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H∞ Model Reduction for Interval Frequency
Negative Imaginary Systems

Lanlin Yu and Junlin Xiong , Senior Member, IEEE

Abstract— This paper studies an H∞ model reduction problem
for interval frequency negative imaginary (IFNI) systems. For
a given IFNI system, our goal is to find a reduced-order
IFNI system satisfying a pre-specified H∞ approximation error
bound over the finite-frequency interval. Necessary and sufficient
conditions in terms of matrix inequalities are derived for the
existence and construction of an H∞ reduced-order IFNI system.
An improved iterative algorithm is provided to solve the matrix
inequalities and to minimize the H∞ approximation error. The
proposed method is further clarified via the application to the
electrical circuits, such as high-order Sallen–Key low-pass filter,
piezoelectric tube scanner, and RLC circuit. The simulation
results on these electrical circuits are compared with the finite-
frequency interval Gramians-based model reduction method both
in the frequency domain and time domain.

Index Terms— H∞ model reduction, interval frequency, nega-
tive imaginary systems, iterative algorithm, electrical circuits.

I. INTRODUCTION

IN MANY practical engineering fields, such as integrated
circuits, there are many complex systems described by

differential equations. Mathematical modeling of such systems
are often high order transfer functions, which poses serious
difficulties to be simulated on the computer [1]. Model reduc-
tion has been recognized as an effective way to solve these
problems and is still a topic of active research. Over the past
decades, some classical model reduction methods, such as
the balanced truncation method [2], Hankel-norm approxima-
tion [3] and Krylov-subspace model reduction method [4],
have been shown to be effective in reducing the order of
general linear systems. In recent years, model reduction meth-
ods based on convex optimization technology have drawn
considerable attention [5]–[9]. For instance, H∞ model reduc-
tion methods based on linear matrix inequalities (LMIs) have
been widely used to deal with the structure preserving model
reduction problems for different classes of systems, including
switched systems [10], positive systems [11], Markovian jump
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systems [12], T-S fuzzy systems [9], and negative imagi-
nary (NI) systems [7], [13]. The advantages of the H∞ model
reduction methods are twofold. Firstly, the stability of the
reduced-order system can be guaranteed. Secondly, the H∞
approximation error can be minimized.

For many applications, the approximation error only needs
to be minimized over finite frequency interval. For instance,
the aircraft mathematical models derived from the physical
dynamics are only valid within a specific frequency inter-
val [14], the elliptic low pass filter in [15] has the pass
band edge frequencies, the swing-arm positioning system
in [16] satisfies the positive real property over a finite fre-
quency interval. In such cases, it is desirable to achieve lower
approximation error over a finite frequency interval. However,
the classical model reduction methods that approximate the
original system over the entire frequency are not applicable.
Hence, model reduction methods over the finite frequency
interval have drawn profound interest and have been widely
used to solve the structure preserving model reduction prob-
lems [6], [15], [17]–[20]. Model reduction problem over a
finite frequency interval has been investigated for continuous-
time systems [17] and discrete-time linear systems [18].
Furthermore, H∞ model reduction based on LMIs has been
applied to the frequency-limited model reduction for positive
systems [6]. Optimal model reduction method has been pro-
posed for bilinear systems [19] on a given frequency interval.
A more complicated situation to find a reduced-order 2-D
digital filter system over a finite frequency interval has been
handled in [15] and [20].

NI system is an important class of dynamical system
with equal number of inputs and outputs, having a real-
rational, proper transfer function matrix G(s) that satisfies
the frequency domain condition j [G( jω)− G∗( jω)] ≥ 0 for
all ω ∈ (0,∞) except values of ω where jω is a pole of
G( jω) [21]. For the single-input single-output case, the imag-
inary part of the frequency response is non-negative, that is,
�[G( jω)] ≤ 0. NI system arises in many practical engineering
systems, for example, lightly damped structures [21], [22],
RLC circuit networks [23], atomic force microscopes [24],
[25], robotic manipulator arms [26]. NI theory is related to
positive real theory. Under certain technical assumptions,
NI transfer functions can be transformed into positive real
transfer functions by multiplying the NI transfer functions
with s I or −( 1

s )I and vice versa, see [27]. An overview of
NI systems theory and applications is referred to the survey
paper [28]. In practice, many dynamical systems satisfy the
NI property over the finite frequency interval, for instance,
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the capacitance subsystem of piezoelectric tube scanners [29],
a Sallen-key low pass filter that cascaded with a gain
multiplier circuit [30]. In [31], the concept of finite frequency
NI systems [32] has been extended to the interval frequency
negative imaginary (IFNI) case. For model reduction of
IFNI systems, it is desirable that the reduced-order system
preserves the IFNI structure and gives better approximations
over the frequency interval. However, the results on model
reduction for NI systems [7], [13], [33], [34] over the entire
positive frequency may not suitable. Moreover, the existing
frequency interval Gramian-based methods [35], [36] can not
guarantee the IFNI structure for the reduced-order systems.
Therefore, it is necessary to develop new approaches to solve
the model reduction problem for IFNI systems.

In this paper, we investigate the H∞ model reduction
problem for IFNI systems, including low frequency negative
imaginary (LFNI), middle frequency negative imaginary
(MFNI) and high frequency negative imaginary (HFNI)
cases. For a given IFNI system G(s), the objective of the
paper is to find a reduced-order IFNI system Gr(s) such that
�G(s)−Gr(s)��∞ < γ , where γ is a prescribed approximation
error bound, � is the given frequency interval. We split the
original IFNI system into an asymptotically stable subsystem
and a semi-stable subsystem. Then, finite frequency H∞
model reduction is implemented on the asymptotically stable
subsystem. By using the projection lemma, necessary and
sufficient conditions in terms of matrix inequalities are derived
for the existence and construction of the desired reduced-order
IFNI system. In these new conditions, the reduced-order
IFNI system matrices are decoupled with the matrix variables
induced by the IFNI lemma and GKYP lemma. An improved
algorithm including two stages is developed to search for
the reduced-order IFNI system and to minimize the H∞
approximation error over the finite frequency interval. The
proposed model reduction method is illustrated through
examples from a Sallen-key filter, a piezoeletric tube scanner
and an RLC circuit. Compared with the finite frequency
interval Gramians-based model reduction method [35],
the proposed model reduction method guarantees the IFNI
structure and achieves lower approximation error. The
limitation is that the proposed model reduction method is not
applicable for IFNI systems with non-minimal realizations.
Moreover, only a sub-optimal reduced-order IFNI system can
be obtained by the proposed algorithm.

Notation: All the matrices are assumed to be compatible
dimensions and the symbol � within a square matrix represents
the symmetric part. R

n×n denotes the set of n×n real matrices.
0m×n denotes an m × n zero matrix and In represents identity
matrix of order n. H denotes the set of matrices defined
by H �

�
U : U = �

0(r2+m)×n2 �
��

, H1 denotes the set
of matrices defined by H1 �

�
U1 : U1 = �

0(r2+m)×n1 �
��

,
where � ∈ R

(r2+m)×r2 . Let A∗ denotes the complex conjugate
transpose of a complex matrix A. The real part and imaginary
part of a complex number s, respectively, are denoted by
	[s] and �[s]. The notation P > 0 (≥ 0) means that matrix
P is positive definite (semi-definite). For a matrix X ∈ C

n×n ,
Her(X) indicates X∗ + X . The set of square, real-rational,
proper transfer functions is denoted by G.

II. PROBLEM STATEMENT

Consider an IFNI system

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t), (1)

where x(t) ∈ R
n , u(t) ∈ R

m , y(t) ∈ R
m , A ∈ R

n×n , B ∈
R

n×m , C ∈ R
m×n . The transfer function of system (1) is given

by

G(s) = C(s I − A)−1 B.

A reduced-order system for (1) is

ẋr(t) = Arxr(t)+ Bru(t),

yr(t) = Crxr(t), (2)

where xr(t) ∈ R
r , yr(t) ∈ R

m , Ar ∈ R
r×r , Br ∈ R

r×m ,
Cr ∈ R

m×r with 1 ≤ r < n.
From (1) and (2), the approximation error system is given

by

ẋe(t) = Aexe(t)+ Beu(t),

e(t) = Cexe(t), (3)

where xe(t) = �
xT(t) xT

r (t)
�T

is the augmented state vector,
e(t) = y(t)− yr(t) is the output error and

Ae =
�

A 0
0 Ar

�
, Be =

�
B
Br

�
, Ce = �

C −Cr
�
.

