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Optimal Decentralized Output-Feedback LQG
Control With Random Communication Delay

Yan Wang and Junlin Xiong , Member, IEEE

Abstract—This paper is concerned with the optimal
decentralized output-feedback control of the large-scale systems.
A random information pattern is considered, where the infor-
mation is transmitted among the subsystems with random
communication delays. For the random information pattern, the
optimal LQG problems for both global estimation case and local
estimation case are studied. It is difficult to derive the optimal
controller under random framework, because the gains of the
controller must be designed to satisfy the random sparse struc-
ture constraints. In this paper, we design the optimal controller
by Hadamard product method. For global estimation case, the
gains of the controller are obtained by solving linear matrix equa-
tion. For local estimation case, an iterative algorithm is exploited
to compute the gains. In addition, the value of the cost function
achieved by the designed controller is found and shown to mono-
tonically increase with the increase of the delay probability for
both global and local estimation cases. Finally, the theoretical
results are illustrated by two numerical examples.

Index Terms—Communication delay, decentralized control,
optimal, output-feedback, random.

I. INTRODUCTION

LARGE-SCALE systems have been found in many
applications, such as autonomous vehicles [1], [2]; elec-

tric power systems [3]; satellite formations [4], [5]; and
robotics [6], [7]. In large-scale systems, subsystems usually
exchange information through a communication network [8].
The communication network used in the large-scale systems
offers numerous advantages like simple installation, easy
maintenance, and low cost [9]. However, the information trans-
mitted through the network may suffer from communication
delay [10], [11]. As a result, the information available to
each subsystem is incomplete at each time step. To achieve
the best system performance with the incomplete information,
decentralized control has been proved to be a useful control
technique. However, the design of the optimal decentralized
control strategy is a challenging task, because it is computa-
tionally intractable in general [12]. For example, the optimal
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decentralized control policies may be nonlinear even for the
linear system [13].

A. Related Work and Motivation

Decentralized control with communication delay has
attracted a lot of research attentions since 1970s. The optimal
decentralized control with one step delay sharing pattern was
studied by the matrix minimum principle in [14] and by the
second-guessing technique in [15]. For the multiple step delays
sharing pattern, two structural results to the optimal decentral-
ized control design were established in [16]. The decentralized
stochastic control with symmetric delay and asymmetric delay
has been studied by a common information approach in [17].
A common feature of the results in [14]–[17] is that each sub-
system estimates not only its own subsystem state but also
the others (global estimation). This implies that the subsys-
tem state is estimated more than one time. For the case that
each subsystem only estimates its own subsystem state (local
estimation), Wang et al. [18] studied the decentralized out-
put feedback control for a two-player system with one step
communication delay.

For delay patterns arising from a communication graph, the
optimal decentralized LQG control problems were investigated
by the information hierarchy graph in [19] and [20] and by
the independence decomposition technique in [21]. The results
in [19]–[21] are for the state-feedback controller design. The
output-feedback case was considered in [22]. However, the
result in [22] is only suitable for a three-player system with a
chain structure. The sufficient statistics of linear control strate-
gies was studied in [23] for large-scale systems with delay
pattern defined over a communication graph. In [14]–[23], the
communication delay is assumed to be determinate. In prac-
tice, the network environment is affected by random factors,
and the communication delay is naturally random. The LQG
problem with varying communication delay has been studied
in [24] and [25]. The results proposed in [24] and [25] are
sound, but are only for two-player system with state feed-
back case. The framework of the randomized information
pattern studied in [26] can be used to model state-feedback
LQG problem with random communication delay, but the
realization of the optimal controller design is not derived.
Thus, the optimal output feedback LQG control with random
communication delay is not fully studied.

B. Our Work

This paper focuses on the optimal decentralized output-
feedback control of a large-scale system. The information is
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transmitted from one subsystem to other subsystems through
a network with random delays. The random delay satisfies
Bernoulli distributions. Under this setup, we derive a lin-
ear matrix equation used to design the optimal controller for
global estimation case. Also, the optimal value of the cost
function is obtained, and is shown to strictly increase as the
delay probability increases. The optimal LQG problem under
local estimation case is also studied. An iterative algorithm
is exploited to design the gains of the optimal controller for
local estimation case. It is shown that the algorithm converges
to person-by-person optimum. The optimal value of the cost
function has the same monotonicity as the one of global esti-
mation case. Finally, two numerical examples are given to
illustrate the effectiveness of the theoretical results.

C. Main Contribution

The contribution of this work is summarized as follows.
1) Compared to [14]–[17], the local estimation case is also

studied in this paper, while Kurtaran and Sivan [14],
Toda and Aoki [15], Nayyar et al. [16], and
Mahajan and Nayyar [17] only studied the global esti-
mation case. The local estimation is important for
large-scale systems. One advantage of local estima-
tion is that it consumes less computational resources.
Compared to the global estimation case, the main chal-
lenge of the local estimation case is that the available
estimated state is incomplete, thus, is not a sufficient
statistic for optimal decision. Then, the corresponding
optimization problem is nonconvex. Our contribution is
to establish the framework of the optimal decentralized
controller under local estimation, and exploit an iterative
algorithm to compute the gains of the controller in the
sense of person-by-person optimum.

2) Compared to [14]–[23], we study the random delay
case instead of the determinate delay case considered
in [14]–[23]. The main challenge of the random delay
case is to deal with the random sparse structure con-
straints induced by the random communication delay.
Our contribution is to propose the method of Hadamard
product derivative to design the optimal decentralized
controller under the random sparse structure constraints.

3) We investigate the property of the cost function with
respect to the delay probability. Our contribution is to
prove that the optimal value of the cost function is
monotonically increasing with the increase of the delay
probability. Based on this result, we can find the crit-
ical delay probability effectively by the binary search
method for a given value of the cost function, such that
the optimal value of the cost function is smaller than
the given one when the delay probability is below the
critical delay probability. To the best of our knowledge,
the similar results do not appear in the related literature.

4) Compared to [24] and [25], our contribution is to design
the optimal decentralized output-feedback controller for
more general large-scale systems. However, the results
established in [24] and [25] are only for two-player
systems under state feedback and uncorrelated sub-
system noises. In other words, the methods proposed
in [24] and [25] are unsuitable for our problem.

Notation: For a time-varying matrix X(t) or a time-varying
vector x(t), to save space, we sometimes omit the time index
and write X or x, respectively. Furthermore, X(t + 1) and
x(t +1) are denoted by X+ and x+, respectively. E(x) denotes
the expectation of the random variable x. Let E(x | y) denote
the conditional expectation of x given y. The transpose of the
matrix A is denoted by AT. X � 0 and X � 0 mean that X
is a symmetric positive definite matrix and a symmetric posi-
tive semi-definite matrix, respectively. Let y(0 : t) denote the
sequence {y(0), y(1), . . . , y(t)}. The trace of a square matrix
X is denoted by tr(X). 1i×j denote the matrix of which all the
elements are 1, and 1i×j ∈ R

i×j. The n × n identity matrix is
denoted by In. Define A\B � {x : x ∈ A and x /∈ B}. Pr(·) is
the probability measure. For a denumerable set S, the num-
bers of the elements in S is denoted by |S|. For a matrix X,
(X)ij denotes the i-row, j-column element of matrix X. For
matrices A, B ∈ R

m×n, the Hadamard product is defined as
(A ◦ B)ij = (A)ij(B)ij.

