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Stability Analysis of Impulsive Switched Time-Delay Systems With
State-Dependent Impulses

Wei Ren and Junlin Xiong , Member, IEEE

Abstract—This paper studies the stability for impulsive switched
time-delay systems with state-dependent impulses. Since the im-
pulses and the switches are not necessarily synchronous, we start
from a stability analysis of impulsive switched time-delay systems
with time-dependent impulses. Sufficient conditions are derived to
guarantee the stability property, which extends the previous re-
sults for the synchronous switch and impulse case. For the state-
dependent impulse case, using the B-equivalent method, impulsive
switched time-delay systems with state-dependent impulses are
transformed into impulsive switched time-delay systems with time-
dependent impulses. The equivalence between the original system
and the transformed system is established, and stability condi-
tions are obtained for impulsive switched time-delay systems with
state-dependent impulses. Finally, a numerical example is given to
demonstrate the obtained results.

Index Terms—B-equivalence, Lyapunov function, state-
dependent impulses, switched systems, time delays.

I. INTRODUCTION

Hybrid systems are dynamic systems that combine both continu-
ous evolution and instant state jumps, see [1]. Two important classes
of hybrid systems are impulsive systems [2] and switched systems
[3]. Impulsive systems are composed of continuous-time dynamics
with instantaneous state jumps. Switched systems consist of a family
of subsystems and a switching signal that orchestrates the switching
among them. Many physical or man-made systems can be modeled
as impulsive or switched systems, such as networked control systems
[4], mechanical systems [5], multiagent systems [6], and neural net-
works [7]. In the literature, there are numerous works on impulsive or
switched systems, and many salient results can be found on the stability
analysis of impulsive or switched systems, see, e.g., [3], [8], [9], and
references therein.

If both impulses and switches exist synchronously in dynamic sys-
tems, then such dynamic systems are called impulsive switched sys-
tems, see [10] and [11]. For instance, impulses and switches coexist
in many physical and man-made systems, such as chaotic systems and
networked control systems [4]. Due to numerous applications in di-
verse fields of sciences and engineering, impulsive switched systems
have attracted increasing attention, see [10] and [11]. On the other
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hand, time delays are frequently encountered in numerous engineering
systems, and affect stability and performances of control systems. For
instance, time delays are indispensable in networks due to data sam-
pling, data coding, and long distances among different subsystems [4];
finite switching speed of amplifiers or information processing leads to
time delays in hardware implementations [12]. Recently, great efforts
have been devoted to impulsive or/and switched time-delay systems,
and many salient results can be found, see [6], [8], and [11].

In the literature on impulsive switched time-delay systems, there are
generally two types of switches and impulses. The first type is that
impulses and switches are time-dependent. That is, the occurrence of
impulses and switches depends on the time. Many salient results can be
found on such a type. See [3], [9], and [13] for switched systems, [8],
[14]–[16] for impulsive systems, and [7], [11], and [12] for impulsive
switched systems. The second type is that impulses or switches are
state-dependent. In this type, the occurrence of impulses or switches is
related to the system state [2]. For instance, the velocity of the bouncing
ball jumps when the ball hits the ground [17]; the occurrence of the
quantization in a switched system depends on whether the system state
is large enough [18]. Comparing with the first type, the second type
is more practical because switches and impulses of physical systems
(e.g., biological and physiological systems) do not occur at fixed times
[19]. Since the state-dependent switches result in design of switching
rule and the state-dependent impulses result in a beating phenomenon,
the second type is of much more theoretical and technical challenges
than the first type. Up to now, only a few works are on the second type,
see [19]–[22].

In this paper, we study the stability of impulsive switched time-delay
systems with state-dependent impulses. To this end, we start with the
time-dependent impulse case, which is our first contribution. Both
the stable continuous dynamics case and the stable discrete dynamics
case are studied. Sufficient conditions are established to guarantee
global asymptotical stability (GAS). Hence, we extend the previous
results on impulsive or/and switched (time-delay) systems in [3], [8],
and [11] to impulsive switched time-delay systems. Next, we turn to
the state-dependent impulse case, which is the second contribution.
Since impulses are state-dependent, the first difficulty is the beating
phenomena of solutions of the system at certain impulsive surface
[19], [21]. The second difficulty is that the solution does not depend
on the initial condition continuously in such a way that this continuity
can be uniform on a finite interval [23]. Therefore, we first rule out the
beating phenomenon and guarantee the continuity of the solution on
a finite interval. Using the B-equivalent method in [24] and [25], we
develop an equivalent impulsive switched time-delay system with time-
dependent impulses. Based the obtained results on the time-dependent
impulse case, stability criteria are obtained for the state-dependent
impulse case. In the sequel, we extend the existing results in [19]–[22]
in terms of both the system model and stability analysis.

Notation: R := (−∞, +∞); R+
t0

:= [t0 , +∞); N := {0, 1, . . .};
N+ := {1, 2, . . .}. Given a vector or matrix P , P � denotes its trans-
pose. For a matrix P ∈ Rn×n , tr[P ] denotes the trace of P . | · |
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represents the Euclidean norm. Let PC([a, b]; Rn ) denote the class
of piecewise continuous functions mapping [a, b] to Rn and hav-
ing finite right-hand continuous jumps on [a, b]. Given a function
f : R → R, denote f (t+ ) := lim sups→0+ f (t + s). Given a func-
tion f : R+

t0
→ Rn with t0 ≥ τ > 0, ‖f‖τ := supt∈[t0 −τ ,t0 ] |f (t)|;

‖f‖[t0 , t) := supt∈[t0 , t ] |f (t)|; ‖f‖ denotes the supremum norm on
[t0 ,∞). A function α : R≥0 → R≥0 is of class K if it is continuous,
zero at zero, and strictly increasing; α(t) is of class K∞ if it is of class
K and unbounded. A function β : R≥0 × R≥0 → R≥0 is of class KL
if β(s, t) is of class K for each fixed t ≥ 0 and decreases to zero as
t → ∞ for each fixed s ≥ 0.