The transfer function of system (3) is given by

Ge(s) = Ce(s I − Ae)
−1 Be.

Define the frequency interval set as

� � �L

�
(

N�

l=1

�Ml̂
)
�
�H , (4)

where �L , �Ml̂
, �H stand for the low, middle and high

frequency ranges,

�L = {ω ∈ R : 0 < ω ≤ ω̄0} ,
�Ml̂

= {ω ∈ R : ωl̂ ≤ ω ≤ ω̄l̂ , ω̄l̂ > ωl̂ > ω̄l̂−1},
�H = �

ω ∈ R : ωh ≤ ω,ωh > ω̄N
�
, l̂ = 1, . . . , N.

The H∞ model reduction problem for IFNI systems can be
formulated as follows.

Problem 1: Given a frequency interval �, γ > 0 and r
(1 ≤ r < n). The H∞ model reduction problem for IFNI
system (1) is to find a reduced-order system (2), such that

1) reduced-order system (2) is IFNI over the frequency
interval �;

2) system (3) satisfies �Ge(s)��∞ < γ .
Some preliminaries are presented. Firstly, the definition of

IFNI system is given as follows.
Definition 1 [31]: Given a transfer function matrix

G(s) ∈ G. G(s) is said to be IFNI in the frequency interval
� if

1) G(s) has no poles in R[s] > 0;
2) j [G( jω)− G∗( jω)] ≥ 0 for all ω ∈ � where jω is not

a pole of R(s);
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TABLE I

�l DEFINED FOR EACH FREQUENCY INTERVAL

3) if jω0, ω0 ∈ �, is a pole of G(s), then it is a simple
pole and the corresponding residue matrix of j G(s) is
positive semidefinite Hermitian;

4) if G(s) has a pole at s = 0, then lims→0 s2G(s) is
positive semidefinite Hermitian and lims→0 sk G(s) = 0
for k ≥ 3;

5) G(∞) = GT(∞).
Remark 1: In Definition 1, if � = �L , then G(s) is said

to be LFNI, which could be considered as an extension of the
definition of finite frequency NI [32] by allowing poles at the
origin. If � = �Ml̂

, then G(s) is said to be MFNI. If � =
�H , G(s) is said to be HFNI. In Problem 1, the statement 1)
means that we need to find a reduced-order system satisfies the
NI structure for the given �, that is, to find a reduced-order
system satisfies the conditions given in Definition 1.

Let ωcl = (ωl̂ +ω̄l̂)/2 be the middle point of each frequency

interval �Ml̂
. We now define � =

�
0 1
1 0

�
, and �l , shown

in Table I, for each frequency interval.
The IFNI lemma is given as follows.
Lemma 1 [31]: Consider a transfer function matrix G(s) ∈

G with minimal state-pace realization (A, B,C, D). Suppose
that G(s) has no poles in the open right-half of the complex
plane and that the pure imaginary poles of G(s), if any, are
simple, and the zero pole, if any, are either a simple or double
pole. When A has eigenvalues jωi (i ∈ {1, . . . , p}) such that
ωi ∈ �	{0}, the residue matrix of A(s I − A)−1 at s = jωi

is given by �i = lims→ jωi (s − jωi )A(s I − A)−1. Then G(s)
is IFNI if and only if D = DT,

1) C�i B = (C�i B)∗ ≥ 0 for all i ∈ {1, . . . , p} if jωi is
an eigenvalue of A;

2) there exist real symmetric matrices P0, Q0 ≥ 0, PN+1,
QN+1 ≥ 0 and Hermitian matrices Pl̂ = P∗

l̂
, Ql̂ =

Q∗
l̂

≥ 0, l̂ = 1, . . . , N , such that

�
A B
In 0n×m

�T

(�⊗ Pl +�l ⊗ Ql)

�
A B
In 0n×m

�

−
�

0n×n ATCT

C A C B + BTCT

�
≤ 0, (5)

for all l = 0, l̂, N + 1.
Remark 2: Note that when the system (A, B,C, D) is

asymptotically stable, the condition 1) in Lemma 1 can
be removed. That is, the asymptotically stable system
(A, B,C, D) is IFNI if and only if (5) and D = DT hold.

The following lemma is known as the GKYP lemma.
Lemma 2 [37]: Suppose that the approximation error sys-

tem (3) is asymptotically stable, then �Ge(s)��∞ < γ if and
only if there exist real symmetric matrices Pel , Qel > 0, such

that
�

Ae Be
In+r 0

�T

(�⊗ Pel +�l ⊗ Qel )

�
Ae Be

In+r 0

�

+
�

Ce 0
0 Im

�T �
Im 0
0 −γ 2 Im

� �
Ce 0
0 Im

�
< 0, (6)

for all l = 0, l̂, N + 1.
The following lemma is known as the projection lemma.
Lemma 3 [38]: Given a symmetric matrix 	 of dimension

n × n and two matrices 
1, 
2 of column dimension n, there
exists an unstructured matrix W that satisfies


T
1 W
2 +
T

2 W T
1 +	 < 0,

if and only if the following inequalities are satisfied:

NT

1

W N
1 < 0, NT

2

W N
2 < 0,

where N
1 and N
2 are arbitrary matrices whose columns
form a basis of the nullspaces of 
1 and 
2.

III. MAIN RESULTS

In this section, the main results of this paper are presented.
We first split the IFNI system into a semistable subsystem
and an asymptotically stable subsystem. H∞ model reduction
method is proposed for the asymptotically stable subsystem.
Necessary and sufficient conditions are derived for the exis-
tence and construction of the H∞ reduced-order IFNI system.
These conditions show that the desired reduced-order system
can be found by solving LMIs. Moreover, iterative algorithm
is provided to solve the LMIs and to minimize the H∞
approximation error.

A. Separation of IFNI System

Given an IFNI system (1), the minimal state-space real-
ization can be transformed into the following block diagonal
form [26]

�
ẋ1(t)
ẋ2(t)

�
=

�
A1 0
0 A2

� �
x1(t)
x2(t)

�
+

�
B1
B2

�
u(t),

y(t) = �
C1 C2

�
�

x1(t)
x2(t)

�
, (7)

where A1 ∈ R
n1×n1 , A2 ∈ R

n2×n2 , B1 ∈ R
n1×m , B2 ∈ R

n2×m ,
C1 ∈ R

m×n1 , C2 ∈ R
m×n2 , n1+n2 = n. A1 is a diagonalizable

matrix with purely imaginary eigenvalues, the eigenvalues of
A2 have strictly negative real parts. Thus, the transfer function
of (1) can be rewritten as

G(s) = G1(s)+ G2(s),

where

G1(s) = C1(s I − A1)
−1 B1, G2(s) = C2(s I − A2)

−1 B2.

Here, the subsystem G1(s) is semi-stable, the subsystem G2(s)
is asymptotically stable.

Remark 3: According to the proof of [26, Lemma 7], for
the given NI system with the minimal state-space realiza-
tion (1), there always exist a nonsingular transformation T
such that (T −1 AT, T −1 B,CT ) be the real Jordan canoncial
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form. Moreover, the transformation T can be chosen such that
the real Jordan blocks of T −1 AT are ordered according to the
eigenvalues of the matrix A. Thus, we have that any NI system
can be transformed to the block diagonal form (7) with the
minimality assumption.

A reduced-order system approximate system (7) at the given
frequency interval � is given by

�
ẋ1(t)
ẋr2(t)

�
=

�
A1 0
0 Ar2

� �
x1(t)
xr2(t)

�
+

�
B1
Br2

�
u(t),

yr(t) = �
C1 Cr2

�
�

x1(t)
xr2(t)

�
, (8)

where n1 + r2 = r , Ar2 ∈ R
r2×r2 , Br2 ∈ R

r2×m , Cr2 ∈
R

m×r2 . The eigenvalues of Ar2 have strictly negative real
parts. Here, the subsystem (Ar2, Br2,Cr2) is the reduced-order
asymptotically stable subsystem.

Define

F̄1 =
�

0n1×r2 0
Ir2 0r2×m

�
, Ā1 =

�
A1 0
0 0r2×r2

�
,

B̄1 =
�

B1
0r2×m

�
, C̄1 = �

C1 0m×r2

�
, H̄ = �

0m×r2 Im
�
.