II. PROBLEM DESCRIPTION

Consider a large-scale system composed of N subsystems,
where the ith subsystem is of the form

xi(t + 1) = Aii(t)xi(t) +
∑

j∈�\{i}
Aij(t)xj(t)

+ Bi(t)ui(t) + ωi(t), i ∈ � (1)

yi(t) = Ci(t)xi(t) + υi(t), i ∈ � (2)

where � = {1, 2, . . . , N}. For the ith subsystem, xi ∈ R
ni is

the state; ui ∈ R
li and yi ∈ R

mi are the control input and
the measurement output, respectively; ωi ∈ R

ni is the process
noise; υi ∈ R

mi is the measurement noise. In (1) and (2), Aij,
Bi, and Ci are the matrices of proper dimensions for i, j ∈ �.

Define the following augmented vectors and matrices:

x =

⎡

⎢⎢⎣

x1

...

xN

⎤

⎥⎥⎦, u =

⎡

⎢⎢⎣

u1

...

uN

⎤

⎥⎥⎦, ω =

⎡

⎢⎢⎣

ω1

...

ωN

⎤

⎥⎥⎦, y =

⎡

⎢⎢⎣

y1

...

yN

⎤

⎥⎥⎦

υ =

⎡

⎢⎢⎣

υ1

...

υN

⎤

⎥⎥⎦, A =

⎡

⎢⎢⎣

A11 · · · A1N

...
. . .

...

AN1 · · · ANN

⎤

⎥⎥⎦

B = diag{B1, . . . , BN}, C = diag{C1, . . . , CN}.
The large-scale system (1), (2) can be rewritten as

x(t + 1) = A(t)x(t) + B(t)u(t) + ω(t) (3)

y(t) = C(t)x(t) + υ(t) (4)

where the initial state x(0) is a Gaussian variable with x(0) ∼

N (0, �(0)), �(0) � 0. The noises ω(t) and υ(t) are the
independent Gaussian processes with ω(t) ∼ N (0,W(t)),
W(t) � 0 and υ(t) ∼ N (0,V(t)), V(t) � 0, respectively.
In addition, x(0), ω(t1), and υ(t2) are mutually independent
for all t1, t2.

It is assumed that the system parameter matrices A(t), B(t),
and C(t) and the statistical properties of ω(t), υ(t), and x(0)

are known to all subsystems.
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We now describe the information pattern. For system (1)
and (2), the information transmitted from the jth subsystem to
the ith subsystem is delayed by τij(t) time-step, where τij(t)
obeys a Bernoulli distribution with the probability

Pr(τij(t) = 1) =
{

λ, i �= j
0, i = j

(5)

Pr(τij(t) = 0) =
{

1 − λ, i �= j
1, i = j

(6)

where 0 ≤ λ ≤ 1. We assume that the delay probability λ

is known. This is a standard assumption, and is commonly
used in [24], [25], and [27]–[30]. Additionally, we assume that
τi1j1(t1) is independent of τi2j2(t2) for any i1 �= i2 or j1 �= j2
or t1 �= t2.

Remark 1: One step communication delay is commonly
assumed in [20] and [27]–[31]. In this paper, the assumption
of one step communication delay is to ensure that the infor-
mation is transmitted no slower than the dynamics propagate
through the plant. As a result, the communication network
design conforms to the standard practice [32].

Due to the one step random communication delay, the
measurement output available to the ith subsystem is

Yi(t) = {yi(0 : t)}
⋃

j∈�\{i}

{
yj
(
0 : t − τij(t)

)}

= �i(t) ∪ 	(t)

where �i(t) = {yj(t) : τij(t) = 0, j ∈ �}, and 	(t) =
{yj(0 : t − 1), j ∈ �}. Note that 	(t) does not depend on
the random variable τij(t) and is the common information of
all the subsystems.

Define the cost function

J � E

{
T−1∑

t=0

x(t)TQ(t)x(t) + u(t)TR(t)u(t)

+ x(T)TQ(T)x(T)

}
(7)

where Q(t) � 0 (t = 0, . . . , T) and R(t) � 0
(t = 0, . . . , T − 1) are known to all subsystems. The expecta-
tion operation E in (7) is taken over both x(0), ω(t), υ(t), and
τij(t), i, j ∈ �.

III. GLOBAL ESTIMATION CASE

In this section, our objective is to design the controller of
the form

ui(t) = μi(t,Yi(t)) (8)

to minimize the cost function (7). That is, we need to solve
the following problem.

Problem 1:

min
μi(t,·)

J

s.t. (1), (2), (8).

Remark 2:
1) Due to the random communication delay, the informa-

tion available to the ith subsystem is Yi(t). Thus, the

subsystem controller input ui(t) is restricted to the
form (8).

2) The information pattern induced by Yi(t) is partially
nested ([33, Definition 3]), because Yj(t − 1) � Yi(t)
holds for any i, j ∈ �. Thus, the optimal control law
μi(t, ·) is linear ([33, Th. 2]).

A. Offline Design

In this section, we solve Problem 1 in an offline fashion.
That is, τij(0 : T − 1) is unknown when we design μi(t, ·)
offline for any t ≥ 0.

For ease of notations, define

ϒ �

⎡

⎢⎣
γ11 · · · γ1N
...

. . .
...

γN1 · · · γNN

⎤

⎥⎦, γij = 1 − τij (9)

�ϒ �

⎡

⎢⎣
γ111l1×m1 · · · γ1N1l1×mN

...
. . .

...

γN11lN×m1 · · · γNN1lN×mN

⎤

⎥⎦ (10)

F �

⎡

⎢⎣
F11 · · · F1N
...

. . .
...

FN1 · · · FNN

⎤

⎥⎦, Fij ∈ R
li×mj (11)


 = {ϒ : γij ∈ {0, 1}, i, j ∈ �
}
. (12)

The optimal solution to Problem 1 is given by the following
theorem.

Theorem 1: Consider Problem 1. The optimal controller (8)
under offline design is given by

u(t) = (F(t) ◦ �ϒ(t))y(t)

+ (F(t) ◦ �ϒ(t))x̂(t) + L(t)x̂(t) (13)

where x̂t is computed by

x̂+ = Ax̂ + Bu + K(y − Cx̂), x̂(0) = 0 (14)

P+ = APAT − APCT
(

CPCT + V
)−1

× CPAT + W, P(0) = �(0) (15)

K = APCT(CPCT + V)−1 (16)

the optimal gains F(t) and L(t) are computed by
∑

ϒ∈


Pr(ϒ)
{
(Y(F ◦ �ϒ)TR) ◦ �T

ϒ

+
(

Y(B(F ◦ �ϒ) + K)TX+B
)

◦ �T
ϒ

}
= 0 (17)

Y = CPCT + V (18)

X = ATX+A + Q − (ATX+B)(BTX+B + R)−1

(BTX+A), X(N) = Q(N) (19)

L = −(BTX+B + R)−1BTX+A. (20)

Proof: See Appendix A.
Remark 3:
1) The optimal controller to Problem 1 is of the form (13).

This implies that using {x̂j(0 : t) : j ∈ �} instead of 	(t)
is no loss of optimality.

2) Note that the matrix P is the estimation error covariance:
P = E[(x − x̂)(x − x̂)T]; K is the Kalman filter gain; Y
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is defined as Y = E[(y − Cx̂)(Y − Cx̂)T]. The matrices
P, K, Y , X, and L can be computed offline, because the
system parameter matrices and the noise statistics are
known to all subsystems.