II. PRELIMINARIES

Consider the following impulsive switched time-delay system:
⎧
⎨

⎩

ẋ(t) = fσ (t) (t, x, xt ), t /∈ I (1a)
Δx(t) = hδ (t) (x(t)), t ∈ I (1b)
x(t) = η(t), t ∈ [t0 − τ, t0 ] (1c)

where x(t) ∈ Rn x is the system state. Denoted xt := x(t − τ (t)),
where the time delay τ (t) : R+

t0
→ [0, τ ] is piecewise continuous

and bounded with a constant τ > 0. Δx(t) := x(t+ ) − x(t) with
x(t+ ) := lims→t+ x(s). I := {ξ1 , ξ2 , . . .} and S := {s1 , s2 , . . .} are
given impulsive time sequence and switching time sequence, respec-
tively. The function σ : R+

t0
→ L =: {1, . . . , L} is the switching sig-

nal, which is piecewise and left-continuous. The function δ : R+
t0

→
Q =: {1, . . . , Q} is piecewise and left-continuous, and used to decide
which impulsive function to be applied at the impulsive times. The ini-
tial function is η ∈ PC([−τ, 0], Rn x ) with finite ‖η‖2

τ . For all l ∈ L

and q ∈ Q, fl : R+
t0

× Rn x × Rn x → Rn x , and hq : Rn x → Rn x are
assumed to be locally Lipschitz. Assume that fl (t, 0, 0) ≡ 0 and
hq (0) ≡ 0 for all t ∈ R+

t0
. That is, x(t) ≡ 0 is a trivial solution of

the system (1). Also, assume that the system (1) has a unique solution
for all the time, see [3] and [9].

Definition 1 (see [26]): Given an impulsive time sequence I and
a switching time sequence S, the system (1) is GAS, if there exists
β ∈ KL such that

|x(t)| ≤ β(‖η‖τ , t − t0 ) ∀t ∈ R+
t0

. (2)

In this paper, our goal is to study GAS of the system (1) with time-
dependent or state-dependent impulses. To this end, multiple Lyapunov
functions and dwell-time condition are applied. In the following, the
infinitesimal operator of Lyapunov functions is defined, and then a new
version of average dwell-time (ADT) is proposed for the discontinuities
of the system (1).

Definition 2 (see [3]): Given any continuous function Vl : R+
t0

×
Rn x → R≥0 , l ∈ L, the differential operator L associated with the
continuous dynamics in (1), is defined as

LVl (t, xt ) :=
∂Vl (t, x)

∂t
+

∂Vl (t, x)
∂x

fl (t, x, xt ).

Since the discontinuities (e.g., switches and impulses) may result in
instability of the system (1), we need to introduce the ADT constrain
the frequencies of the discontinuities. The following definition extends
the one in [27] for switching times and the one in [8] for impulsive
times.

Definition 3: For a piecewise signal χ(t) and any t2 > t1 > t0 , let
Nχ (t2 , t1 ) be the number of discontinuities of χ(t) over the interval
[t1 , t2 ). If there exist N0 ≥ 1, τa > 0 such that

t2 − t1

τa

− N0 ≤ Nχ (t2 , t1 ) ≤
t2 − t1

τa

+ N0 (3)

then N0 and τa are called the chatter bound and the ADT, respectively.
As observed from the system (1), there are two types of discrete-

time signals: impulses and switches, which affect system stability.
For such two types of discrete-time signals, we introduce their chat-
ter bounds and ADTs. For the switching time sequence S, denoted
by N1 (T2 , T1 ) the number of switches in [T1 , T2 ), N01 the chatter
bound, and τa1 the ADT. For the impulsive time sequence I, de-
noted by N2 (T2 , T1 ) the number of impulses in [T1 , T2 ), N02 the
chatter bound, and τa2 the ADT. The whole discrete-time sequence
combining both I and S is denoted as T := {t1 , t2 , . . .} and the
discrete-time number in [T1 , T2 ) is denoted by N (T2 , T1 ). The over-
lapping discrete-time sequence between I and S is denoted as O :=
{o1 , o2 , . . .}. For the sequenceO, τao denotes the ADT, and N̄ (T2 , T1 )
denotes the number of the discrete times at which both impulses and
switches occur synchronously in [T1 , T2 ). Note that the set O = ∅ if
I ∩ S = ∅. In this case, N̄ (T2 , T1 ) ≡ 0 and τao = +∞.

III. TIME-DEPENDENT IMPULSE CASE

In this section, Lyapunov-based stability conditions are established
for the system (1) with time-dependent impulses. Both the stable
continuous dynamics case and the stable discrete dynamics case are
addressed.

A. Stable Continuous Dynamics Case

Theorem 1: Consider the system (1) with time-dependent im-
pulses. If there exist continuous Lyapunov functions Vl : R+

0 × Rn x →
R+

0 , l ∈ L, α1 , α2 ∈ K∞, and constants λ1 > λ2 > 0 and μ1 , μ2 ≥ 1,
such that for all l ∈ L

A.1) for all t ∈ R+
t0

, α1 (|x(t)|) ≤ Vl (t, x(t)) ≤ α2 (|x(t)|);
A.2) for all t ∈ R+

t0
\T , LVl (t, xt ) ≤ −λ1Vl (t, x(t)) + λ2

sups∈[−τ ,0] Vl (t + s, x(t + s));
A.3) for all t ∈ S, Vσ (t+ ) (t+ , x(t+ )) ≤ μ1Vσ (t) (t, x(t));
A.4) for all t ∈ I\S, Vσ (t+ ) (t+ , x(t) + hδ (t) (x(t))) ≤ μ2Vσ (t)

(t, x(t));
A.5) the ADTs τa1 and τa2 satisfy τ−1

a1 ln μ1 + τ−1
a2 ln μ2 < λ0 ,

where λ0 ∈ (0, λ̄) and λ̄ > 0 is the solution to the equation
λ − λ1 + λ2e

λτ = 0,
then the system (1) with time-dependent impulses is GAS.
Proof: The proof is divided as following three steps.
Step 1: Define Γ(λ) := λ − λ1 + λ2e

λτ . Observe that Γ(0) =
−λ1 + λ2 < 0 and that Γ(λ) → ∞ as λ → ∞. In addition,
Γ′(λ) := 1 + λ2τeλτ ≥ 0. Thus, there exists a unique λ̄ >
0 such that Γ(λ̄) = 0, and Γ(λ0 ) < 0 for all λ0 ∈ (0, λ̄).