The system matrices of reduced-order system (8) can be
rewritten as

Ar = Ā1 + UT
1 F̄T

1 , Br = B̄1 + UT
1 H̄ T, Cr = C̄1 + V1, (9)

where U1 =
�

0r2×n1 AT
r2

0m×n1 BT
r2

�
∈ H1, V1 = �

0m×n1 Cr2

�
.

Note that the transfer function of system (8) is

Gr(s) = G1(s)+ Gr2(s), Gr2(s) = Cr2(s I − Ar2)
−1 Br2 .

Thus, the transfer function of the approximation error sys-
tem (3) can be rewritten as

Ge(s) = G(s)− Gr(s) = G2(s)− Gr2(s).

A minimal state-space realization of Ge(s) is given by

Ae =
�

A2 0
0 Ar2

�
, Be =

�
B2
Br2

�
, Ce = �

C2 −Cr2

�
. (10)

Let

F̄ =
�

0n2×r2 0
Ir2 0r2×m

�
, Ā =

�
A2 0
0 0r2×r2

�
,

B̄ =
�

B2
0r2×m

�
, C̄ = �

C2 0m×r2

�
.

The system matrices in (10) can be rewritten as

Ae = Ā + UT F̄T, Be = B̄ + UT H̄ T, Ce = C̄ + V , (11)

where

U =



0r2×n2 AT
r2

0m×n2 BT
r2

�

∈ H, V = �
0m×n2 −Cr2

�
.

In terms of the block diagonal form (7), a new condition is
proposed to test the IFNI structure.

Proposition 1: Consider a transfer function matrix G(s) ∈
G with a minimal state-pace realization (7). Suppose that the
nonzero eigenvalues of A1 are simple and the zero eigen-
values of A1, if any, are either simple or double. Let jωi

(i ∈ {1, . . . , p}) be the eigenvalues of A1, ωi ∈ �
	{0},

the residue matrix of A1(s I − A1)
−1 at s = jωi is given by

�̂i = lims→ jωi (s − jωi )A1(s I − A1)
−1. Then G(s) is IFNI

if and only if
1) C1�̂i B1 = (C1�̂i B1)

∗ ≥ 0 for all i ∈ {1, . . . , p} if jωi

is an eigenvalue of A1;
2) there exist real symmetric matrices P0, Q0 ≥ 0, PN+1,

QN+1 ≥ 0 and Hermitian matrices Pl̂ = P∗
l̂

, Ql̂ =
Q∗

l̂
≥ 0, l̂ = 1, . . . , N , such that (5) holds.

Proof: In view of Lemma 1, G(s) is IFNI if and only
if (5) and C�i B = (C�i B)∗ ≥ 0 hold. For the block diagonal
form (7), the residue matrix �i can be calculated as

�i = lim
s→ jωi

(s − jωi )

�
A1 0
0 A2

� �
(s I − A1) 0

0 (s I − A2)

�−1

= lim
s→ jωi

(s − jωi )

�
A1(s I − A1)

−1 0
0 A2(s I − A2)

−1

�

=
�

lims→ jωi (s − jωi )A1(s I − A1)
−1 0

0 0

�
=

�
�̂i 0
0 0

�
.

It follows that

C�i B = �
C1 C2

� �
�̂i 0
0 0

� �
B1
B2

�
= C1�̂i B1.

Thus, C�i B = (C�i B)∗ ≥ 0 and C1�̂i B1 = (C1�̂i B1)
∗ ≥ 0

are equivalent.
Remark 4: For a given IFNI system (7), Problem 1 is

solvable if and only if there exists a reduced-order system (8)
satisfies (5) and �Ge(s)��∞ < γ . However, the inequalities (5)
and �Ge(s)��∞ < γ are non-convex, which makes it difficult to
construct the reduced-order system. Thus, the main challenge
of this problem is how to transform these inequalities into
convex problems.

B. H∞ Model Reduction: IFNI

In this subsection, we first investigate the H∞ model
reduction problem for LFNI systems. Necessary and sufficient
conditions in terms of matrix inequalities are proposed for
the existence and construction of the H∞ reduced-order LFNI
system. Then, the proposed results are extended to the MFNI
and HFNI cases.

Firstly, the following necessary and sufficient conditions
are proposed for the existence and construction of the H∞
reduced-order system over the low frequency range.

Lemma 4: Given γ > 0, r2 (1 ≤ r2 < n2), n1 + r2 = r ,
�L = {ω ∈ R : 0 < ω ≤ ω̄0}, LFNI system (1). There exists
a reduced-order system (2) such that the approximation error
system (3) is asymptotically stable and satisfies �Ge(s)��L∞ <
γ if and only if there exist matrices Q ∈ R

(n2+r2)×(n2+r2), Q >
0, Pe0 ∈ R

(n2+r2)×(n2+r2), Qe0 ∈ R
(n2+r2)×(n2+r2), Qe0 > 0,

X1 ∈ R
(n2+r2)×(n2+r2), X2 ∈ R

(n2+r2)×(n2+r2), U ∈ H, V ,
such that the following matrix inequalities hold:

A = Her(( ĀT + F̄U)Q) < 0, (12)

ϒ =

⎡

⎢
⎢
⎣

ϒ11 ϒ12 ϒ13 0(n2+r2)×m

� ϒ22 ϒ23 C̄T + V T

� � −γ 2 Im 0m×m

� � � −Im

⎤

⎥
⎥
⎦ < 0, (13)
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where

ϒ11 = −Qe0 − Her(X1),

ϒ12 = Pe0 − X2 + XT
1 Ā + XT

1 UT F̄T,

ϒ13 = XT
1 B̄ + XT

1 UT H̄ T,

ϒ22 = ω̄2
0 Qe0 + Her(XT

2 Ā + XT
2 UT F̄T),

ϒ23 = XT
2 B̄ + XT

2 UT H̄ T.

Proof: Note that Ge(s) is asymptotically stable if and
only if there exists a matrix Q ∈ R

(n2+r2)×(n2+r2), Q > 0,
such that Her(AT

e Q) < 0. Substituting Ae = Ā + UT F̄T into
Her(AT

e Q) < 0, we arrive at (12). That is, Her(AT
e Q) < 0

and (12) are equivalent.
In view of Lemma 2 [37], the asymptotically stable system

Ge(s) satisfies �Ge(s)��L∞ < γ if and only if there exist
matrices Pe0 ∈ R

(n2+r2)×(n2+r2), Qe0 ∈ R
(n2+r2)×(n2+r2),

Qe0 > 0, such that (6). Now, we prove that (6) and (13)
are equivalent.

Note that

NT

1
	N
1 = −γ 2 Im < 0, (14)

where N
1 = �
0m×(n2+r2) 0m×(n2+r2) Im

�T,

	 =
⎡

⎣
−Qe0 Pe0 0(n2+r2)×m

� ω̄2
0 Qe0 + CT

e Ce 0(n2+r2)×m

� � −γ 2 Im

⎤

⎦.

The inequality (6) can be rewritten as

NT

2
	N
2 < 0, (15)

where

N
2 =
�

AT
e In2+r2 0

BT
e 0 Im

�T

.

According to Lemma 3 [38], (14) and (15) are equivalent to

	 +
T
1 XT
2 +
T

2 X
1

=
⎡

⎣
ϒ11 Pe0 − X2 + XT

1 Ae XT
1 Be

� ω̄2
0 Qe0 + CT

e Ce + Her(XT
2 Ae) XT

2 Be

� � −γ 2 Im

⎤

⎦ < 0,

(16)

where ϒ11 is defined in (13), X = �
X1 X2

�
,


1 =
�

In2+r2 0 0
0 In2+r2 0(n2+r2)×m

�
,


2 = �−In2+r2 Ae Be
�
,

X1 ∈ R
(n2+r2)×(n2+r2), X2 ∈ R

(n2+r2)×(n2+r2). Substitut-
ing (11) into (16) and using the Schur complement, we have
that (13). Thus, we obtain that the inequalities (6) and (13)
are equivalent. The proof is completed.

