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Optimal Estimation for Discrete-Time Linear
System with Communication Constraints

and Measurement Quantization
Hongru Ren, Renquan Lu , Junlin Xiong, and Yong Xu

Abstract—This paper focuses on the linear minimum mean
square estimator for a networked discrete time-varying lin-
ear system subject to data quantification and communication
constraints. The communication limitation is that only one trans-
mission node can get access to the shared communication channel
at each time step, and that different transmission nodes in the
networked systems are scheduled to transmit information accord-
ing to a Markov protocol. Then the remote estimator completes
the estimation with only partially available observations, which
are quantified. Suppose that the Markov chain is unknown to
the remote estimator. By using orthogonal projection principle
and innovation analysis method, a Kalman type filter is designed
in a recurrence form. It is shown that estimation performance
depends on the transition probability matrix of the Markov chain,
quantization error, and the shared channel weighting parameter.
Finally, an illustrative example is given to show the effectiveness
of the proposed method.

Index Terms—Markov jump systems, networked systems,
optimal estimation, Riccati equations.

I. INTRODUCTION

RECENTLY, in many industrial and civilian applications,
a lot of interesting research has been motivated by

making use of communication networks to connect different
spatially distributed sensors and signal estimators to build net-
worked control systems (NCSs) [1]–[12]. Networked systems
have technical advantages such as high flexibility, reduced
wiring, and resources sharing. However, some new issues are
brought to be addressed, e.g., packet loss, time delay and
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consensus, data quantization, and communication constraint.
For example, consensus problems for edges of networked
systems were studied in [13] and [14]. One of the usual con-
straints is known as medium access constraint, under which
network nodes are not permitted to access the network simul-
taneously [15], [16]. It has been handled by the so-called
time-multiplexing technique which has been worked out in
various kinds of Fieldbus and controller area network-based
networks [17], [18]. In time-multiplexing mechanism, time is
divided into different slots, and during one slot only one trans-
mission node is permitted to access the network according to
a special communication protocol which may be deterministic
or stochastic [15]. Moreover, in an ordinary way, multiout-
puts of a networked system are supposed to be measured via
multisensors, stacked into multipackets and then transmitted
via multinodes. There are two main reasons for using such a
multipacket transmission strategy. First, what we consider is
bandwidth limitation and packet size constraint. Second, and
more significant, sensors in NCSs are always distributed over
a large-scale physical region, and it is impossible to pack all
measurements into one packet [19].

On the other hand, the estimation problem has been an
important issue from industrial applications to research areas
including optimal control, signal processing, and naviga-
tion [20]–[28]. It is well-known that a traditional Kalman
filter (KF) acts as an optimal filter for linear systems with
exact system model in the least mean square sense. The
applications of communication networks, in particular wire-
less sensor networks and wireless networks, make it possible
to use a KF to estimate information of distributed large-
scale systems. In addition, estimation performance could be
improved by data communication among various nodes con-
nected to networks. Due to the medium access constraint and
multipackets transmission, generally, remote estimators do the
estimation job with only partial available observations dur-
ing each sampling interval. To the best of our knowledge,
many existing results with respect to communication con-
straints were concerned from the control design side [29]–[34],
while they seldom took the problem of signal estimation into
account. However, in [7], [35], and [36], the Kalman filter-
ing problem for NCSs with communication constraints was
considered. The channel accessing protocols of sensors were
modeled by mutual independent Bernoulli random processes.
In [37] and [38], linear minimum variance unbiased esti-
mation was studied for discrete-time systems with uncertain
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parameters in state space models and multiple sensor fail-
ures. In [39] and [40], the filtering problem was studied for
some discrete-time networked systems with communication
constraints. The above-mentioned results have made a lot of
achievements in networked estimation systems with commu-
nication constraints. However, there are still many critical
issues to be solved. For instance, when sensor measurements
are inevitably influenced by information from the last sam-
pling time, and the communication constraint of transmission
networks are subject to a Markov protocol, the problem of
deriving the optimal estimation to the system state under
data quantization is not yet solved in the literature. In this
paper, an optimal estimation system for such a new type of
system model is designed. Filtering problems for Markov jump
systems were also studied in some existing literature such
as [41] and [42]. Some adaptive filtering algorithms were
considered in [43]–[50]. To overcome modeling uncertainty
and numerical error, finite-impulse response (FIR) filtering
algorithms were studied in [51]–[53].