Step 2: In this step, define Wσ (t) (t) := eλ0 (t−t0 )Vσ (t) (t, x(t))
for t ∈ R+

t0
, where λ0 is from (A.5). It is obvious that

Wσ (t) (t) ≤ Vσ (t) (t, x(t)) ≤ α2 (‖η‖τ ) for t = t0 . Next,
we prove that

Wσ (t) (t) ≤ μ
N 1 (t ,t0 )
1 μ

N 2 (t ,t0 )
2 α2 (‖η‖τ ) ∀t ∈ R+

t0
.
(4)

If (4) does not hold for all t ∈ R+
t0

, then there are two
scenarios such that (4) fails. The first scenario is that (4)
fails due to discrete-time events, and the second scenario
is that (4) fails in the continuous-time interval. For the first
scenario, there are two cases: (4) fails at the switching time
and (4) fails at the impulsive time. At the switching time
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si ∈ S, i ∈ N+ , we have from (A.3) that

W
σ (s+

i
) (s

+
i ) ≤ μ1Wσ (s i ) (si , x(si ))

≤ μ
N 1 (s+

i
, t0 )

1 μ
N 2 (s i ,t0 )
2 α2 (‖η‖τ ). (5)

At the impulsive time ξi ∈ I\S, we get from (A.4) and (4)
that

W
σ (ξ +

i
) (ξ

+
i ) ≤ μ2Wσ (ξ i ) (ξi , x(ξi ))

≤ μ
N 1 (ξ i ,t0 )
1 μ

N 2 (ξ +
i

, t0 )
2 α2 (‖η‖τ ). (6)

Observe that Nj (t−, t0 ) ≤ Nj (t, t0 ) ≤ Nj (t+ , t0 ) for all
t > t0 and j = 1, 2. In sequel, for all t ∈ I ∪ S, we have
that

Wσ (t+ ) (t
+ ) ≤ μ

N 1 (t+ , t0 )
1 μ

N 2 (t+ , t0 )
2 α2 (‖η‖τ ). (7)

That is, the inequality (4) holds for all t ∈ S ∪ I.
On the other hand, consider the second scenario that (4) fails
in certain continuous-time interval. Define t∗ := inf{t ∈
R+

t0
\T : Wσ (t) (t) = μ

N 1 (t ,t0 )
1 μ

N 2 (t ,t0 )
2 α2 (‖η‖τ )}.

Therefore, it follows from the definition of t∗ that

Wσ (t) (t) ≤ μ
N 1 (t ,t0 )
1 μ

N 2 (t ,t0 )
2 α2 (‖η‖τ ) ∀t ≤ t∗ (8)

Wσ (t∗) (t∗) = μ
N 1 (t∗, t0 )
1 μ

N 2 (t∗, t0 )
2 α2 (‖η‖τ ) (9)

Wσ (t) (t) > μ
N 1 (t ,t0 )
1 μ

N 2 (t ,t0 )
2 α2 (‖η‖τ ) (10)

where t ∈ (t∗, t∗ + Δt) in (10) and Δt > 0 is arbitrarily
small. It follows from the upper Dini derivative that

D+ Wσ (t∗) (t∗) = lim sup
Δ t→0+

Wσ (t∗) (t∗ + Δt) − Wσ (t∗) (t∗)
Δt

> lim sup
Δ t→0+

× μ
N 1 (t∗+Δ t ,t0 )
1 μ

N 2 (t∗+Δ t ,t0 )
2 − μ

N 1 (t∗, t0 )
1 μ

N 2 (t∗, t0 )
2

Δt

× α2 (‖η‖τ ) = 0 (11)

where Δt is so small that no impulse or switch exists in
(t∗, t∗ + Δt).
Since (4) holds for all t < t∗, we have that for all l ∈ L

Vl (t∗ − τ (t∗), xt∗) = e−λ0 (t∗−τ (t∗)−t0 )Wl (t∗ − τ (t∗))

≤ e−λ0 (t∗−τ (t∗)−t0 )Wl (t∗)

≤ eλ0 τ Vl (t∗, x(t∗)). (12)

It follows from (A.2) and (12) that

D+ Wσ (t∗) (t∗) ≤ eλ0 (t∗−t0 )

(

λ0Vσ (t∗) (t∗, x(t∗))

− λ1Vσ (t∗) (t∗, x(t∗))

+ λ2 sup
s∈[−τ ,0]

Vσ (t∗) (t∗ + s, x(t∗ + s))

)

≤ eλ0 (t∗−t0 ) (λ0Vσ (t∗) (t∗, x(t∗)) − λ1Vσ (t∗) (t∗, x(t∗))

+ λ2e
λ0 τ Vσ (t∗) (t∗, x(t∗))

)
< 0 (13)

which contradicts with (11). Hence, (4) holds for all t ∈
R+

t0
\(S ∪ I).

Step 3: According to the above-mentioned analysis, (4) holds for
all t ∈ R+

t0
. We yield from (4) that for all t ∈ R+

t0

Vσ (t) (t, x(t)) ≤ μ
N 1 (t ,t0 )
1 μ

N 2 (t ,t0 )
2 e−λ0 (t−t0 )α2 (‖η‖τ ).

(14)

Furthermore, from Definition 3, we obtain that

μ
N 1 (t ,t0 )
1 μ

N 2 (t ,t0 )
2 e−λ0 (t−t0 )

≤ eN 1 0 ln μ 1 +N 2 0 ln μ 2 e(τ −1
a 1 ln μ 1 + τ −1

a 2 ln μ 2 −λ0 )(t−t0 ) . (15)

It follows from (A.5) that τ−1
a1 ln μ1 + τ−1

a2 ln μ2 − λ0 < 0. In addition,
N10 ln μ1 + N20 ln μ2 is a positive constant. Define ω := τ−1

a1 ln μ1 +
τ−1

a2 ln μ2 − λ0 < 0. Combining (A.1), (14),and (15) yields that

|x(t)| ≤ α−1
1 (μN 1 0

1 μN 2 0
2 eω (t−t0 )α2 (‖η‖τ )

=: β(‖η‖τ , t − t0 ) ∀t ∈ R+
t0

where β(v, s) := α−1
1 (2μN 1 0

1 μN 2 0
2 eω sα2 (v)) and α−1

1 is the reverse
of α1 . As a result, the system (1) is GAS. �

Remark 1: Since there are two types of discrete-time events in the
system (1), ADTs for impulses and switches are coupled in (A.5). In
the sequel, there is a tradeoff between τa1 and τa2 . (A.5) also provides
a design method to balance impulses and switches to guarantee system
stability. In addition, (A.5) is different from these in the existing works.
For instance, only impulses or switches were considered in [8], [9],
[16], and [28], and both impulses and switches were assumed to be
simultaneous in [10] and [11]. These previous works are included as
special cases of this paper. �

B. Stable Discrete Dynamics Case

In this section, the stable impulsive dynamics case is studied and
stability conditions are established.