Remark 5: For finite frequency H∞ model reduction prob-
lems, Lemma 3 [38] has been widely used to deal with GKYP
lemma, such as in [5], [39], and [40]. Note that, the obtained
results in [39, Th. 3] are not applicable for the high frequency
case. However, the inequalities (12), (13) in Lemma 4 are also
applicable for the middle frequency and high frequency cases.

Remark 6: For the middle frequency case, the matrices ϒ11,
ϒ12, ϒ22 in (13) are defined as

ϒ11 = −Qel̂
− Her(X1),

ϒ12 = Pel̂
+ jωcl Qel̂

− X2 + XT
1 Ā + XT

1 UT F̄T,

ϒ22 = −ωl̂ ω̄l̂ Qel̂
+ Her(XT

2 Ā + XT
2 UT F̄T),

for all l̂ = 1, . . . , N . Similarly, by replacing the matrices ϒ11,
ϒ12, ϒ22 in (13) with

ϒ11 = QeN+1 − Her(X1),

ϒ12 = PeN+1 − X2 + XT
1 Ā + XT

1 UT F̄T,

ϒ22 = −ω2
h QeN+1 + Her(XT

2 Ā + XT
2 UT F̄T),

the necessary and sufficient conditions in Lemma 4 are
obtained for the existence and construction of the H∞ reduced-
order system over the high frequency range.

Based on Lemma 4, the following necessary and sufficient
conditions are derived for the existence and construction of
the H∞ reduced-order LFNI system.

Theorem 1: Given γ > 0, r2 (1 ≤ r2 < n2), n1 +
r2 = r , LFNI system (7) and �L = {ω ∈ R : 0 < ω ≤ ω̄0}.
Problem 1 is solvable if and only if there exist matrices
Q ∈ R

(n2+r2)×(n2+r2), Q > 0, Pe0 ∈ R
(n2+r2)×(n2+r2), Qe0 ∈

R
(n2+r2)×(n2+r2), Qe0 > 0, Pr0 ∈ R

r×r , Qr0 ∈ R
r×r , Qr0 ≥ 0,

matrices X1 ∈ R
(n2+r2)×(n2+r2), X2 ∈ R

(n2+r2)×(n2+r2), Y1 ∈
R

r×r , Y2 ∈ R
r×r , Ũ ∈ H, M ∈ H, Ũ1 ∈ H1, M1 ∈ H1,

V , V1, block diagonal matrices S = diag{S2, S1} > 0,
S2 ∈ R

|n1−n2|×|n1−n2|, diagonal matrix S1 ∈ R
r×r , S1 > 0,

such that the following matrix inequalities

W =
�W11 −Q − F̄ M
� −S

�
< 0, (17)

L =

⎡

⎢
⎢
⎢
⎢
⎣

L11 L12 XT
1 B̄ 0(n2+r2)×m XT

1
� L22 L23 C̄T + V T XT

2 + F̄ M
� � L33 0m×m H̄ M
� � � −Im 0m×(n2+r2)

� � � � −S

⎤

⎥
⎥
⎥
⎥
⎦
< 0,

(18)

Z =

⎡

⎢
⎢
⎢
⎢
⎣

Z11 Z12 Z13 0r×r Y T
1

� Z22 Z23 ε Ir Y T
2 + F̄1 M1

� � Z33 0m×r H̄ M1
� � � −ε Ir 0r×r

� � � � −S1

⎤

⎥
⎥
⎥
⎥
⎦
< 0, (19)

hold for all ε > 0, where

W11 = Her( ĀT Q − F̄Ũ MT F̄T)+ F̄Ũ SŨT F̄T,

L11 = −Qe0 − Her(X1), L12 = Pe0 − X2 + XT
1 Ā,

L22 = ω̄2
0 Qe0 + Her(XT

2 Ā − F̄Ũ MT F̄T)+ F̄Ũ SŨT F̄T,

L23 = XT
2 B̄ − F̄Ũ MT H̄ T − F̄ MŨT H̄ T + F̄Ũ SŨT H̄ T,

L33 = −γ 2 Im − Her(H̄ Ũ MT H̄ T)+ H̄ Ũ SŨT H̄ T,

Z11 = −Qr0 − Her(Y1), Z12 = Pr0 − Y2 + Y T
1 Ā1,

Z13 = −C̄T
1 − V T

1 + Y T
1 B̄1,

Z22 = ω̄2
0 Qr0 − 2ε Ir + Her(Y T

2 Ā1 − F̄1Ũ1 MT
1 F̄T

1 )

+ F̄1Ũ1S1ŨT
1 F̄T

1 ,
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Z23 = Y T
2 B̄1− F̄1Ũ1 MT

1 H̄ T− F̄1 M1ŨT
1 H̄ T+ F̄1Ũ1S1ŨT

1 H̄ T,

Z33 = −ε Im − Her(H̄ Ũ1MT
1 H̄ T)+ H̄ Ũ1S1ŨT

1 H̄ T.

Proof: According to Proposition 1 and Lemma 4, Prob-
lem 1 is solvable if and only if there exist symmetric matrices
Q > 0, Pe0 , Qe0 > 0, Pr0 , Qr0 ≥ 0, such that (12), (13) and
the following matrix inequality hold,
�

Ar Br
Ir 0

�T �−Qr0 Pr0

Pr0 ω̄2
0 Qr0

� �
Ar Br
Ir 0

�

−
�

0r×r AT
r CT

r
Cr Ar Cr Br + BT

r CT
r

�
< 0. (20)

Now, we prove that (12), (13) and (20) are equivalent
to (17), (18) and (19).
(⇒) The inequality (20) can be rewritten as

N̂T

̂2
	̂r N̂
̂2

≤ 0,

where

N̂
̂2
=

⎡

⎣
Ar Br
Ir 0
0 Im

⎤

⎦ , 	̂r =
⎡

⎣
−Qr0 Pr0 −CT

r
Pr0 ω̄2

0 Qr0 0r×m

−Cr 0m×r 0m×m

⎤

⎦ .

The above inequality is equivalent to

N̂T

̂2
	̂r N̂
̂2

− N̂T

̂2

diag{0r×r , ε Ir , ε Im}N̂
̂2
< 0, (21)

for all ε > 0.
Note that

N̂T

̂1
(	̂r − diag{0r×r , ε Ir , ε Im})N̂
̂1

= −ε Im < 0, (22)

where N̂
̂1
= �

0m×r 0m×r Im
�T. According to

Lemma 3 [38], (21) and (22) are equivalent to

	̂r − diag{0r×r , ε Ir , ε Im} + 
̂T
1 Y T
̂2 + 
̂T

2 Y 
̂1

=
⎡

⎣
Z11 Pr0 − Y2 + Y T

1 Ar −CT
r + Y T

1 Br

� ω̄2
0 Qr0 − ε Ir + Her(AT

r Y2) Y T
2 Br

� � −ε Im

⎤

⎦<0,

(23)

where Z11 is defined in (19), Y = �
Y1 Y2

�
,


̂1 =
�

Ir 0 0r×m

0 Ir 0r×m

�
, 
̂2 = �−Ir Ar Br

�
,

Y1 ∈ R
r×r , Y2 ∈ R

r×r . Substituting (9) into (23) and using
the Schur complement, we have that

 =

⎡

⎢
⎢
⎣

11 12 13 0r×r

� 22 23 ε Ir

� � −ε Im 0m×r

� � � −ε Ir

⎤

⎥
⎥
⎦ < 0, (24)

where

11 = −Qr0 − Her(Y1),

12 = Pr0 − Y2 + Y T
1 Ā1 + Y T

1 UT
1 F̄T

1 ,

13 = −C̄T
1 − V T

1 + Y T
1 B̄1 + Y T

1 UT
1 H̄ T,

22 = ω̄2
0 Qr0 − 2ε Ir + Her( ĀT

1 Y2 + F̄1U1Y2),

23 = Y T
2 B̄1 + Y T

2 UT
1 H̄ T.

There always exist a diagonal matrix S1 > 0 and a block
diagonal matrix S = diag{S2, S1} > 0, such that

−S − QA−1 Q < 0, −S − φϒ−1φT < 0,

−S1 − φ1
−1φT

1 < 0,

where S2 ∈ R
|n1−n2|×|n1−n2|, S1 ∈ R

r×r ,

φ = �
X1 X2 0(n2+r2)×m 0(n2+r2)×(n2+r2)

�
,

φ1 = �
Y1 Y2 0r×m 0r×r

�
.