Remark 4: One challenge for extending the one-step delay
to the delay defined in a communication graph is that the
separation principle fails [34]. For the delay defined over a
graph, the delay corresponding to subsystems is equal to the
shortest length of the path between the subsystems. For this
delay model, the ith subsystem may not be able to compute
the estimated state x̂(t) by (14). The reason is that uj(t − 1)

may not be available to the ith subsystem if lij > 1, where
lij is the length of the shortest path from the jth subsystem
to the ith subsystem, and uj(t − 1) is required for comput-
ing x̂(t). Then, the large-scale system (3), (4) cannot ran
Kalman filter (14). It follows that the separation principle
fails.

Remark 5: We design the optimal controller (13) by the
methods of independence decomposition and Hadamard prod-
uct, while, in [14], the methods of matrix minimum princi-
ple and Lagrange multiplier are used to derive the optimal
controller. The Lagrange multiplier method is not suitable
for Problem 1 under offline design, because the Lagrange
multiplier method can only deal with one certain sparse
structure constraint of gain matrices.

Theorem 2: Consider Problem 1. The optimal value of the
cost function J achieved by the optimal controller (13) is

J∗ =
T−1∑

t=0

∑

ϒ∈


Pr(ϒ)
{

tr((F∗ ◦ �ϒ)TR(F∗ ◦ �ϒ)Y)

+ tr
(
X+(B(F∗ ◦ �ϒ) + K

)

× Y
(
B(F∗ ◦ �ϒ) + K

)T)}

+
T∑

t=0

tr(QP) (21)

where F∗ is the optimal gain obtained by solving (17).
Proof: From the proof of Theorem 1, (21) is obtained

directly.
Remark 6: When λ = 1, i.e., Pr(ϒ = IN) = 1, the results

presented by Theorems 1 and 2 are reduced to the deterministic
one-step delay case which has been derived in [14].

Remark 7: Consider (21), we take λ and F as variables. The
optimal F depends on λ. The optimal value of the cost function
is denoted by J∗(λ, F∗

λ). Note that F∗
1 is a block diagonal

matrix. According to the fact that Pr(γii) = 1 holds for any
i ∈ �, one has that F∗

1 ◦ �ϒ = F∗
1 holds for any ϒ satisfying

Pr(ϒ) �= 0. Recall (21), it follows that J∗(1, F∗
1) = J(λ, F∗

1) ≥
J∗(λ, F∗

λ), where the inequality follows that F∗
λ is the optimal

gain corresponding to λ. This shows that under offline design,
the optimal value of the cost function with random delay is
less than the one with deterministic delay.

Remark 8: When λ = 0, i.e., Pr(ϒ = 1N×N) = 1, the
optimal controller (13) is reduced to the optimal centralized
output feedback controller in [34].

B. Online Design

For online design, the realization of ϒ(t) denoted by ϒ̄(t)
is known when we design μi(t, ·). Thus, the results established
for offline design in Section III-A can be reduced to the
ones for online design by letting Pr(ϒ(t) = ϒ̄(t)) = 1 and
Pr(ϒ(t) �= ϒ̄(t)) = 0.

Theorem 3: Consider Problem 1. For online design, the
optimal controller (8) to Problem 1 is given by (13), where
x̂(t) is computed by (14); L(t) is given by (20); F(t) is
obtained by solving (17) by letting Pr(ϒ(t) = ϒ̄(t)) = 1
and Pr(ϒ(t) �= ϒ̄(t)) = 0. Moreover, the optimal value of the
cost function is given of the form (21).

Remark 9: Note that the optimal F∗(t) obtained offline
in (21) are identical for different realizations of ϒ(t). However,
for online design, F∗(t) in (21) corresponding to different real-
izations of ϒ(t) are different. The reason is that for online
design, F∗(t) is designed based on the realizations of ϒ(t),
while, for offline design, F∗(t) is designed based on the
statistical property of ϒ(t).

For online design, if we take the delay probability λ as a
variable, then we can show that the optimal value of the cost
function J increases as λ increases.

Theorem 4: Consider (21), and take the delay probability λ

as a variable. Under online design fashion, the optimal value
of the cost function J∗(λ) is monotonically increasing with the
increase of λ.

Proof: See Appendix B.
Remark 10: When extending the one step delay to the delay

defined over a graph, it is impossible to analyze the property
of the optimal value of the cost function J∗ with respect to
the delay probability λ in theory. For the delay defined over a
graph, τij is a random variable taking value in {0, 1, . . . , lij},
where τij is the time steps for the information to be transmit-
ted from the jth subsystem to the ith subsystem; and lij is the
length of the shortest path from the jth subsystem to the ith
subsystem. Note that τi1j1 is dependent of τi2j2 , if the informa-
tion transmitted from the j1th subsystem to the i1th subsystem
and the one transmitted from the j2th subsystem to the i2th
subsystem travel across a common edge. This implies that the
explicit expression of Pr(ϒ) cannot be derived for a general
large-scale system. Hence, it is a challenging task to analyze
the property of J∗ with respect to λ.

Remark 11: The optimal controller (13) is designed based
on the global estimation. That is, all subsystem need to com-
pute the global estimated state x̂(t) by (14), because the
subsystem control input ui(t) in (13) depends on x̂(t) for any
i ∈ �. In this case, x̂(t) need to be computed repeatedly over
the whole system.

IV. LOCAL ESTIMATION CASE

For global estimation case, the estimated state x̂(t) is com-
puted repeatedly. To save computational resources, in this
section, we propose a controller design scheme under local
estimation as shown in Fig. 1. It is assumed that the ith sub-
system only computes the estimated subsystem state x̂i(t), and
transmits x̂i(t) to other subsystems through communication
network with random delay.
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Fig. 1. Configuration of large-scale systems. Each system comprises of
a plant, a local estimator, and a local controller (LC). The information is
transmitted from the jth subsystem to the ith subsystem with τij time-step
delay. The information used to construct the ith LC is denoted by Li.

Due to the random communication delay, the estimated
subsystem state available to the ith subsystem is

Xi(t) = {x̂i(0 : t)
} ⋃

j∈�\{i}

{
x̂j
(
0 : t − τij(t)

)}
.

Then, the controller is designed based on the information set:
Li(t) = �i(t) ∪ Xi(t), that is,

ui(t) = μ̃i(t,Li(t)) (22)

where we restrict that μ̃i(t, ·) is chosen to be a linear function.
Remark 12: The information set �i(t) is not used for esti-

mation, but is used to construct the controller directly. Thus,
�i(t) is not discarded.

In this section, our aim is to design the optimal controller
of the form (22) to minimize the cost function (7). That is, to
solve the following problem.

Problem 2:

min
μ̃i(t,·)

J

s.t. (1), (2), (22).

Remark 13: The information structure induced by Li(t)
may be nonpartially nested, because Lj(t − 1) � Li(t). Thus,
the optimal control law μ̃i(t, ·) may be nonlinear ([33, Th. 2]).
Nevertheless, for implementation simplicity in engineering
practice, we focus on designing the linear μ̃i(t, ·) in this paper.

A. Offline Design

1) Form of the Optimal Controller: In this section, we
solve Problem 2 in an offline fashion (ϒ(t) is unknown).
Because μ̃i(t, ·) is chosen linear, the controller input (22) can
be rewritten as

ui(t) = [F(t) ◦ �ϒ(t)]iy(t) + ηi(t,Xi(t)), i ∈ � (23)

where [F(t) ◦ �ϒ(t)]i is the ith row of [F(t) ◦ �ϒ(t)].
To find the optimal controller to Problem 2, the form of the

optimal controller is found as the following theorem shows.