Theorem 2: Consider the system (1) with time-dependent impulses.
If there exist continuous Lyapunov functions Vl : R+

t0
× Rn x →

R+
0 , l ∈ L, α1 , α2 ∈ K∞ and λ1 , λ2 > 0, μ1 ≥ 1, μ2 ∈ (0, 1), such

that for all l ∈ L, (A.1) holds, and
B.1) for all t ∈ R+

t0
\T , LVl (t, xt ) ≤ λ1Vl (t, x)+λ2 sups∈[−τ ,0]

Vl (t + s, x(t + s));
B.2) for all t ∈ S\I, Vσ (t+ ) (t+ , x(t+ )) ≤ μ1Vσ (t) (t, x(t));
B.3) for all t ∈ I, Vσ (t+ ) (t+ , x(t) + hδ (t) (x(t))) ≤ μ2Vσ (t)

(t, x(t));
B.4) the ADTs τa1 and τa2 satisfy −τ−1

a1 ln μ1 − τ−1
a2 ln μ2 >

λ1 + λ2μ
N 1 0
1 μ−N 2 0

2 ,
then the system (1) with time-dependent impulses is GAS.
Proof: The proof is based on the comparison principle and the

techniques applied in [8]. First, using the comparison principle and
along the similar techniques used in [8], the bounds of the Lyapunov
functions are established. Second, based on the bounds of Lyapunov
functions and (B.4), we ensure the convergence of the system state.

Step 1: Define Uσ (t) (t) := Vσ (t) (t, x(t)). Consider the
continuous-time interval first. It follows from (B.1)
that for all t ∈ (tk , tk+1 ]

Uσ (t) (t) ≤ eλ1 (t−tk )U
σ (t+

k )(t
+
k )

+
∫ t

tk

eλ1 (s−tk )λ2 sup
s∈[−τ ,0]

Uσ (t) (v − s)dv.

(16)
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If tk is an impulsive time instant, then we obtain from (B.3)
that for t ∈ (tk , tk+1 ]

Uσ (t) (t) ≤ μ1e
λ1 (t−tk )Uσ (tk ) (tk )

+
∫ t

tk

eλ1 (s−tk )λ2 sup
s∈[−τ ,0]

Uσ (t) (v − s)dv

(17)

if tk is a switching time instant, then it follows from (B.2)
that for all t ∈ (tk , tk+1 ]

Uσ (t) (t) ≤ μ2e
λ1 (t−tk )Uσ (tk ) (tk )

+
∫ t

tk

eλ1 (s−tk )λ2 sup
s∈[−τ ,0]

Uσ (t) (v − s)dv.

(18)

Combining (17) and (18) and using mathematical induction
yield that for all t ∈ R+

t0

Uσ (t) (t) ≤ μ
N 1 (t ,t0 )
1 μ

N 2 (t ,t0 )
2 eλ1 (t−t0 )Uσ (t0 ) (t0 )

+
∫ t

tk

μ
N 1 (t ,s)
1

× μ
N 2 (t ,s)
2 eλ1 (t−s)λ2 sup

s∈[−τ ,0]
Uσ (t) (v − s)dv.

(19)

Step 2: According to Definition 3, it follows from μ1 ≥ 1 and
μ2 ∈ (0, 1) that

μ
N 1 (t ,t0 )
1 μ

N 2 (t ,t0 )
2 eλ1 (t−t0 )

≤ μ
(t−t0 )/τ a 1 +N 0 1
1 μ

(t−t0 )/τ a 2 −N 0 2
2 eλ1 (t−t0 )

≤ ζe−λ3 (t−t0 ) (20)

where ζ := μN 0 1
1 μ−N 0 2

2 and λ3 := −λ1 − τ−1
a1 ln μ1 −

τ−1
a2 ln μ2 . Observe from (B.4) that ζ > 1 and λ3 > 0. As a

result, we obtain that for all t ∈ R+
t0

Uσ (t) (t) ≤ e−λ3 (t−t0 )ζα2 (‖η‖τ )

+
∫ t

tk

ζe−λ3 (t−s)λ2 sup
s∈[−τ ,0]

Uσ (t) (v − s)dv.

(21)

Define Γ̄(λ) := λ − λ3 + ζλ2e
λτ . Observe that Γ̄(0) = −λ3 +

λ2 < 0 and that Γ̄(λ) → ∞ as λ → ∞. In addition, Γ̄′(λ) := 1 +
ζλ2τeλτ ≥ 0. Thus, there exists a unique λ̄ > 0 such that Γ̄(λ̄) = 0,
and Γ̄(λ0 ) < 0 for all λ0 ∈ (0, λ̄).

Based on (21) and the similar strategy of the proof in [8, Th. 2, pp.
201–202], it obtains that for all t ∈ R+

t0

Vσ (t) (t, x(t)) ≤ Uσ (t) (t) ≤ ζe−λ̄(t−t0 )α2 (‖ξ‖τ ). (22)

The remaining is along the same fashion as in the proof of Theorem 1,
and thus, the system (1) is GAS. �

IV. STATE-DEPENDENT IMPULSE CASE

In this section, we study another class of impulsive switched time-
delay systems, that is, the system (1) with state-dependent impulses.
Since the impulses are state-dependent, the impulsive event may oc-
cur successively at certain time instant, which results in the beating
phenomenon. In addition, the solution to the system (1) may do not
depend on the initial state uniformly continuously, and different initial

states lead to different system state and impulsive times. Hence, we
need to determine the existence of the solution to the system (1) with
state-dependent impulses, and then study the system stability.