Using the Schur complement, the above inequalities are equiv-
alent to

�A −Q
� −S

�
< 0, (25)

�
ϒ φT

� −S

�
< 0, (26)

�
 φT

1
� −S1

�
< 0. (27)

Let

T0 =
�

In2+r2 0
UT F̄T In2+r2

�
,

T1 =

⎡

⎢⎢
⎢
⎢
⎣

Ir 0 0 0 0
0 Ir 0 0 0
0 0 Im 0 0
0 0 0 Ir 0
0 −UT

1 F̄T
1 −UT

1 H̄ T 0 Ir

⎤

⎥⎥
⎥
⎥
⎦
.

Multiplying (25) to the right by T0 and to the left by T T
0 , (27)

to the right by T1 and to the left by T T
1 , one obtains

�
Her( ĀT Q)− F̄U SUT F̄T −Q − F̄U S

� −S

�
< 0, (28)

⎡

⎢
⎢⎢
⎢
⎣

11 ̃12 ̃13 0r×r Y T
1

� ̃22 ̃23 ε Ir Y T
2 + F̄1U1S1

� � ̃33 0m×r H̄U1S1
� � � −ε Ir 0r×r

� � � � −S1

⎤

⎥
⎥⎥
⎥
⎦
< 0, (29)

where 11 is defined in (24),

̃12 = Pr0 − Y2 + Y T
1 Ā1, ̃13 = −C̄T

1 − V T
1 + Y T

1 B̄1,

̃22 = ω̄2
0 Qr0 − 2ε Ir + Her(Y T

2 Ā1)− F̄1U1S1UT
1 F̄T

1 ,

̃23 = Y T
2 B̄1 − F̄1U1S1UT

1 H̄ T,

̃33 = −ε Im − H̄U1S1UT
1 H̄ T.

Let Ũ = U , M = U S, Ũ1 = U1, M1 = U1S1, we arrive
at (17), (19).

Let

T2 =

⎡

⎢
⎢
⎢
⎢
⎣

In2+r2 0 0 0 0
0 In2+r2 0 0 0
0 0 Im 0 0
0 0 0 Im 0
0 −UT F̄T −UT H̄ T 0 In2+r2

⎤

⎥
⎥
⎥
⎥
⎦
.

Similarly, multiplying (26) to the right by T2 and to the left
by T T

2 , (18) can be obtained.
(⇐) Suppose that there exist matrices Q, Pe0 , Qe0 , Pr0 ,

Qr0 , X1, X2, Y1, Y2, Ũ , M , Ũ1, M1, V , V1, S, S1, such
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that (17), (18), (19) hold for all ε > 0. Using the Schur
complement, (17), (18), (19) are equivalent to

W11 − (−Q − F̄ M)S−1(−Q − F̄ M)T < 0, (30)

Za − J1 diag{−1

ε
Ir ,−S−1

1 }J T
1 < 0, (31)

La − J2 diag{−Im,−S−1}J T
2 < 0, (32)

where

Za =
⎡

⎣
Z11 Z12 Z13
� Z22 Z23
� � Z33

⎤

⎦ , La =
⎡

⎣
L11 L12 XT

1 B̄
� L22 L23
� � L33

⎤

⎦,

J1 =
⎡

⎣
0r×r Y T

1
ε Ir Y T

2 + F̄1 M1
0m×r 0m×r

⎤

⎦,

J2 =
⎡

⎣
0(n2+r2)×m XT

1
C̄T + V T XT

2 + F̄ M
0m×m H̄ M

⎤

⎦,

W11 is defined in (17), Z11, Z12, Z13, Z22, Z23, Z33 are
defined in (18), L11, L12, L22, L23, L33 are defined in (19).

It follows from

ψ1(M1 − Ũ1S1)S
−1
1 (M1 − Ũ1S1)

TψT
1 ≥ 0,

ψ2(M − Ũ S)S−1(M − Ũ S)TψT
2 ≥ 0,

that
⎡

⎣
0 0 0
0 ϒ22 ϒ23
� � ϒ33

⎤

⎦ ≤ 0, (33)

⎡

⎣
0 0 0
0 E22 E23
� � E33

⎤

⎦ ≤ 0, (34)

where

ψ1 = �
0(m+r2)×r F̄T

1 H̄ T
�T
,

ψ2 = �
0(m+r2)×(n2+r2) F̄T H̄ T

�T
,

ϒ22 = −F̄1M1 S−1
1 MT

1 F̄T
1 − F̄1Ũ1S1ŨT

1 F̄T
1

+ Her(F̄1 M1ŨT
1 F̄T

1 ),

ϒ23 = −F̄1M1 S−1
1 MT

1 H̄ T − F̄1Ũ1S1ŨT
1 H̄ T + F̄1 M1ŨT

1 H̄ T

+ F̄1Ũ1 MT
1 H̄ T,

ϒ33 = −H̄ M1S−1
1 MT

1 H̄ T − H̄ Ũ1S1ŨT
1 H̄ T

+ Her(H̄ M1ŨT
1 H̄ T),

E22 = −F̄ M S−1 MT F̄T − F̄Ũ SŨT F̄T

+ Her(F̄ MŨT F̄T),

E23 = −F̄ M S−1 MT H̄ T − F̄Ũ SŨT H̄ T + F̄ MŨT H̄ T

+ F̄Ũ MT H̄ T,

E33 = −H̄ M S−1MT H̄ T − H̄ Ũ SŨT H̄ T + Her(H̄ MŨT H̄ T).

Combing (31) with (33) and (30), (32) with (34), we have that

W̃11 − (−Q − F̄ M)S−1(−Q − F̄ M)T < 0, (35)

Z̃a − J1 diag{−1

ε
Ir ,−S−1

1 }J T
1 < 0, (36)

L̃a − J2 diag{−Im,−S−1}J T
2 < 0, (37)

where W̃11 = Her( ĀT Q)− F̄ M S−1 MT F̄T,

Z̃a =
⎡

⎣
Z11 Z12 Z13
� Z22 +ϒ22 Z23 + ϒ23
� � Z33 + ϒ33

⎤

⎦,

L̃a =
⎡

⎣
L11 L12 XT

1 B̄
� L22 + E22 L23 + E23
� � L33 + E33

⎤

⎦ .

Let U1 = M1 S−1
1 , U = M S−1. Using the Schur complement,

the inequalities (35), (36), (37) are equivalent to (28), (29) and
⎡

⎢
⎢
⎢
⎢
⎣

L11 L̃12 XT
1 B̄ 0(n2+r2)×m XT

1
� L̃22 L̃23 C̄T + V T XT

2 + F̄U S
� � L̃33 0m×m H̄U S
� � � −Im 0m×(n2+r2)

� � � � −S

⎤

⎥
⎥
⎥
⎥
⎦
< 0, (38)

where

L̃12 = Pe0 − X2 + XT
1 Ā,

L̃22 = ω̄2
0 Qe0 + Her(XT

2 Ā)− F̄U SUT F̄T,

L̃23 = XT
2 B̄ − F̄U SUT H̄ T, L̃33 = −γ 2 Im − H̄U SUT H̄ T.

Multiplying (28) to the right by T −1
0 and to the left by (T T

0 )
−1,

multiplying (38) to the right by T −1
2 and to the left by (T T

2 )
−1

and multiplying (29) to the right by T −1
1 and to the left by

(T T
1 )

−1, one obtains (25), (26), (27).
Substituting (11) into (25), (26), using the Schur com-

plement, one obtains (12), (13). Substituting (9) into (27),
using the Schur complement, we arrive at (23). According
to Lemma 3 [38], (23) is equivalent to (21) and (22), which
implies that (20). Thus, (12), (13) and (20) are equivalent
to (17), (18) and (19). The proof is completed.

Remark 7: Compared with the conditions in Proposition 1
and Lemma 4, the reduced-order system matrices are decou-
pled with the matrix variables Q, Pe0 , Qe0 , Pr0 , Qr0 in
Theorem 1. Note that (17), (18), (19) are still bilinear with
respect to the matrix variables Q, Pe0 , Qe0 , Pr0 , Qr0 , X1,
X2, Y1, Y2, Ũ , M , Ũ1, M1, V , V1, S1, S. However, these
inequalities become LMIs when Ũ1, Ũ are fixed. This implies
that these matrix inequalities can be solved efficiently by
available numerical algorithm, see subsection III-C.