Theorem 5: If ũ∗(t) is the optimal solution to the following
optimization problem:

min
ũ(t)

J̃ = E

{
T∑

t=0

x̂(t)TQ(t)x̂(t)

+
T−1∑

t=0

ũ(t)TR(t)ũ(t)

}
(24)

subject to x̂(t + 1) = A(t)x̂(t) + B(t)ũ(t) + ω̂ϒ(t),

ũ(t) =
⎡

⎢⎣
η̃1(t,X1(t))

...

η̃N(t,XN(t))

⎤

⎥⎦

where ω̂ϒ(t) = (B(t)(F(t) ◦ �ϒ(t)) + K(t))φ(t), φ(t) = y(t)−
C(t)x̂(t), η̃i(t, ·) is a linear function for i ∈ �, then the optimal
control input for Problem 2 is of the form

u(t) = (F(t) ◦ �ϒ(t))φ(t) + ũ∗(t). (25)

Proof: This proof is similar to the first part of the proof of
Theorem 1, so is omitted.

Remark 14: Compared to problem (39) in the proof
of Theorem 1, the modified local control input ũ(t) in
problem (24) is of different form ũi(t) = η̃i(t,Xi(t)), where
Xi(t) is incomplete information set due to the communication
delay.

Define

�̃ϒ �

⎡

⎢⎣
γ111l1×n1 · · · γ1N1l1×nN

...
. . .

...

γN11lN×n1 · · · γNN1lN×nN

⎤

⎥⎦ (26)

H �

⎡

⎢⎣
H11 · · · H1N
...

. . .
...

HN1 · · · HNN

⎤

⎥⎦, Hij ∈ R
li×nj . (27)

From the expression of Xi(t), we have that the optimal ũ(t)
is of the form

ũ(t) =
(

H(t) ◦ �̃ϒ(t)
)

x̂(t) + χ
(
t, x̂(0 : t − 1)

)
(28)

where χ(t, ·) is a linear function.
To solve problem (24), we present a decomposition result

via two lemmas first. In particular, both the estimated state
x̂(t) and the control input ũ(t) can be decomposed into two
independent parts.

Lemma 1: Consider problem (24). The estimated state x̂(t)
is decomposed into two parts

x̂(t) = A(t − 1)x̂(t − 1) + B(t − 1)ũ(t − 1)︸ ︷︷ ︸
x̂2(t)

+ ω̂ϒ(t − 1)︸ ︷︷ ︸
x̂1(t)

and x̂1(t) is independent of x̂2(t).
Proof: See Appendix C.
Lemma 2: Consider problem (24). The control input ũ(t)

in (28) is decomposed as

ũ(t) = (H(t) ◦ �̃ϒ(t))ω̂ϒ(t − 1)︸ ︷︷ ︸
ũ1(t)

+ũ2(t) (29)

where ũ2(t) = E[ũ(t) | x̂(0 : t−1), ϒ(0 : t)] is a linear function
of x̂(0 : t − 1). In addition, ũ1(t) is independent of ũ2(t).
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Proof: See Appendix D.
According to the decomposition results established in

Lemmas 1 and 2, finding the optimal control input (23) is
reduced to construct two gain matrices. This is shown by the
following theorem.

Theorem 6: Consider Problem 2. The optimal control
input (23) to Problem 2 is of the form

u(t) = (F(t) ◦ �ϒ(t))φ(t) + ũ∗(t) (30)

ũ∗(t) =
(

H(t) ◦ �̃ϒ(t)
)
ω̂ϒ(t − 1) + ũ2∗(t) (31)

ũ2∗(t) = L(t)x̂2(t)

for t = 0, . . . , T − 1, where ũ∗(0) = 0; the optimal gain
matrices F(t) and H(t) are given by solving the following
optimization problem:

min
F,H

(
T−2∑

t=0

h1(t) +
T−1∑

t=0

h2(t)

)
(32)

where

h1 =
∑

ϒ∈


∑

ϒ+∈
+
Pr(ϒ) Pr

(
ϒ+)

× tr
(

G+((H+ ◦ �̃+
ϒ

)
− L+)(B(F ◦ �ϒ) + K)

× Y(B(F ◦ �ϒ) + K)T
((

H+ ◦ �̃+
ϒ

)
− L+)T

)

h2 =
∑

ϒ∈


Pr(ϒ)
{

tr
(
(F ◦ �ϒ)TR(F ◦ �ϒ)Y

)

+ tr
(

X+(B(F ◦ �ϒ) + K)Y(B(F ◦ �ϒ) + K)T
)}

where G = BTX+B + R.
Proof: See Appendix E.
Remark 15: The decomposition results presented by

Lemmas 1 and 2 are not the main contributions of
this paper. Some similar results have been proposed
in [21], [35], and [36].

For ease of notations, denote h1(T − 1) = 0, and define

h = h1 + h2.

An optimality condition to problem (32) is derived, as the
following theorem presents.

Theorem 7: Consider problem (32). The optimal F and H
satisfy

{
�1 = 0 (33a)

�2 = 0 (33b)

where

�1 =
∑

ϒ∈


∑

ϒ+∈
+
Pr(ϒ) Pr

(
ϒ+)

×
(

Y	T
1

(
X+B + 	T

2G+	2B
)

+ Y(F ◦ �ϒ)TR
)

◦ �T
ϒ

�2 =
∑

ϒ∈


∑

ϒ+∈
+
Pr(ϒ) Pr

(
ϒ+)

×
(
	1Y	T

1	
T
2G+) ◦ (�̄+

ϒ

)T

where 	1 = B(F ◦ �ϒ) + K, 	2 = (H+ ◦ �̃+
ϒ) − L+.

Algorithm 1 Design of the Gains F and H
1: for t = 0 : T − 1 do
2: if t �= T − 1 then
3: Initialization: Given the original values F[0], H[0]

and choose a small constant ε > 0. Define
h
(

F[−1], H+[−1]
)

= +∞. Let k = 0.

4: while
∣∣∣h
(

F[k−1], H+[k−1]
)

− h
(

F[k], H+[k]
)∣∣∣ > ε

do
5: Set k = k + 1.
6: Let F in (33b) be F[k−1], obtain H+[k] by solving

(33b).
7: Let H+ in (33a) be H+[k], obtain F[k] by solving

(33a).
8: end while
9: F∗ = F[k], H+∗ = H+[k]

10: else
11: Let G(T) = 0 in (33a). Then F∗(T − 1) is obtained

by solving (33a) directly.
12: end if
13: end for

Proof: The optimal F and H are obtained by solving
∂h/∂F = 0 and ∂h/∂H = 0. Similar to the derivation in (41),
we can see that ∂h/∂F = 0 and ∂h/∂H = 0 give (33). This
completes the proof.

Remark 16: Note that the gain of (29) has the sparse struc-
ture constraint H(t) ◦ �̃ϒ(t) due to the information set Xi(t).
Thus, ω̂ϒ is not a sufficient statistic for optimal decision. This
implies that the optimal H(t) depends on E(ω̂ϒ ω̂T

ϒ). From the
definition of ω̂ϒ , one has that the optimal F(t − 1) and H(t)
are coupled as problem (32) shows. Taking F and H as vari-
ables, the highest index of the variables in h is four. Thus, the
function h with respect to F and H is nonconvex, and it is
difficult to obtain the jointly optimal F, H to problem (32).