In this paper, the linear minimum mean square estimation
problem for networked discrete time-varying linear system
subject to data quantification and communication constraints
is investigated, and a solution to the problem is provided.
The communication constraint is that only one transmission
node can get access to the shared communication channel
at each time step, and that different transmission nodes of
the networked system are scheduled to transmit information
according to a Markov protocol. The remote estimator com-
pletes the estimation with only partially available quantized
observations. Quantization of the signals in communication
networks is also taken into consideration due to limited
bandwidth. Suppose that the Markov chain is unknown to
the remote estimator. By applying an augmentation trans-
formation, the overall estimation system is remodeled as a
discrete-time stochastic system with Markov jump parameters.
Many results have been available in linear estimation for dis-
crete time systems with stochastic parameters in the existing
literature, such as [54]–[59]. However, the approaches above
are not available to the concerned problem. By using orthog-
onal projection principle and innovation analysis method, we
design a Kalman type filter in a recurrence form. The simula-
tion results show that the estimation performance (specified by
the trace of the estimation error covariance matrix) depends on
the transition probability matrix of Markov chain, quantization
error, and the shared channel weighting parameter.

Notation: R
n denotes the n-dimensional real Euclidean

space. E{·} is the mathematical expectation. Define 〈x, y〉 �
E{xyT} = 〈y, x〉T , ‖x‖2 � 〈x, x〉, where x and y are vector-
valued random variables. x ⊥ y represents orthogonal vectors
x and y. L{x1, x2, . . .} is the linear subspace spanned by
the vectors {x1, x2, . . .}. P(A) denotes occurrence probabil-
ity of the event A. Im represents the identity matrix of size
m × m. 0 is zero matrix with appropriate dimension. For
Banach spaces X and Y, B(X,Y) is set as the Banach space
of all bounded linear operators of X into Y. For conve-
nience, we set B(X) := B(X,X). For a matrix M ∈ B(Rn),
M ≥ 0 (M > 0, respectively) represents that M is pos-
itive semidefinite (positive definite). Define H

n,m = {� =

Fig. 1. Networked estimation system with communication constraints and
quantization.

(�1, . . . , �m̄); �i ∈ B(Rn,Rm), i = 1, . . . , m̄}, Hn = H
n,n.

For a matrix M ∈ B(Rn,Rm), diag{M} ∈ B(Rm̄n,Rm̄m) stands
for a block-diagonal matrix formed by M in the diagonal and
zero elsewhere. For � = (�1, . . . , �m̄) ∈ H

n,m, we define
diag{�i} ∈ B(Rm̄n,Rm̄m) as the diagonal matrix built by �i

in the diagonal and zero elsewhere.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following discrete-time stochastic system:{
x(k + 1) = A(k)x(k) + B(k)w(k)
y(k) = C(k)x(k) + H(k − 1)x(k − 1) + v(k)

(1)

where x(k) ∈ R
n is the system state, y(k) ∈ R

m denotes the
system output. {w(k)} ∈ R

r and {v(k)} ∈ R
m are vector-valued

Gaussian white noises. The second term H(k − 1)x(k − 1)

on right hand side of the second equation in (1) indicates
that measurement output is inevitably influenced by state of
the last time step. {w(k), v(k)} are uncorrelated white noises
with zero means and variance matrices Q(k) ≥ 0 and R(k) >

0, respectively, i.e., E{w(k)} = E{v(k)} = 0, E{w(i)wT(j)} =
Q(i)δij, E{v(i)vT(j)} = R(i)δij, where δii = 1 and δij = 0(i 	=
j). A(k), B(k), C(k), H(k − 1) are time-varying matrices with
appropriate dimensions. Let z(0) = [xT(0) xT(−1)]T denote
the initial state vector and assume that it is uncorrelated with
all {w(k), v(k)}, and satisfies E{z(0)} = z0, E{z(0)zT(0)} =
�z,0.

