystem. The full-order state observer ensures that
the difference between the system state and the observer state converges
asymptotically to the origin or the neighborhood of the origin. This is
why the p-subsystem is assumed to be a full-order state observer. Thus,
the essence is to design the state feedback controller and the full-order
state observer for system (1). However, not all the nonlinear systems
have such a controller and an observer satisfying (32) and (33). See
[26] and references therein for more details.

IV. CONCLUSION

This paper addressed quantized feedback stabilization of nonlinear
systems with external disturbance. Three quantization cases were stud-
ied and stability conditions were derived for quantized closed-loop
nonlinear systems with external disturbance. Future works focus on
the controller and observer design for quantized nonlinear systems and
extension of the obtained theory to nonlinear switched systems.
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[16] T. Kameneva and D. Nešic, “Input-to-state stabilization of nonlinear sys-
tems with quantized feedback,” in Proc. IFAC World Congr., 2008, pp.
12 480–12 485.
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