2) Computing the Gains F and H: Equation (33) is hard to
be solved, because the highest index of the variables (F, H+)
in (33) is three. However, when F is given, the optimal H+ can
be obtained effectively by solving (33), and vice versa. Then,
we exploit the following iterative algorithm (Algorithm 1) to
compute the gain matrices F and H.

Now, we show that Algorithm 1 converges to a person-by-
person optimal solution to the problem (32). The definition of
the person-by-person optimal solutions is given as follows.

Definition 1 ([37] Person-by-Person Optimal Solutions):
Consider problem (32), a pair of gains (F∗, H+∗) is person-
by-person optimal if

h
(
F∗, H+∗) ≤ h

(
F, H+∗), for any F defined in (11)

h
(
F∗, H+∗) ≤ h

(
F∗, H+), for any H+ defined in (27).

Convergence Analysis: Given F = F[k−1], the optimal H+
denoted by H+[k] is obtained by solving (33b), because h with
respect to H+ is convex when F is given. Thus, we have
h(F[k−1], H+[k]

) ≤ h(F[k−1], H+[k−1]
). Similarly, we have

h(F[k], H+[k]
) ≤ h(F[k−1], H+[k]

). As a result

h
(

F[k], H+[k]
)

≤ h
(

F[k−1], H+[k−1]
)

(34)
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holds for all k. According to inequality (34) and Definition 1,
it turns out that limk→+∞(F[k], H+[k]

) is a person-by-person
optimal solution to the problem (32). This indicates that
Algorithm 1 converges to person-by-person optimum.

The optimal value of the cost function for the local estima-
tion case can be concluded as follows.

Theorem 8: Consider Problem 2. The optimal value of the
cost function (7) achieved by the controller (30) is

J∗ =
T−2∑

t=0

h1(F∗, H+∗)

+
T−1∑

t=0

(
h2(F∗, H+∗))+

T∑

t=0

tr(QP) (35)

where h1(F∗, H+∗) and h2(F∗, H+∗) are the values of h1 and
h2, respectively, by letting F = F∗, H+ = H+∗.

Remark 17: Similar to the discussion in Remark 6, for the
local estimation case, it also holds that the optimal value of the
cost function with random delay is less than the corresponding
one with deterministic delay under offline design.

B. Online Design

For online design, the realization of ϒ(t), i.e., ϒ̄(t), is
known to the designer. Thus, let Pr(ϒ(t) = ϒ̄(t)) = 1 and
Pr(ϒ(t) �= ϒ̄(t)) = 0. Then, we can design the gain matrices
F and H by Algorithm 1 with a minor modification. Other
parameters design methods are the same to the offline case.

Under local estimation, the optimal value of the cost func-
tion J has the same property as the one under global estimation
case.

Theorem 9: Consider (35). Taking λ as a variable, the
optimal value of the cost function J∗(λ) is monotonically
increasing as λ increases, when the gain matrices F∗, H+∗
in h1 and h2 are designed online.

Proof: The proof is almost identical to the proof of
Theorem 2, thus, is omitted.

Remark 18: To minimize the cost function (7), the global
estimation case is better than the local estimation case.
However, under local estimation, the subsystem only needs
to estimate its own estimated subsystem state. In other words,
compared to global estimation, local estimation consumes less
computational resources. Local estimation can be viewed as a
tradeoff between the system performance and the computa-
tional resources.

V. NUMERICAL EXAMPLES

In this section, two numerical examples are given to illus-
trate the effectiveness of the proposed theoretical results.
Example 1 is used to show that the system state and out-
put can be maintained in the neighborhood of the origin by
the proposed controller (30). Example 2 illustrates that the
optimal value of the cost function gets higher with a larger
delay probability. In addition, Example 2 is used to compare
our controller (13), (30) with the optimal controller designed
by the approach in [14] and [34]. For simplicity, in these two
examples, the controllers are designed online.

Fig. 2. Values of the random binary numbers τ12, τ13, τ21, τ23, τ31, τ32
are illustrated by no.1–no.6, respectively.

Example 1: Consider a linear time-invariant large-scale
system composed of three subsystems of the form (1) and (2).
The system parameter matrices are given by

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.9 0.2 −0.9 −0.5 0.2 −0.1
0.1 0.3 0.6 0.2 0 0.3
0 −0.3 0.4 0.6 0.8 −0.1
0 0 0.2 0.3 0.4 0.1

0.3 0.2 0.1 0.5 0.7 0.8
0.2 −0.3 0 0.1 0.2 −0.1

⎤

⎥⎥⎥⎥⎥⎥⎦

B =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, C =

⎡

⎣
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎤

⎦.

The weight matrices Q and R in (7) are chosen to be

Q =

⎡

⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 4 0 0
0 0 0 0 1 0
0 0 0 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎦
, R =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦.

Assume that the noises ω and υ are zero-mean white Gaussian
noises with identity covariance matrix. In order to highlight
the simulation results, we choose the initial system state to
be x(0) = [2 2 2 2 2 2

]T × 103. Let the time horizon be
T = 250. The delay indicator τij(t) is generated randomly by
λ(t) = 0.5 (see Fig. 2). We choose ε = 0.002 in Algorithm 1.
The controller (30) was designed successfully according to
Theorem 6 and Algorithm 1. The value of the control input is
shown as Fig. 3.

The system states with controller (30) in contrast with the
ones without control are simulated by Figs. 4–6. In addition,
the measurement outputs with controller (30) compared to the
ones without control are shown by Fig. 7. The simulation
results show that the system is unstable without control. With
the proposed controller (30), the system state and the control
input are maintained in the neighborhood of the origin even
though there are system noise and measurement noise. This
illustrates the effectiveness of the proposed controller (30).

Example 2: Consider a large-scale system of the form (1)
and (2). The parameters of the system and Algorithm 1 are the
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Fig. 3. Control input.

Fig. 4. State of subsystem 1.

Fig. 5. State of subsystem 2.

same as in Example 1 except that the time horizon T and the
delay indicator τij are different. The time horizon is chosen to
be T = 50. Recall that γij = 1 − τij. We denote

ϒ(t) =
⎡

⎣
1 γ12(t) γ13(t)

γ21(t) 1 γ23(t)
γ31(t) γ32(t) 1

⎤

⎦.

Define � = [γ12, γ13, γ21, γ23, γ31, γ32], which has totally 64
possible value and is given by

�0 = [0, 0, 0, 0, 0, 0]

�1 = [0, 0, 0, 0, 0, 1]

�2 = [0, 0, 0, 0, 1, 0]
...

�63 = [1, 1, 1, 1, 1, 1].

Fig. 6. State of subsystem 3.

Fig. 7. Measurement output.

For simplicity, we assume that ϒ(t1) = ϒ(t2) for all t1, t2.
Recall that Pr(γij(t) = 0) = λ and Pr(γij(t) = 1) = 1 − λ for
i �= j. It follows that:

Pr(�0) = λ6

Pr(�1) = λ5(1 − λ)

Pr(�2) = λ5(1 − λ)

...

Pr(�63) = (1 − λ)6.

The optimal value of the cost functions achieved by con-
troller (13) and (30) are presented by the line marked by
square and the red solid line in Fig. 8, respectively. The simu-
lation result shows that the optimal value of the cost functions
achieved by both (13) and (30) monotonically increase as the
delay probability λ increases. The simulation result confirms
the results in Theorems 4 and 9. Note that for both global and
local estimation cases, J∗ has the form J∗ =∑N2

i=0 αiλ
i, where

αi is a scalar, and in this example, αi � 1. Then, J∗ varies
approximately linearly with respect to λ for λ ∈ [0, 1].