Remark 8: The obtained results in Theorem 1 are also
applicable for HFNI systems. When the matrices L11, L12,
L22 in (18), the matrices Z11, Z12, Z22 in (19) are replaced
by

L11 = QeN+1 − Her(X1), L12 = PeN+1 − X2 + XT
1 Ā,

L22 = −ω2
h QeN+1 + Her(XT

2 Ā − F̄Ũ MT F̄T)+ F̄Ũ SŨT F̄T,

Z11 = −QrN+1 − Her(Y1), Z12 = PrN+1 − Y2 + Y T
1 Ā1,

Z22 = −ω2
h QrN+1 − 2ε Ir + Her(Y T

2 Ā1 − F̄1Ũ1 MT
1 F̄T

1 )

+ F̄1Ũ1S1ŨT
1 F̄T

1 ,

Theorem 1 provides the necessary and sufficient conditions for
the existence and the construction of the reduced-order HFNI
systems.

Remark 9: Similarly, Theorem 1 can be extended to the
MFNI systems by using the complex version Lemma 3 [38].
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Algorithm 1 Algorithm for IFNI Model Reduction

Input: A ∈ R
n×n , B ∈ R

n×m , C ∈ R
m×m , �L , γ > 0,

1 ≤ r2 < n2, μ ≤ 0, �γ > 0, σ1, σ2 are sufficiently small
positive numbers.

Output: A∗
r , B∗

r , C∗
r , γ ∗.

1: Initilization
2: Use Jordan transform to get the Jordan block form (7).
3: Set j, k = 0, γ (k) = γ . Choose some initial values Ũ (i)

1 ,
Ũ (i) for matrices Ũ1, Ũ . Let Ũ ( j )

1 = Ũ (i)
1 , Ũ ( j ) = Ũ (i),

ε(−1) = 1.
4: repeat
5: Solve the following optimization problem for matrices

Q, Qe0 , Pe0 , Qr0 , Pr0 , X1, X2, V , M , S, Y1, Y2, V1, M1,
S1, ε:

min ε

s.t. W − diag{μIn2+r2 , 0} < 0, Z < 0,

L − diag{0, μIn2+r2 , μIm , 0} < 0, (39)

where W , L and Z are defined in (17), (18) and (19).
6: if ε ≤ σ1 then
7: Denote the obtained Ũ ( j )

1 , Ũ ( j ), V ( j )
1 as Ũ (k)

1 , Ũ (k),
V (k)

1 . Set γ (k+1) = γ (k) −�γ , k = k + 1.
8: else
9: Fix ε(i) = ε, solve the following optimization problem

for matrices Q, Qe0 , Pe0 , Qr0 , Pr0 , X1, X2, V , M , S,
Y1, Y2, V1, M1, S1,

min trace(S1)

s.t. W − diag{μIn2+r2 , 0} < 0, Z < 0,

L − diag{0, μIn2+r2 , μIm , 0} < 0, (40)

10: Update Ũ ( j+1)
1 , Ũ ( j+1) according to

Ũ ( j+1)
1 = M1 S−1

1 , Ũ ( j+1) = M S−1.

Set j = j + 1.
11: end if
12: until |ε( j ) − ε( j−1)| ≤ σ2, output γ ∗ = γ (k−1),

A∗
r =

�
A1 0
0 A(k−1)

r2

�
, B∗

r =
�

B1

B(k−1)
r2

�
,

C∗
r =

�
C1 C(k−1)

r2

�
, (41)

where

A(k−1)
r2

= N1(Ũ
(k−1)
1 )T N2, B(k−1)

r2
= N1(Ũ

(k−1)
1 )T N3,

C(k−1)
r2

= V (k−1)
1 NT

1 ,

Define the matrices L11, L12, L22 in (18), the matrices Z11,
Z12, Z22 in (19) as

L11 = −Qel̂
− Her(X1), L12 = Pel̂

+ jωcl Qel̂
−X2+XT

1 Ā,

L22 = −ωl̂ ω̄l̂ Qel̂
+ Her(XT

2 Ā − F̄Ũ MT F̄T)+ F̄Ũ SŨT F̄T,

Z11 = −Qrl̂
−Her(Y1), Z12 = Prl̂

+ jωcl Qrl̂
−Y2 + Y T

1 Ā1,

Algorithm 2 Algorithm for Initial Ũ1, Ũ , μ

Input: A ∈ R
n×n , B ∈ R

n×m , C ∈ R
m×m , �L , 1 ≤ r2 < n2,

γ to be a sufficiently large number, δ to be a sufficiently
small positive number.

Output: Ũ1, Ũ , μ.
1: Initilization
2: Use Jordan transform to get the Jordan block form (7).
3: Use the existing methods, such as balanced truncation

method, to get a reduced-order system (Ar2 ,Br2, Cr2).
4: Set i = 0, Choose A(i)r2 = Ar2 , B(i)r2 = Br2 , μ(−1) = 1.
5: repeat
6: Let

Ũ (i)
1 =



0 (A(i)r2 )

T

0 (B(i)r2 )
T

�

, Ũ (i) =



0 (A(i)r2 )
T

0 (B(i)r2 )
T

�

,

solve the following optimization problem for matrices Q,
Qe0 , Pe0 , Qr0 , Pr0 , X1, X2, V , M , S, Y1, Y2, V1, M1,
S1, ε, μ:

min μ

s.t. W − diag{μIn2+r2 , 0} < 0, Z < 0,

L − diag{0, μIn2+r2 , μIm , 0} < 0, (42)

where W , L and Z are defined in (17), (18), (19).
7: if μ ≤ 0 then
8: Stop. Output Ũ (i)

1 , Ũ (i) and μ(i).
9: else

10: Fix μ(i) = μ, solve the following optimization problem
for matrices Q, Qe0 , Pe0 , Qr0 , Pr0 , X1, X2, V , M , S,
Y1, Y2, V1, M1, S1, ε,

min trace(S1)

s.t. W − diag{μ(i) In2+r2 , 0} < 0, Z < 0,

L − diag{0, μ(i) In2+r2 , μ
(i) Im , 0} < 0, (43)

11: Update Ũ (i+1)
1 , Ũ (i+1) according to

Ũ (i+1)
1 = M1 S−1

1 , Ũ (i+1) = M S−1.

Set i = i + 1.
12: end if
13: until |μ(i) − μ(i−1)| ≤ δ.

Algorithm 3 Improved Algorithm for IFNI Model Reduction

1: Apply Algorithm 2 to find the initial values Ũ (i)
1 , Ũ (i), μ(i).

2: Fix μ = μ(i). Set j, k = 0 and choose the initial values as
Ũ ( j )

1 = Ũ (i)
1 , Ũ ( j ) = Ũ (i).

3: Apply Algorithm 1 to find a sub-optimal reduced-order
IFNI system.

Z22 = −ωl̂ ω̄l̂ Qrl̂
− 2ε Ir + Her(Y T

2 Ā1 − F̄1Ũ1 MT
1 F̄T

1 )

+ F̄1Ũ1S1ŨT
1 F̄T

1 ,

where symmetric matrices Pel̂
∈ C

(n2+r2)×(n2+r2), Qel̂
∈

C
(n2+r2)×(n2+r2), Qel̂

> 0, Prl ∈ C
r×r , Qrl̂

∈ C
r×r , Qrl̂

≥ 0,

l̂ = 1, . . . , N . Then, Theorem 1 provides the necessary and
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sufficient conditions for the existence and the construction of
the reduced-order MFNI systems.

C. Iterative Algorithm for LFNI Model Reduction

In this subsection, an iterative algorithm is developed to
find the desired reduced-order LFNI system and to minimize
the H∞ approximation error. Similarly, the iterative algorithm
can also be developed for the MFNI and HFNI cases by
considering Remarks 7 and 8.

Motivated by Shen and Lam [39], the iterative Algorithm 1
is provided to find a solution of Problem 1 and minimize the
H∞ approximation error bound γ .