To this end, assume that the impulsive times are si + τi (x),
i ∈ N+ , where τi (x) : Rn x → R+

0 is a nonnegative function of the
system state. In the sequel, define the impulsive surface Πi :=
{(t, x(t)) ∈ R+

t0
× Rn x : t = si + τi (x(t)), t ∈ R+

t0
, i ∈ N+ }. That

is, if t = si + τi (x(t)), then an impulse occurs. If the system state
meets an impulsive surface many times, then such a phenomenon is
called beating, see [24], [25], and [29]. The beating phenomenon im-
plies that two different states are merged into one (see [23, Sec. 1.3]),
which results in the difficulties in the stability analysis. To avoid the
beating phenomenon and to guarantee the existence of the solution to
the system (1) with state-dependent impulses, the following assumption
is required in this section.

Assumption 1: For the system (1) with state-dependent impulses,
the following conditions are assumed to be satisfied.

1) For all x ∈ Rn x and all i ∈ N, τi (x) is continuous and bounded
in [0, ρ].

2) For all i ∈ N, τi (x) satisfies the Lipschitz condition, that is,
there exists Li > 0 such that |τi (x) − τi (x̄)| ≤ Li |x − x̄| for
all x, x̄ ∈ Rn x .

3) For any i ∈ N+ , one of the following two conditions holds:

(a)

{
τ̇i (x) > 1, x ∈ Rn x

τi (x(ξ+
i )) ≥ τi (x(ξi ))

(b)

{
τ̇i (x) < 1, x ∈ Rn x

τi (x(ξ+
i )) ≤ τi (x(ξi ))

where x(t) is the solution to the system (1) in (si , si + ρ] and
ξi := si + τi (x(ξi )) is an impulsive time.

4) The switching intervals satisfy si+1 − si > ρ for all i ∈ N.
Let us state Assumption 1 clearly. The items 1)–3) imply the smooth-

ness, monotonicity, and boundedness of τi (x), see [23], [25]. Combin-
ing the item 2) and the Lipschitz property of fl , hq , l ∈ L, q ∈ Q, and
using [24, Th. 5.3.1], we yield that the system (1) has a unique solution
from any initial condition as in (1c). The item 4) is for switching inter-
vals, and indicates that switching intervals are larger than ρ. The items
1) and 4) show that the impulses only occur in the switching intervals.
According to Assumption 1, we first show that the beating phenomenon
is ruled out for the system (1) with state-dependent impulses. Next, we
develop a B-equivalent system, which can be treated as a comparison-
like system for the system (1) and, then, establish stability conditions
for the system (1) via the developed B-equivalent system.

A. B-Equivalent Transformation

Using the B-equivalent method in [24], we transform the system (1)
with state-dependent impulses into a system with time-dependent im-
pulses. Under Assumption 1, we first study the intersection between the
solution with the impulsive surfaces to avoid the beating phenomenon.
The following result shows that the solution of the system (1) intersects
with each impulsive surface at most once.

Theorem 3: Under Assumption 1, the solution x(t) intersects with
every impulsive surface Πi exactly once, where i ∈ N+ .

Proof: Assume the solution x(t) does not intersect with every
impulsive surface Πi , i ∈ N+ . In the sequel, there exists j ∈ N+

such that x(t) does not intersect with the surface Πj . Define d(t) :=
t − sj − τj (x(t)). Since sj + τj (x(t)) is in the switching interval
(sj , sj+1 ), there exist a < sj < sj + ρ < b such that d(a) < 0 and
d(b) > 0. Due to the continuity of d(t), there exists t ∈ (a, b) such that
d(t) = 0, that is, t = sj + τj (x(t)), which is a contradiction. There-
fore, x(t) intersects with every impulsive surface Πi , i ∈ N+ .

Suppose that the solution x(t) intersects with the surface Πj at least
twice. Thus, we can find at least two time instants I1 := sj + τj (x(I1 ))
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and I2 := sj + τj (x(I2 )) with I1 �= I2 such that the solution x(t)
intersects with the impulsive surface Πj . For the time instants I1 , I2 , it
follows from (a) of the item 3) in Assumption 1 that

I2 − I1 = τj (x(I2 )) − τj (x(I1 )) ≥ τj (x(I2 )) − τj (x(I+
1 ))

= τ̇j (x(t))(I2 − I1 ) > I2 − I1 (23)

where t ∈ (I1 , I2 ]. Therefore, (23) is a contradiction, which implies
that the solution x(t) intersects with the impulsive surface Πj less
than twice. Similarly, if (b) of the item 3) in Assumption 1 holds, then
we can, along the same line, obtain that I2 − I1 < I2 − I1 , which is
also a contradiction. In the sequel, the solution x(t) intersects with the
impulsive surface Πj less than twice. �

In the following, the system (1) with state-dependent impulses
is transformed as an equivalent impulsive switched time-delay sys-
tem with time-dependent impulses. The applied transformation tech-
nique is the B-equivalent method, see [24, Ch. 5]. To this end,
some notations are introduced. Let x0 (t) := x(t; si , x

0 (si )) denote
a solution to the system (1) in [si , si+1 ]. The intersection time be-
tween the solution x0 (t) and the impulsive surface Πi is denoted by
ξi := si + τi (x). In addition, x1 (t) denotes the solution to the sys-
tem (1) without impulses in [si , si+1 ], and x1 (t) satisfies x1 (ξi ) =
x0 (ξ+

i ) = x0 (ξi ) + hδ (ξ i ) (x0 (ξi )). That is, x1 (t) is the solution to
the switched system (1a) in [si , si+1 ], such that the initial (1c) holds
and x1 (ξi ) = x0 (ξ+

i ) = x0 (ξi ) + hδ (ξ i ) (x0 (ξi )). In the sequel, define
the mapping Uσ (s i ) : Rn x → Rn x as

Uσ (s i ) (x0 (si )) = x1 (si ) − x0 (si )

= x0 (ξi ) + hδ (ξ i ) (x0 (ξi )) +
∫ s i

ξ i

fσ (t) (t, x1 , x1
t )dt − x0 (si )

= x0 (si ) +
∫ ξ i

s i

fσ (t) (t, x0 , x0
t )dt + hδ (ξ i ) (x0 (ξi ))

+
∫ s i

ξ i

fσ (t) (t, x1 , x1
t )dt − x0 (si )

=
∫ ξ i

s i

[
fσ (t) (t, x0 , x0

t ) − fσ (t) (t, x1 , x1
t )
]
dt

+ hδ (ξ i ) (x0 (ξi )). (24)

Therefore, the mapping Uσ (s i ) (x0 (si )) is the difference between the
solutions x0 (t) and x1 (t) at the switching times.