We compare our controller (13), (30) and the optimal con-
trollers in [14] and [34]. In [14], the optimal controller with
one step delay sharing pattern was designed. The central-
ized controller and the centralized controller with one step
delay were derived in [34]. The comparison result is given
by Fig. 8. The centralized controller in [34] has the best
performance as expected, because the full information is used.
When λ = 0 (λ = 1), the value of the cost function with con-
troller (13) is equal to the one with centralized controller (one
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Fig. 8. Optimal value of the cost function with the delay probability.

step delay sharing controller). The reasons are discussed in
Remarks 6 and 8. That is, when letting λ = 0 (λ = 1), the
controller (13) is reduced to the centralized controller (one step
delay sharing controller). Fig. 8 shows that the value of cost
function with controller (30) is always close to the one with
controller (13). When λ = 0, the value of the cost function
with controller (30) is only a little higher than the one with the
centralized controller. Compared to the one step delay sharing
controller in [14], Fig. 8 shows that controller (30) is better
when λ < 0.9722, and is only a little worse when λ > 0.9722.
Compared to the centralized controller with one step delay
in [34], controller (30) is much better even though the delay
probability is λ = 1. The above comparison implies that the
designed controllers (13) and (30) in this paper achieves good
performances.

VI. CONCLUSION

This paper studied the optimal decentralized output-
feedback control with a random information pattern. Both the
global estimation case and the local estimation case were stud-
ied. Using Hadamard product method, the optimal controller
under global estimation was designed by solving linear matrix
equation. The one under the local estimation was designed by
an algorithm. It was shown that the algorithm converges to a
person-by-person optimum. For both cases, the optimal value
of the cost function was derived. Moreover, it was verified that
the optimal value of the cost function increases monotonously
with respect to the delay probability. Finally, two numerical
examples were given to illustrate the theoretical results.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we need the following lemmas.
Lemma 3 [21]: Consider the system (3). The cost function

J of the form (7) can be rewritten as

J =
T−1∑

t=0

E

{
(u − Lx)TG(u − Lx)

}

︸ ︷︷ ︸
Ju

+ xT(0)X(0)x(0) +
T−1∑

t=0

tr
(
X+W

)

︸ ︷︷ ︸
Jω

, (36)

where W = E(ωωT); G = BTX+B + R; L and X are defined
in (19) and (20), respectively.

Lemma 4: For matrices X ∈ R
n×m, Y ∈ R

m×n, and Z ∈
R

m×n, the following equality holds:

tr(X(Y ◦ Z)) = tr
((

X ◦ YT
)

Z
)
.

Proof: Denote X = [Xij], Y = [Yij], and Z = [Zij]. We
have

tr(X(Y ◦ Z)) = tr
([

Xij
][

YijZij
])

=
n∑

i=1

(Xi1Y1iZ1i + · · · + XimYmiZmi).

tr
((

X ◦ YT
)

Z
)

= tr
([

XijYji
][

Zij
])

=
n∑

i=1

(Xi1Y1iZ1i + · · · + XimYmiZmi).

The proof is completed.
Now, we begin to prove Theorem 1.
Proof: According to the assertion and its proof in [14], we

have that the optimal controller (8) is of the form

u(t) = (F(t) ◦ �ϒ(t))y(t) + Z(t)x̂(t) (37)

where x̂t is given by Kalman filter (14), and Z(t) is a gain
matrix with proper dimension.

For offline design, ϒ(t) is unknown. Define e(t) = x(t) −
x̂(t), φ(t) = y(t) − C(t)x̂(t), and ũ(t) = [Z(t) − (F(t) ◦
�ϒ(t))]x̂(t). Plug x(t) = x̂(t) + e(t), and u(t) = (F(t) ◦
�ϒ(t))φ(t) + ũ(t) into the cost function J, it follows from
[14, Lemmas 1 and 2], we have:

J = E

{
T−1∑

t=0

(
x̂(t)TQ(t)x̂(t) + ũ(t)TR(t)ũ(t)

)

+ x̂(T)TQ(T)x̂(T) +
T∑

t=0

e(t)TQ(t)e(t)

}

+
T−1∑

t=0

∑

ϒ(t)

Pr(ϒ(t)) tr
(
(F(t) ◦ �ϒ(t))TR(t)

× (F(t) ◦ �ϒ(t))Y(t)
)
. (38)

Note that, in (38), only J̃ = E{∑T
t=0 x̂(t)TQ(t)x̂(t) +∑T−1

t=0 ũ(t)TR(t)ũ(t)} depends on ũ(t). As a result, the optimal
ũ(t) minimizing (7) is the optimal solution to the following
optimization problem:

min
ũ(t)

J̃

subject to x̂(t + 1) = A(t)x̂(t) + B(t)ũ(t) + ω̂ϒ(t) (39)

ũ(t) = [H(t) − (F(t) ◦ �ϒ(t))]x̂(t)

where ω̂ϒ(t) = [
B(t)(F(t) ◦ �ϒ(t)) + K(t)

]
φ(t). According

to Lemma 3 and the formulation of the mathematical
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expectation, we have

J̃ =
T−1∑

t=0

E

{
(ũ − Lx̂)TG(ũ − Lx̂)

}

︸ ︷︷ ︸
Jũ

+ x̂T(0)X(0)x̂(0) +
T−1∑

t=0

∑

ϒ∈


Pr(ϒ) tr(X+Ŵϒ)

︸ ︷︷ ︸
Jω̂

(40)

where Ŵϒ = (B(F ◦ �ϒ) + K)Y(B(F ◦ �ϒ) + K)T. Note that
only Jũ depends on ũ(t), which implies that the optimal ũ(t)
minimizes J if and only if it minimizes Jũ. Thus, the optimal
ũ(t) is ũ(t) = [Z(t) − (F(t) ◦ �ϒ(t))]x̂(t) = L(t)x̂(t), because
Jũ ≥ 0 always holds and Jũ achieves 0 by ũ(t) = L(t)x̂(t).
This shows that Z(t)x̂(t) = (F(t) ◦ �ϒ(t))x̂(t) + L(t)x̂(t), thus
the optimal u(t) is of the form (13). In the following, we only
need to prove that the optimal F(t) is given by solving (17).

According to (38) and (40), all terms of J depending on
F(t) is retained in

� =
∑

ϒ∈


Pr(ϒ)
{

tr((F ◦ �ϒ)TR(F ◦ �ϒ)Y)

+ tr
(

X+(B(F ◦ �ϒ) + K)Y(B(F ◦ �ϒ) + K)T
)}

.

The optimal F(t) is given by ∂�/∂F(t) = 0. That is,

∂� =
∑

ϒ∈


Pr(ϒ)
{

2 tr
(

Y(F ◦ �ϒ)TR∂[(F ◦ �ϒ)]
)

+ 2 tr
(

Y(B(F ◦ �ϒ) + K)TX+B∂[(F ◦ �ϒ)]
)}

=
∑

ϒ∈


Pr(ϒ)
{

2 tr
(

Y(F ◦ �ϒ)TR(�ϒ ◦ ∂(F))
)

+ 2 tr
(

Y(B(F ◦ �ϒ) + K)TX+B(�ϒ ◦ ∂(F))
)}

=
∑

ϒ∈


Pr(ϒ)
{

2 tr
((

(Y(F ◦ �ϒ)TR) ◦ �T
ϒ

)
∂(F)

)

+ 2 tr
((

(Y(B(F ◦ �ϒ) + K)TX+B) ◦ �T
ϒ

)
∂(F)

)}

(41)

where the second equality follows from Lemma 4. From (41),
one has that ∂�/∂F(t) = 0 gives (17). The proof is completed.