The matrices N1, N2, N3 in (41) are defined as

N1 =
�

0n1×r2

Ir2

�T

, N2 =
�

Ir2

0m×r2

�
, N3 =

�
0r2×m

Im

�
. (44)

For the fixed Ũ (i)
1 , Ũ (i), the optimization problems (39), (40)

are LMI problems and can be solved effectively. Note that σ1
is a sufficiently small positive number. If a solution ε ≤ σ1
to (39) is found, then we can conclude that the inequalities
in (39) hold for almost all ε > 0. This implies that the resulting
reduced-order system satisfies the inequalities in Theorem 1
for almost all ε > 0. Thus, the reduced-order system obtained
by Algorithm 1 is a solution to Problem 1. With the increasing
iteration numbers k, γ is guaranteed to be reduced, that is, it is
expected to reduce the H∞ approximation error as the iteration
number increases.

Note that the initial choice of Ũ1, Ũ and μ will affect the
feasibility of Algorithm 1. This is because a solution ε ≤ σ1
to (39) can not to be guaranteed for arbitrarily chosen initial
values Ũ1, Ũ and μ. Moreover, if inappropriate initial values
are selected, the optimization problems in Algorithm 1 may
be infeasible. Thus, it is of importance to select a good initial
values Ũ1, Ũ and μ. To optimizing the initial Ũ1, Ũ and μ,
the iterative Algorithm 2 is provided.

If a solution μ ≤ 0 to (42) can not be found, then we can
conclude that Problem 1 may not have solutions with the given
γ . If a solution μ ≤ 0 to (42) is found, then output Ũ (i)

1 ,
Ũ (i), μ(i) as the initial values. Thus, an improved iterative
algorithm including two stages is developed to find a solution
of Problem 1 and to minimize the H∞ approximation error.

IV. APPLICATION TO ELECTRONIC CIRCUITS

In this section, the proposed model reduction method is
applied to the Sallen-key filter, the Piezoeletric tube scan-
ner and the RLC circuit. The optimization problems are
solved by SeDuMi toolbox [41]. The performance of the
proposed method is compared with the finite frequency interval
Gramians-based model reduction method [35]. It is shown
that the proposed model reduction method guarantees the
IFNI structure and achieve lower approximation error both in
frequency-domain and time-domain.

A. Sallen-Key Filter

Consider the fifth-order Sallen-key filter in Figure 1. G1 is
a third-order Sallen-key filter cascaded with a gain multiplier

Fig. 1. Sallen-key filter.

circuit, G2 is a second-order Sallen-key filter. The transfer
function from Vi to Vo is given by G(s) = G1(s)G2(s), where

G1(s) = 1 + R4
R5

R1 R2 R3C1C2C3s3 + g1s2 + g2s + 1
,

G2(s) = 1

R6 R7C4C5s2 + (R6C5 + R7C5)s + 1
,

g1 = R1 R2C1C2 + R1 R3C1C2 + R1 R3C2C3

+ R2 R3C2C3,

g2 = R1C2 + R3C2 + R3C3 + R2C2,

Let Ri = 100�, C j = 0.01F, i = 1, . . . , 7, j = 1, . . . , 5.
It can be verified that the system is LFNI by either Defini-
tion 1 or Lemma 1 [31]. Be letting the imaginary part of the
transfer function G( jω) be zero, we found that �[G( jω)] ≤ 0
for ω ∈ (0, 0.7]. Let ω̄0 = 0.7rad/s. A solution to (5) can be
found and given by

P0 =

⎡

⎢
⎢
⎢⎢
⎣

0.1024 −0.0604 −0.1312 0.0860 −0.0184
−0.0604 0.4640 0.1916 −0.0662 −0.0235
−0.1312 0.1916 −0.6371 0.2680 0.0211
0.0860 −0.0662 0.2680 −1.3837 −0.2022

−0.0184 −0.0235 0.0211 −0.2022 −2.4895

⎤

⎥
⎥
⎥⎥
⎦
,

Q0 =

⎡

⎢
⎢
⎢
⎢
⎣

0.0604 0.2004 0.2760 −0.1165 0.0175
0.2004 0.7421 0.7532 −0.4061 0.0687
0.2760 0.7532 1.6976 −0.1584 0.0064

−0.1165 −0.4061 −0.1584 1.5228 0.0354
0.0175 0.0687 0.0064 0.0354 1.6808

⎤

⎥
⎥
⎥
⎥
⎦

≥ 0.

Here, we are interested in finding a second-order LFNI
system with the H∞ approximation error minimized over
the low frequency, ω ∈ (0, 0.7]. By Algorithm 3 with δ =
1 × 10−5, σ1 = 0.01, σ2 = 1 × 10−5, the following second-
order system is obtained

Ar =
�−0.1992 −0.07064
−0.1872 −0.5158

�
, Br =

�−0.6732
0.7267

�
,

Cr = �−1.05 −0.8491
�
. (45)
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Fig. 2. Reduced-order RLC circuit.

Fig. 3. Bode plots of the original and the reduced-order systems for frequency
interval, ω ∈ (0, 0.7].

Fig. 4. �[G( jω)], ω ∈ (0, 0.7] for the original and the reduced-order systems.

Moreover, a realization in terms of RLC circuit is shown
in Figure 2 with R̂1 = 36.2�, R̂2 = 123.6�, R̂ = 2.11�,
Ĉ1 = Ĉ2 = 0.05F, L̂1 = 1H. The sub-optimal H∞
approximation error is γ ∗ = 0.3581, which is smaller than
2.223 obtained by Algorithm 1 [35].

The bode plots of the original and the reduced-order systems
obtained by Algorithm 1 [35], the proposed Algorithm 3 are
shown in Figure 3. Moreover, Figure 4 shows the imaginary
part of the frequency response �[G( jω)] for the original and
the reduced-order systems. It can be seen from Figure 3 that
the reduced-order system (45) approximate the original system
well over the frequency interval, ω ∈ (0, 0.7]. From Figure 4,
we can see that the reduced-order (45) satisfies �[Gr( jω)] ≤ 0

Fig. 5. Output responses for u(t) = sin(0.1t).

for ω ∈ (0, 0.7]. This means that j [Gr( jω)− G∗
r ( jω)] ≥ 0.

In addition, the obtained reduced-order system (45) is stable.
Thus, according to Definition 1, the reduced-order system
obtained by the proposed Algorithm 3 is LFNI. However,
the reduced-order system obtained by Algorithm 1 [35] does
not satisfy the LFNI structure.

Moreover, the time-domain simulation is also provided to
illustrate the effectiveness of the proposed model reduction
method. The corresponding output responses of the original
and the reduced-order system for input u(t) = sin(0.1t)
are given in Figure 5. It can be seen that the reduced-
order system obtained by the proposed model reduction
method follow the original output accurately. From these
results, it can be obtained that the proposed model reduction
method yields good reduced-order systems to approximate
the original IFNI system both in the frequency-domain and
time-domain.

B. Piezoelectric Tube Scanner

Consider the piezoelectric tube scanner in [42]. The minimal
state-space realization of the piezoelectric tube scanner from
the voltage input Vx+ to the displacement output dy is given
by the first equation at the bottom of the next page.
It can be verified that the system is MFNI by either Def-
inition 1 or Lemma 1 [31]. Assuming that the imaginary
part of the transfer function G( jω) be zero, we found that
�[G( jω)] ≤ 0 for ω ∈ [6500, 9500]. Let ωl̂ = 6500rad/s,
ω̄l̂ = 9500rad/s, a solution to (5) can be found and given by
the second equation at the bottom of the next page.

The sixth-order system is reduced to second-order system
over the frequency interval, ω ∈ [6500, 9500]. By Algo-
rithm 3, the following second-order system is obtained

Ar =
�−2.011 −6103

6103 −18.35

�
, Br =

�−4.508
11.58

�
,

Cr = �
12.354 15.654

�
. (46)

The sub-optimal H∞ approximation error is γ ∗ = 1.96, which
is smaller than 3.9 obtained by Algorithm 1 [35].
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Fig. 6. Bode plots of the original and the reduced-order systems for frequency
interval, ω ∈ [6500, 9500].

The bode plots of the original and the reduced-order systems
obtained by Algorithm 1 [35], the proposed Algorithm 3 are
shown in Figure 6. Moreover, Figure 7 shows the imaginary
part of the frequency response �[G( jω)] for the original and
the reduced-order systems. From Figure 7, we can see that
the reduced-order (46) satisfies �[Gr( jω)] ≤ 0 for ω ∈
[6500, 9500]. This means that j [Gr( jω) − G∗

r ( jω)] ≥ 0.
In addition, the obtained reduced-order system (46) is stable.
Thus, we have that the reduced-order system obtained by the
proposed Algorithm 3 preserves the MFNI structure. However,
the reduced-order system obtained by Algorithm 1 [35] does
not satisfy the MFNI structure.