Using the mapping Uσ (s i ) (x0 (si )) in (24), we construct the fol-
lowing transformed impulsive switched time-delay system with time-
dependent impulses:

⎧
⎪⎨

⎪⎩

ẏ(t) = fσ (t) (t, y, yt ), t /∈ S
Δy(t) = Uσ (t) (y(t)), t ∈ S
y(t) = η(t), t ∈ [t0 − τ, t0 ]

(25)

where y(t) ∈ Rn x is the system state. Observe the developed system
(25), we find that the impulsive times and the switching times are syn-
chronous. In addition, x0 (t) := x(t; si , x

0 (si )) can be extended as the
solution of the system (1) in R+

t0
, whereas x1 (t) := x(t; ξi , x

0 (ξ+
i ))

can be extended as the solution of the system (25) in R+
t0

. In the fol-
lowing, the B-equivalence between the systems (1) and (25) is studied.

Definition 4 (see [24]): The systems (1) and (25) are B-equivalent
in the set G ⊂ Rn x if there exists a set G1 ⊂ G such that for each
solution x(t) of the system (1) defined on an interval I, with disconti-
nuities ξi and x(t) ∈ G1 , t ∈ I, then there exists a solution y : I → G

of the system (25), satisfying the following conditions:

x(t) = y(t), t /∈ ̂(ξi , si ], ξi �= si (26a)

x(si ) = y(ξi ), ξi = si (26b)

x(si ) = y(si ), x(ξ+
i ) = y(ξi ), ξi > si (26c)

x(si ) = y(s+
i ), x(ξi ) = y(ξi ), ξi < si (26d)

where the oriented interval is defined as ̂(a, b] := (a, b] if a ≤ b; oth-

erwise, ̂(a, b] := (b, a]. Conversely, if there exists a set G1 ⊂ G such
that for each solution y(t) of the system (25) defined on an interval
I, then there exist a solution x : I → G of the system (1), satisfying
(26a)–(26d).

According to Definition 4, the following result shows that the B-
equivalence between the systems (1) and (25) under Assumption 1.

Theorem 4: Under Assumption 1, the original system (1) and the
transformed system (28) are B-equivalent in Rn x .

Proof: Since ξi ≥ si , it follows that ̂(ξi , si ] = (si , ξi ]. Thus, we
only need to verify (26a)–(26c).

First, from the construction of the system (25), we have that x0 (t) =
x1 (t) for all t ∈ (ξi , si+1 ]. That is, x0 (t) = x1 (t) for all t /∈ (ti , ξi ] =
̂(ξi , si ]. We also obtain that x0 (t) ≡ x1 (t) for all t = si . Therefore,
(26a) holds. Second, for the case that ξi = si , we have τi (x) = 0.
Thus, the switch and impulse are synchronous, and x(ti ) = y(ξi ),
which implies that (26b) holds. Third, since ξi ≥ si , it follows from the
relation between x0 (t) and x1 (t) that x1 (ξi ) = x0 (ξ+

i ) = x0 (ξi ) +
hσ (ξ i ) (x0 (ξi )). That is, y(ξi ) = x(ξ+

i ), which means that (26c) holds.
In contrast, given the solution to the system (25), we can, along the

similar line, find a solution to the system (1) such that the solution
satisfies (26a)–(26c). Therefore, the system (1) and the transformed
system (25) are B-equivalent. �

Remark 2: Using the B-equivalent method, state-dependent im-
pulses are transformed as time-dependent impulses. However, if there
are more than two state-dependent impulses in a switching interval, then
the B-equivalent method may not be applied. Even if the B-equivalent
method is applied, some information on impulses may be lost in the
construction of the B-equivalent system. Therefore, other approaches
are needed, which deserves further study. �

B. Stability Analysis

In this section, we investigate the stability of the system (1) with
state-dependent impulses. We first establish the relationships between
the system (1) and the transformed system (25) in view of the stability
properties. According to the results in Section III, stability criteria are
derived for the system (25), which in turn implies the stability of the
system (1) with state-dependent impulses.

To begin with, we study the difference of the system (1) and the
transformed system (25) in the interval (si , ξi ], i ∈ N+ . For all t ∈
(si , ξi ], we have that

x1 (t) − x0 (t) = x0 (si ) + Uσ (t i ) (x0 (si ))

+
∫ t

s i

fσ (v ) (v, x1 , x1
v )dv − x0 (si ) −

∫ t

s i

fσ (v ) (v, x0 , x0
v )dv

= Uσ (s i ) (x0 (si )) +
∫ t

s i

[fσ (v ) (v, x1 , x1
v ) − fσ (v ) (v, x0 , x0

v )]dv.
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Following the Lipschitz property of the function fl , l ∈ L, we have
that for all t ∈ (si , ξi ], i ∈ N+

|x1 (t) − x0 (t)|

≤ |Uσ (s i ) (x0 (si ))| +
∫ t

s i

|fσ (v ) (v, x1 , x1
s ) − fσ (v ) (v, x0 , x0

s )|dv

≤ |Uσ (s i ) (x0 (si ))| + Lσ (s i + 1 )

∫ t

s i

|x1
v − x0

v |dv (27)

where Ll is the Lipschitz constant for the function fl , l ∈ L. Using the
Gronwall–Bellman inequality in [30, Corollary 2.5], it obtains that for
all t ∈ (si , ξi ], i ∈ N+

|x1 (t) − x0 (t)| ≤ max

{

|Uσ (s i ) (x0 (si ))|

sup
t∈[s i −τ ,s i ]

|x1 (t) − x0 (t)|
}

e
ρL σ ( s i + 1 ) .

(28)

Observe from (28) that the bound of |x1 (t) − x0 (t)| is related to the
delayed system state in [si − τ, si ]. In the following, sufficient con-
ditions are established for the boundedness of Uσ (s i ) (x0 (si )) and
x1 (t) − x0 (t) for t ∈ (si , ξi ], i ∈ N+ .