APPENDIX B
PROOF OF THEOREM 4

For ease of notations, we define the following sets.
1) I = {(i, j) : i, j ∈ �}.
2) Note that the set of all possible values of ϒ is denoted

by 
, where 
 is defined in (12). We decompose all
possible values of ϒ into ξ +1 classes: 
 =⋃ξ

α=0 
(α),
where ξ = N2, and


(α) =
⎧
⎨

⎩ϒ :
∑

i,j∈�

γij = α

⎫
⎬

⎭.


(α) is the set of ϒ satisfying that there is exactly α

different γij taking value 1, and ξ −α different γij taking
value 0.

3) Let �(α) denote the set of all matrices F̄, where F̄ sat-
isfies F̄ = F ◦ ϒ , F is defined in (11) and ϒ ∈ 
(α).
That is,

�(α) =
{

F̄ : F̄ = F ◦ �ϒ,

ϒ ∈ 
(α).

}
.

4) Let I(α) denote the set whose elements are the sets of
the form {(i1, j1), . . . , (iα, jα)}, where iς , jς ∈ �, ς =
1, 2, . . . , α. That is,

I(α) =
⎧
⎨

⎩

{(i1, j1), . . . , (iα, jα)}︸ ︷︷ ︸
α differrent two-tuples

:

iς , jς ∈ �, for ς = 1, . . . , α.

⎫
⎬

⎭.

5) Denote |I(α)| = �α , �α = {1, . . . , �α}. Note
that there are �α different sets of the form
{(i1, j1), . . . , (iα, jα)} belonging to I(α). We denote
them by �(α)(1), . . . , �(α)(�α). For m ∈ �α , we define

�(α)(m) =
{

F̄ : F̄ = F ◦ �ϒ

γij = 1 if and only if (i, j) ∈ �(α)(m)

}
.

�(α)(m) is a set whose elements are the matrices of the
form F ◦ �ϒ , where �ϒ depends on ϒ , and ϒ satisfies
that γij = 1 if and only if (i, j) ∈ �(α)(m).

Note that,

γij = 1, if and only if (i, j) ∈ �(α)(m)

=⇒
∑

i,j∈�

γij = α.

This implies that �(α)(m) ⊆ �(α). From the definition of
�(α)(m), we know that �(α)(m) corresponds to a certain real-
ization of ϒ ∈ 
(α). Thus, we have �(α) =⋃m∈�α

�(α)(m).
Define J∗ =∑T−1

t=0
∑

ϒ∈
 Pr(ϒ)J∗
1 +∑T

t=0 tr(QP), where

J∗
1 = tr

((
F∗ ◦ �ϒ

)T
R
(
F∗ ◦ �ϒ

)
Y
)

+ tr
(

X+(B
(
F∗ ◦ �ϒ

)+ K
)
Y
(
B
(
F∗ ◦ �ϒ

)+ K
)T)

.

Let J∗
1 (�(α)(m)) denote the value of J∗

1 in which F◦�ϒ is cho-
sen in �(α)(m). Define J̄∗

1 (�(α)) � (1/�α)
∑

m∈�α
J∗

1 (�(α)(m)).
It follows that:

∑

ϒ∈


Pr(ϒ)J∗
1 =

ξ∑

α=0

∑

ϒ∈
(α)

Pr(ϒ)J∗
1

=
ξ∑

α=0

∑

m∈�α

Pr
(
�(α)(m)

)
J∗

1

(
�(α)(m)

)

=
ξ∑

α=0

(1 − λ)αλξ−α

⎛

⎝
∑

m∈�α

J∗
1

(
�(α)(m)

)
⎞

⎠

=
ξ∑

α=0

�α(1 − λ)αλξ−α J̄∗
1

(
�(α)
)

=
ξ∑

α=0

fα(π)J̄∗
1

(
�(α)
)

where π = 1 − λ, and fα(π) = �απα(1 − π)ξ−α; the second
equality follows from that �(α)(m) corresponds to a certain
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realization of ϒ ∈ 
(α); the third equality follows from that
Pr(�(α)(m)) = (1−λ)αλξ−α holds for any m ∈ �α; the fourth
equality follows from the definition of J̄∗

1 (�(α)).
Now we divide our proof into two steps. First, we

prove that J̄∗
1 (�(α+1)) ≤ J̄∗

1 (�(α)). Second, we show that∑ξ
α=0 fα(π)J̄∗

1 (�(α)) is monotonically decreasing with the
increase of π .

Before step 1, we first state a fact, that is

If �(α)(m) ⊆ �(α+1)(k), then �(α)(m) ⊆ �(α+1)(k). (42)

For example, given

F =
[

f11 f12
f21 f22

]
, ϒ =

[
γ11 γ12
γ21 γ22

]
.

When �(2)(1) = {(1, 1), (1, 2)}, �(3)(1) =
{(1, 1), (1, 2), (2, 1)}, then

�(2)(1) =
{[

f11 f12
0 0

]
: f11, f12 ∈ R

}

�(3)(1) =
{[

f11 f12
f21 0

]
: f11, f12, f21 ∈ R

}
.

It is shown that �(2)(1) ⊆ �(3)(1).
Now, we continue the proof.
Step 1: Given any �(α)(m) ∈ I(α), we know that

�(α)(m) ∪ {(iα+1, jα+1)} ∈ I(α+1) (43)

where �(α)(m) is given, and (iα+1, jα+1) ∈ I \ �(α)(m).
Note that (iα+1, jα+1) taking value in I \ �(α)(m) has totally
|I\�(α)(m)| = ξ−α possible values. Thus, without loss of gen-
erality, we denote the set of the form �(α)(m) ∪ {(iα+1, jα+1)}
by �(α+1)(m1), . . . , �(α+1)(mξ−α), respectively. According to
the fact that �(α)(m) ⊆ �(α+1)(k) if and only if k ∈
{m1, . . . , mξ−α}, and the fact (42), one has that

J∗
1

(
�(α)(m)

)
≥ J∗

1

(
�(α+1)(k)

)
, for k ∈ 	m

where 	m = {m1, . . . , mξ−α}. This implies that

J∗
1

(
�(α)(m)

)
≥ 1

ξ − α

∑

k∈	m

J∗
1

(
�(α+1)(k)

)
.

On the other hand, given any �(α+1)(k) ∈ I(α+1), we have

�(α+1)(k) \ {(i, j)} ⊆ �(α+1)(k) (44)

where (i, j) ∈ �(α+1)(k), and |�(α+1)(k)| = α + 1. Note
that (i, j) taking value in �(α+1)(k) has totally α + 1 pos-
sible values. Denote the set of the form �(α+1)(k) \ {(i, j)}
by �(α)(k1), . . . , �(α)(kα+1), respectively. As a result, for any
k ∈ �α+1, �(α+1)(k) ⊇ �(α)(m) holds if and only if m ∈ 	̄k,
where 	̄k = {k1, . . . , kα+1}. According to (42), one has that

∑

m∈�α

J∗
1

(
�(α)(m)

)
≥ 1

ξ − α

∑

m∈�α

∑

k∈	m

J∗
1

(
�(α+1)(k)

)

= α + 1

ξ − α

∑

k∈�α+1

J∗
1

(
�(α+1)(k)

)
. (45)

Note that �α =| Iα |= ([ξ(ξ − 1) × · · · × (ξ − α + 1)]/
[α(α − 1) × · · · × 1]). Thus, �α+1 = �α × ([ξ − α]/[α + 1]).
The inequality (45) can be written as

1

�α

∑

m∈�α

J∗
1

(
�(α)(m)

)
≥ 1

�α+1

∑

k∈�α+1

J∗
1

(
�(α+1)(k)

)

which implies that J̄∗
1 (�(α+1)) ≤ J̄∗

1 (�(α)).
Step 2: The interval [0, 1] can be decomposed into the form

[0, (1/ξ)] ∪ [(1/ξ), (2/ξ)] ∪ · · · ∪ [(ξ − 1)/ξ, 1]. For any π ∈
[0, 1], there exists a α̃ ∈ {0, . . . , ξ}, such that (α̃/ξ) ≤ π <

π + ε < ([α̃ + 1]/ξ), where ε is a small positive number. In
addition, we have

fα(π + ε) > fα(π), α ∈ {α̃ + 1, . . . , ξ}
fα(π + ε) < fα(π), α ∈ {0, . . . , α̃}.