Furthermore, the corresponding output responses of
the original and the reduced-order system for input

Fig. 7. �[G( jω)], ω ∈ [6500, 9500] for the original and the reduced-order
systems.

u(t) = sin(0.1t) are given in Figure 8. It can be seen that
the reduced-order system obtained by the proposed model
reduction method approximate the original output well. Thus,
the proposed model reduction method yields good approxi-
mation performance both in the frequency-domain and time-
domain. However, only a sub-optimal reduced-order system
can be obtained by our proposed method. In practice, it is
desirable to find the global optimal reduced-order system. How
to extend the results of this paper to find the optimal reduced-
order system is worth future research.

C. RLC Circuit

Consider the n-stage RLC circuit in Figure 9. The input
is the voltage V (t) and the output is the charge on the first

A =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

−498.07 −6156.1 519.03 283.81 −1091.7 −796.8
5623.9 −8.762 −376.93 752.44 −989.36 −863.58

−554.96 34.261 −466.65 5998.3 849.04 −1578.9
−192.83 −798.48 −6500.9 −89.24 378.8 −661.32
−311.39 109.74 85.414 163.26 −1350.9 −51.35
−220.68 −129.77 −440.52 −422.72 14.29 −1843.3

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

,

B = �
8.3647 1.5217 −6.4335 −7.1282 −16.034 0.029016

�T
,

C = �−18.296 −15.838 −33.085 −16.047 6.5911 −59.707
�
.

Pl̂ =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

12738 3501 + 4817 j 22671 − 1311 j 11316 − 2506 j −2004 − 119 j −3783 + 2264 j
� 15975 16548 − 2333 j −23848 + 1499 j −1388 − 167 j 8388 + 2556 j
� � 34572 348 + 2965 j −5752 − 243 j 1072 + 182 j
� � � 37823 −1902 + 207 j −12873 − 3790 j
� � � � 1874 −3973 + 961 j
� � � � � 17229

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

,

Ql̂ =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

0.7676 −0.1555 + 0.7039 j −0.4673 − 0.026 j 0.0127 + 0.4393 j −0.0991 − 0.073 j 0.045 − 0.0077 j
� 0.6769 0.0709 + 0.4338 j 0.4002 − 0.1006 j −0.0468 + 0.1056 j −0.0162 − 0.0397 j
� � 0.2854 −0.0226 − 0.267 j 0.0628 + 0.0411 j −0.0271 + 0.0062 j
� � � 0.2516 −0.0434 + 0.0555 j −0.0037 − 0.0259 j
� � � � 0.0197 −0.0051 + 0.0053 j
� � � � � 0.0027

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

≥ 0.
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Fig. 8. Output responses for u(t) = sin(0.1t).

Fig. 9. RLC circuit.

capacitor Q1(t). The input-output relationship from u(t) =
V (t) to y(t) = Q1(t) is given by

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t),

where

x(t) = �
u1(t) iL1(t) u2(t) · · · iLn−1(t) un(t)

�T
,

uk(t) is the voltage across capacitor Ck and iLk (t) represent
the current through inductor Lk ,

A =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

− 1

C1 R1
− 1

C1
0 0 0 · · · 0

1

L1
0 − 1

L1
0 0 · · · 0

0
1

C2
0 − 1

C2
0 · · · 0

0 0
1

L2
0 − 1

L2
· · · 0

...
...

...
. . .

. . .
. . .

...

0 0 0 · · · 1

Ln−1
0 − 1

Ln−1

0 0 0 · · · 0
1

Cn
− 1

R0Cn

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

B =
�

1

C1 R1
0 · · · 0

�T

, C = �
C1 0 0 · · · 0

�
.

Here, we consider a fifth-order RLC network with C1 =
C2 = 1F , L1 = L2 = 1H , R1 = R0 = 0.5�. It can be verified
that the system is LFNI by either Definition 1 or Lemma 1.
By letting the imaginary part of the transfer function G( jω)

Fig. 10. Bode plots of the original and the reduced-order systems for
frequency interval ω ∈ [1.63,∞).

be zero, we can find that �[G( jω)] ≤ 0 for ω ∈ [1.63,∞).
Let ωh = 1.63rad/s. A solution to (6) can be found and given
by

PN+1 =

⎡

⎢
⎢
⎢
⎢
⎣

0.78 0.08 −0.37 0.113 −0.014
0.08 −0.078 0.09 −0.816 0.281

−0.37 0.09 0.34 0.13 −0.34
0.113 −0.816 0.13 −0.247 −0.126

−0.014 0.281 −0.34 −0.126 0.708

⎤

⎥
⎥
⎥
⎥
⎦
,

QN+1 =

⎡

⎢
⎢
⎢
⎢
⎣

0.79 −0.107 0.207 0.05 −0.028
−0.107 0.542 −0.119 0.18 0.06
0.207 −0.119 0.5691 −0.11 0.058
0.05 0.18 −0.11 0.72 −0.157

−0.028 0.06 0.0577 −0.157 1.04

⎤

⎥
⎥
⎥
⎥
⎦

≥ 0.

The goal of this example is to find the second-order HFNI
system with the H∞ approximation error minimized over
the frequency interval, ω ∈ [1.63,∞). By Algorithm 3,
the following second-order system is obtained

Ar =
�−4.497 −0.5437
−1.257 −4.03

�
, Br =

�
1.946

0.5013

�
,

Cr = �
1.791 −2.307

�
. (47)

Moreover, a realization in terms of RLC circuit is shown
in Figure 2 with R̂1 = 19�, R̂2 = 30�, R̂ = 0.8�,
Ĉ1 = Ĉ2 = 0.01F, L̂1 = 0.134H. The sub-optimal H∞
approximation error is γ ∗ = 0.135, which is smaller than
0.3267 obtained by Algorithm 1 [35].

The bode plots of the original and the reduced-order systems
obtained by Algorithm 1 [35], the proposed Algorithm 3 are
shown in Figure 10. Moreover, Figure 11 shows the imaginary
part of the frequency response �[G( jω)] for the original
and the reduced-order systems over the frequency interval,
ω ∈ [1.63,∞). It can be seen from Figure 10 that the reduced-
order system (47) approximate the original system well over
the frequency interval, ω ∈ [1.63,∞). From Figure 11, we can
see that the reduced-order (47) satisfies �[Gr(s)] ≤ 0 for ω ∈
[1.63,∞). This means j [Gr( jω)− G∗

r ( jω)] ≥ 0. In addition,
the reduced-order system (47) is stable. Thus, we have that the
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Fig. 11. �[G( jω)], ω ∈ [1.63,∞) for the original and the reduced-order
systems.

Fig. 12. Output responses for u(t) = √
t .

reduced-order system obtained by the proposed Algorithm 3
preserves the HFNI structure. Moreover, the corresponding
output responses of the original and the reduced-order system
for input u(t) = √

t are given in Figure 12. It can be seen
that the reduced-order system obtained by the proposed model
reduction method follow the original output accurately.

From the simulation results, we can conclude that the
reduced-order systems obtained by the proposed Algorithm 3
give better approximations of the original systems both in
the frequency-domain and time-domain. And the proposed
Algorithm 3 result in lower H∞ approximation errors. The
conservatism is that only a sub-optimal reduced-order IFNI
system can be obtained. Question concerning the optimal
structure preserving model reduction for IFNI systems is under
investigation.

V. CONCLUSIONS

The H∞ model reduction problem for interval frequency
negative imaginary systems has been studied in this paper.
Necessary and sufficient conditions in terms of matrix inequal-
ities have been established for the existence and construction
of the reduced-order interval frequency negative imaginary

system. It has shown that a desired reduced-order system can
be obtained by solving these matrix inequalities. Moreover,
an improved iterative algorithm including two stages has
been provided to find the sub-optimal reduced-order interval
frequency negative imaginary system. The proposed model
reduction method has been applied to solve the model reduc-
tion problems for electrical circuits over a finite frequency
interval. Simulation results have been provided to show the
effectiveness and advantages of the proposed model reduction
method.
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