Theorem 5: Consider the system (1) with state-dependent impulses.
Assume that there exist continuous Lyapunov functions Vl : R+

0 ×
Rn x → R+

0 , l ∈ L, α1 , α2 ∈ K∞, and constants λ, μ ∈ R such that
for all l ∈ L, (A.1) holds, and

C.1) for all t ∈ R+
t0
\I, LVl (t, xt ) ≤ λVl (t, x);

C.2) for all t ∈ I, Vσ (t+ ) (t+ , x(t+ )) ≤ μVσ (t) (t, x(t));
C.3) the function v − ρLlα

−1
1 (eλρα2 (v)) is of class K∞,

then there exist γ1 , γ2 ∈ K∞ such that for all t ∈ (si , ξi ]

|x0 (si ) + Uσ (s i ) (x0 (si ))| ≤ γ1 (|x0 (si )|)

|x1 (t) − x0 (t)| ≤ ζ1 (|x0 (si )|).

Proof: According to (C.1), we have that

|Vl (t)| ≤ eλ(t−s i ) |Vl (s+
i )| ∀t ∈ (si , ξi ] ∀l ∈ L

combining that with (A.1) yields that

|x0 (t)| ≤ α−1
1 (eλ(t−s i )α2 (|x0 (s+

i )|)) (29)

|x1 (t)| ≤ α−1
1 (eλ(t−s i )α2 (|x1 (s+

i )|)). (30)

Since x1 (si ) = x0 (si ) = x0 (s+
i ) and x1 (s+

i ) = x0 (si ) +
Uσ (s i ) (x0 (si )), we have from the norm triangle inequality, (C.2), and
the definition of x1 at ξi that

|x0 (si ) + Uσ (s i ) (x0 (si ))|

≤ |x0 (si ) + hδ (s i + 1 ) (x0 (si ))|

+ Lσ (ξ i )ρα−1
1 (eλρα2 (|x0 (ti ) + Ui (x0 (si ))|))

≤ α−1
1 (μα2 (|x0 (si )|))

+ ρLσ (ξ i )α
−1
1 (eλρα2 (|x0 (si ) + Ui (x0 (si ))|)). (31)

It follows from (C.3) that there is γa ∈ K∞ such that 0 < γa (v) ≤
v − ρLlα

−1
1 (eλρα2 (v)). In the sequel, we have that for all i ∈ N+

|x0 (si ) + Uσ (s i ) (x0 (si ))| ≤ γ1 (|x0 (si )|) (32)

where γ1 (v) := γ−1
a (α−1

1 (μα2 (v))). Obviously, both γ1 and γ2 are of
class K∞. It implies from (32) that for all i ∈ N+

|Uσ (s i ) (x0 (si ))| ≤ |x0 (si )| + γ1 (|x0 (si )|). (33)

In the following, consider the bound of |x1 (t) − x0 (t)| in (si , ξi ].
If [si − τ, si ] ⊂ (ξi−1 , si ], then x1 (t) = x0 (t) for all t ∈ [si − τ, si ],
and supt∈[s i −τ ,s i ] |x1 (t) − x0 (t)| = 0. In this case, we obtain from
(28) and (33) that for all (ti , ξi ]

|x1 (t) − x0 (t)| ≤
[
|x0 (si )| + γ1 (|x0 (si )|)

]
e

ρL σ ( s i + 1 ) . (34)

If [si − τ, si ] ∩ (ξi−1 , si ] �= ∅ and |Uσ (s i ) (x0 (si ))| ≥
supt∈[s i −τ ,ξ i−1 ) |x1 (t) − x0 (t)| for all i ∈ N+ , then (34) still
holds.

Next, we only need to study the case that [si − τ, si ] ∩ (ξi−1 , si ] �=
∅ and |Uσ (s i ) (x0 (si ))| < supt∈[s i −τ ,ξ i−1 ) |x1 (t) − x0 (t)| for all i ∈
N+ . In this case, we have from (28) that for all (si , ξi ], i ∈ N+

|x1 (t) − x0 (t)| ≤ sup
t∈[s i −τ ,ξ i−1 )

|x1 (t) − x0 (t)|eρL σ ( s i + 1 ) .

For all t ∈ [t0 − τ, s1 ], x1 (t) = x0 (t), which implies that for all t ∈
(t1 , ξ1 ], |x1 (t) − x0 (t)| = 0. Consequently, for all t ∈ (t2 , ξ2 ]

|x1 (t) − x0 (t)| ≤ sup
t∈[s2 −τ ,ξ 1 )

|x1 (t) − x0 (t)|eρL σ ( ξ 2 ) = 0.

We get from iteration that |x1 (t) − x0 (t)| ≡ 0 for t ∈ (ti , ξi ], i ∈ N+ .
Combining the previous analysis yields that

|x1 (t) − x0 (t)| ≤ ζ1 (|x0 (si )|) ∀t ∈ (ti , ξi ] (35)

where ζ1 (v) := (v + γ1 (v))eLρ and L := maxl∈L{Ll}. �
Remark 3: In Theorem 5, (C.2) is to bound the jumps due to im-

pulses. As a result, (C.2) can be rewritten as: There exists Kq > 0 such
that |x + hq (x)| ≤ Kq |x| holds for all x ∈ Rn x and all q ∈ Q, where
the existence of Kq follows the Lipschitz property of hq . �

According to Theorem 5, the next theorem establishes the relation
between the original system (1) and the transformed system (25) in
terms of the system stability.

Theorem 6: Consider the system (1) with state-dependent impulses
and the transformed system (25), and let Assumption 1 hold. If the
conditions in Theorem 5 are satisfied, then GAS of the system (25)
implies GAS of the system (1) with state-dependent impulses.

Proof: Since the transformed system (25) is GAS, then there exists
β ∈ KL such that

|x1 (t)| ≤ β(‖η‖τ , t − t0 ) ∀t ∈ R+
t0

.

In the sequel, we have from Theorem 5 that for all t ∈ R+
t0

|x0 (t)| ≤ |x1 (t) − x0 (t)| + |x1 (t)|

≤ ζ1 (β(‖η‖τ , si − t0 )) + β(‖η‖τ , t − t0 )

=: β̄(‖η‖τ , t − t0 ).