Therefore,

ξ∑

α=0

fα(π + ε)J̄∗
1

(
�(α)
)

−
ξ∑

α=0

fα(π)J̄∗
1

(
�(α)
)

=
α̃∑

α=0

(fα(π + ε) − fα(π))J̄∗
1

(
�(α)
)

+
ξ∑

α=α̃

(
fα(π + ε) − fα(π)J̄∗

1

(
�(α)
)

<

⎡

⎣
α̃∑

α=0

(fα(π + ε) − fα(π))

+
ξ∑

α=α̃

(fα(π + ε) − fα(π))

⎤

⎦J̄∗
1

(
�(α̃)
)

= 0

where the last equality holds from
∑ξ

α=0 fα(x) = 1 for
∀x ∈ [0, 1]. Hence,

∑ξ
α=0 fα(π)J̄∗

1 (�(α)) is monotonically
decreasing with respect to π , π ∈ [0, 1]. This means that
J∗ is monotonically increasing with respect to λ. The proof is
completed.

APPENDIX C
PROOF OF LEMMA 1

First, x̂1(t) is a linear function of φ(t−1). Second, x̂2(t) is a
linear function of x̂(t−1), where x̂(t−1) is linear combinations
of y(0 : t − 2). Thus, the independence of x̂1(t) and x̂2(t) is
true following from Lemma 3 in [14].

APPENDIX D
PROOF OF LEMMA 2

ũ2(t) has the following form:

ũ2(t) = E
[
ũ(t) | x̂(0 : t − 1), ϒ(0 : t)

]

= E

[(
H(t) ◦ �̃ϒ(t)

)
x̂(t)

+ χ
(
t, x̂(0 : t − 1)

) | x̂(0 : t − 1), ϒ(0 : t)
]

= E

[(
H(t) ◦ �̃ϒ(t)

)
x̂(t) | x̂(0 : t − 1), ϒ(0 : t)

]

+ χ
(
t, x̂(0 : t − 1)

)
.
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Thus, we have

ũ1(t) = u(t) − ũ2(t)

=
(

H(t) ◦ �̃ϒ(t)
)

x̂(t) + �
(
t, x̂(0 : t − 1)

)

− E

[(
H(t) ◦ �̃ϒ(t)

)
x̂(t) | x̂(0 : t − 1), ϒ(0 : t)

]

− χ
(
t, x̂(0 : t − 1)

)

=
(

H(t) ◦ �̃ϒ(t)
)(

A(t − 1)x̂(t − 1) + B(t − 1)ũ(t − 1)

+ ω̂ϒ(t − 1)
)−
(

H(t) ◦ �̃ϒ(t)
)(

A(t − 1)x̂(t − 1)

+ B(t − 1)ũ(t − 1))

=
(

H(t) ◦ �̃ϒ(t)
)
ω̂ϒ(t − 1).

Note that ũ1(t) is a linear function of φ(t − 1). We know that
ũ2(t) is a linear function of x̂(0 : t −1), and that x̂(0 : t −1) is
linear combinations of y(0 : t − 2). As a result, ũ2(t) is linear
combinations of y(0 : t − 2). It follows from [14, Lemma 3]
that ũ1(t) is independent of ũ2(t). The proof is completed.

APPENDIX E
PROOF OF THEOREM 6

We only need to prove that the optimal ũ(t) is of the
form (31), and the optimal F and H are given by solving (32).

According to Lemmas 1 and 2, we have that x̂1(t) is
independent of x̂2(t), and ũ1(t) is independent of ũ2(t).
Furthermore, x̂i(t) is independent of ũj(t), i �= j, because
ũj(t) is a function of x̂j(t). In addition, following Lemma 3,
the cost function J̃ in (24) can be written by (40). Note that
only Jũ depends on ũ(t), where Jũ is defined in (40). Thus,
to derive the optimal ũ(t), we only need to deal with Jũ. Plug
ũ(t) = ũ(t)1 + ˜u(t)2 and x̂(t) = x̂(t)1 + x̂(t)2 into Jũ, we obtain

Jũ =
T−1∑

t=0

E

{(
ũ1 − Lx̂1

)T
G
(

ũ1 − Lx̂1
)}

︸ ︷︷ ︸
J1

ũ

+
T−1∑

t=0

E

{(
ũ2 − Lx̂2

)T
G
(

ũ2 − Lx̂2
)}

︸ ︷︷ ︸
J2

ũ

.

Then, the problem (24) can be decomposed into two
independent subproblems, that is,

min
ũ1

J1
ũ

subject to ũ1(t) =
(

H(t) ◦ �̃ϒ(t)
)
ω̂ϒ(t − 1) (46)

and

min
ũ2

J2
ũ

subject to ũ2(t) = χ̄
(
t, x̂(0 : t − 1)

)
(47)

where χ̄(t, ·) is a linear function.
Consider problem (47), both ũ2(t) and x̂2(t) are linear func-

tions of x̂(0 : t − 1). Thus, problem (47) is a centralized LQG
control problem. Using the result in [34], we have

ũ2∗(t) = L(t)x̂2(t), and J2∗
ũ = 0.

It follows from x̂1(0) = 0 and x̂2(0) = 0 that ũ∗(0) = 0. As a
result, the optimal ũ(t) is of the form (31).

Consider problem (46), one has

J1
ũ =

T−1∑

t=1

E

{(((
H ◦ �̃ϒ

)
− L
)
ω̂−

ϒ

)T
G
(((

H ◦ �̃ϒ

)
− L
)
ω̂−

ϒ

)}

=
T−2∑

t=0

∑

ϒ∈


∑

ϒ+∈
+
Pr(ϒ) Pr

(
ϒ+)

× tr
(

G+((H+ ◦ �̃+
ϒ

)
− L+)

× (B(F ◦ �ϒ) + K)Y(B(F ◦ �ϒ) + K)T

×
((

H+ ◦ �̃+
ϒ

)
− L+)T

)
(48)

where the superscript “−” means that the time index is t − 1.
From (48), we can see that H(t) and F(t − 1) are coupled,
because ω̂ϒ(t − 1) depends on F(t − 1). Hence, H(t) and
F(t − 1) cannot be designed separately.

Following (38), (40), (48), and Jũ = J1
ũ (J2∗

ũ = 0), one
has that all terms in the cost function J which depend on F
and H are retained in

∑T−2
t=0 h1 +∑T−1

t=0 h2. As a result, the
optimal F and H are given by solving problem (32). The proof
is completed.
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