Hence, the system (1) is GAS. �
In the following, according to the previous results in Section III,

stability conditions are derived for the system (25).
Theorem 7: Consider the system (25). If there exist continuous

Lyapunov functions Vl : R+
0 × Rn x → R+

0 , l ∈ L, α1 , α2 ∈ K∞ and
λ1 > λ2 ≥ 0, μ ≥ 1, such that (A.1) holds, and

D.1) for all t ∈ R+
t0
\S and all l ∈ L, LVl (t, yt ) ≤

−λ1Vl (t, y(t)) + λ2 sups∈[−τ ,0] Vl (t + s, y(t + s));
D.2) for all t ∈ S, Vσ (t+ ) (t+ , y(t+ )) ≤ μVσ (t) (t, y(t));
D.3) the ADT satisfies τa > λ−1

0 ln μ, where λ0 ∈ (0, λ̄) and λ̄ is
the solution to the equation λ − λ1 + λ2e

λτ = 0,
then the system (25) is GAS.
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Theorem 8: Consider the system (25). If there exist continuous
Lyapunov functions Vl : R+

0 × Rn x → R+
0 , l ∈ L, α1 , α2 ∈ K∞ and

λ1 , λ2 > 0, μ ∈ (0, 1), such that (A.1) holds, and
E.1) for all t ∈ R+

t0
\S and all l ∈ L, LVl (t, yt ) ≤ λ1Vl (t, y) +

λ2 sups∈[−τ ,0] Vl (t + s, y(t + s));
E.2) for all t ∈ S, Vσ (t+ ) (t+ , y(t+ )) ≤ μVσ (t) (t, y(t));

E.3) the ADT satisfies τa < − ln μ

λ1 +λ2 μ−N 0
,

then the system (25) is GAS.
The proofs of Theorems 7 and 8 are similar to these of Theorems 1

and 2, and hence omitted here. Since impulses and switches in (25) are
synchronous, (D.2) and (E.2) are for both impulses and switches. Thus,
the tradeoff is not needed for the ADTs for impulses and switches in
(25). Comparing the conditions in Theorems 6 and 7, we observe that
(D.1) is similar to (C.1). In addition, (D.2) bounds the jumps at the im-
pulsive switching times, thereby bounding the jumps at the impulsive
times. Therefore, if all the conditions in Theorem 7 and (C.3) hold, then
GAS of the system (1) with state-dependent impulses is guaran-
teed. Similar case can be obtained from the conditions in Theorem 8
and (C.3).

V. ILLUSTRATIVE EXAMPLE

In this section, a numerical example is provided to illustrate the
developed results in the previous sections. Consider impulsive switched
time-delay neural system of the form

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = −Cσ (t)x(t) + Aσ (t)fσ (t) (x(t))

+Bσ (t)gσ (t) (xt ), t /∈ I
Δx(t) = Eδ (t)x(t), t ∈ I

(36)

where x(t) ∈ Rn is the neural system state, fσ (t) (x(t)) ∈ Rn is
the neuron activation function, and gσ (t) (xt ) is the function to de-
scribe the delay kernel. The switching function σ(t) : R+

0 → L =
{1, . . . , L} is piecewise continuous and the switching time sequence
is denoted by S. The impulsive time sequence is I := {ξi : ξi =
si + τi (x(t)), i ∈ N+ }. The matrices in (36) are of appropriate
dimensions.

Assume there are two subsystems and x(t) ∈ R2 . Set τi (x) =
0.2arccot (x2

1 ) and

C1 =

[
2 0

0 2

]

, C2 =

[
3 0

0 3

]

, A1 =

[
0.1 −0.1

−0.15 0.2

]

A2 =

[
0.15 −0.2

0.1 0.25

]

, B1 =

[
−1.5 −0.3

0.8 0.7

]

B2 =

[
0.1 1.15

−0.4 1.5

]

, E1 =

[
0.5 0

0 0.7

]

f1 (x(t)) = f2 (x(t)) =

[
sin(x1 (t))

sin(x2 (t))

]

, E2 =

[
0.2 0

0 0.45

]

g1 (xt ) = g2 (xt ) =

[
tanh(x1 (t − τ ))

tanh(x2 (t − τ ))

]

.

For the function τi (x), we have that τi (x) is continuous and has
the upper bound ρ = 0.1π. The Lipschitz constant for τi (x) is 0.2. In

Fig. 1. State responses of the system (36) with initial condition x(t) =
(−3, 4)� for t ∈ [−0.2, 0], periodic switching intervals, and τa = 0.8.

addition, for all l ∈ {1, 2}

dτi (x(t))
dt

=
−0.4x1 (t)
1 + x4

1 (t)
[−x1 (t) + 0.1 sin(x1 (t)) − 0.1 sin(x2 (t))

− 1.5 tanh(x1 (t − τ )) − 0.3 tanh(x2 (t − τ ))]

≤ x4
1 (t) + 0.5204
1 + x4

1 (t)
< 1

and at the impulsive times, τi (x + Eq (x)) = 0.2arccot (2.25x2
1 ) ≤

τi (x1 ) = τi (x). Therefore, the items 1)–3) in Assumption 1 hold and
the beating phenomenon is ruled out.

Choosing Lyapunov functions as follows:

Vl (t, x(t)) := x�(t)Plx(t) +
∫ t

t−τ

x�(s)Qlx(s)ds

+
∫ 0

−τ

∫ t

t+ θ

x�(s)Rlx(s)dsdθ

with Pl =
[ 0 .7233

0 .0743
0 .0743
0 .5955

]
, Ql =

[ 1 .2352
0 .4077

0 .4077
1 .2074

]
, and Rl =

[ 0 .7736
0 .2604

0 .2604
0 .7981

]
. As a result, (A.1) holds with α1 (v) := 0.5614v2 and

α2 (v) := 1.1251v2 . For all t /∈ I, LVl (t, xt ) ≤ −0.5Vl (t, x(t)) +
0.1 sups∈[−τ ,0] Vl (s, x(s)). For all t /∈ I, Vσ (t+ ) (t+ , x(t+ )) ≤
1.8225Vσ (t) (t, x(t)). Therefore, from Theorem 7, if τa > 0.7578, then
the system (36) is GAS. Under the initial state z(t) = [−3, 4]� for
t ∈ [−0.2, 0], and the periodic switching time sequence with τa = 0.8,
the state response of the system (36) is given in Fig. 1.

VI. CONCLUSION

In this paper, we studied the stability of impulsive switched time-
delay systems with state-dependent impulses. For impulsive switched
time-delay systems with time-dependent impulses, sufficient condi-
tions were derived to guarantee system stability. For impulsive switched
time-delay systems with state-dependent impulses, we applied the B-
equivalent method to construct the transformed system, and derived
stability conditions based on the transformed system. Future research
can be directed to impulsive switched time-delay systems where mul-
tiple state-dependent impulses exist in a switching interval.
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