Suppose that there are m sensors spatially distributed
in a large-scale physical area which is shown in Fig. 1.
They cannot be integrated into one transmission node.
Consequently, the m measurements yi(k), i = 1, . . . , m, are
collected by m̄ transmission nodes, then transmitted to a
remote estimator through a shared communication channel,
where m̄ ≤ m. Denote the set of sensors which transmit
their measurements through transmission node j by Nj, j ∈
{1, . . . , m̄}. For example, N2 = {3, 4} means that sensors
3 and 4 transit their measurements through transmission
node 2.

Because of the communication constraints, only one trans-
mission node is permitted to gain access to the shared channel
and communicate with the remote estimator at each sampling
time step k. Suppose that communication protocol of the m̄
nodes is subject to a Markov protocol. In other words, the
remote estimator can choose to get access to just only one
transmission node at each epoch k according to a discrete time
Markov chain {θ(k)}, which takes values in a discrete space
{1, . . . , m̄} and has transition probability matrix Pm̄ = [pij],
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where pij ≥ 0 denotes the probability of θ(k + 1) = j condi-
tioned on θ(k) = i and

∑m̄
j=1 pij = 1, (i ∈ {1, 2, . . . , m̄}). We

set πi(k) := P(θ(k) = i).
Remark 1: It is supposed that the actual Markov chain

{θ(k)} is not known to the remote estimator. The only infor-
mation the estimator can obtain is that the initial probability
distribution {πi(0)} and transition probability matrix Pm̄(k) of
the Markov chain.

Before transmission, due to the limitation of channel band-
width, the information needs to be quantified. In this paper,
an uniform quantizer installed on the shared channel is taken
into account. It is assumed that the overall quantizer range is
[−M, M] with M > 0. The quantizer level length U is defined
as U = 2M/(2b − 1) where b is the number of bits allowed
for channel transmission. The uniform quantizer output is then
given by

s(k) = Q(y(k)) = y(k) + q(k) (2)

where s(k) is the quantized signal, q(k) ∈ Rm is the quantiza-
tion error process and is assumed to be an additive uniform
distributed white noise of which each element is uniformly
distributed in [−0.5U, 0.5U]. Apparently, the variance of
this quantization error process is �(k) = [(U2)/(12)]I. The
above description is based on the assumption that the sig-
nals before quantization do not exceed the overall quantizer
range [−M, M]. It is assumed that the quantization error
process {q(k)} is independent of {w(k), v(k), z(0)} with zero
mean and variance �(k), i.e., E{q(k)} = 0, E{q(i)qT(j)} =
�(i)δij. In addition, the Markov chain {θ(k)} is independent
of {w(k), v(k), z(0), q(k)}.

We first define

y(k) = [y1(k), . . . , ym(k)
]T

s(k) = [s1(k), . . . , sm(k)]T

q(k) = [q1(k), . . . , qm(k)
]T

and then represent the input of the remote estimator by

η(k) = [η1(k), . . . , ηm(k)]T .

It can be observed that η(k) 	= y(k) and only some of ele-
ments in η(k) can be updated during each sampling period
as a result of the communication constraints. During each
time step k, only one transmission node j with its measure-
ments {yi(k), i ∈ Nj} is chosen to occupy the communication
channel on the basis of the Markov chain {θ(k)}. Then, a
quantization process acts on those measurement outputs before
transmission. Therefore, for i = 1, . . . , m, one has{

ηi(k) = si(k) = yi(k) + qi(k), if i ∈ Nθ(k)

ηi(k) = γ (k)ηi(k − 1), otherwise
(3)

where {γ (k)} is a scalar sequence depending on the Markov
chain {θ(k)}, namely, γ (k) = γθ(k) and satisfies 0 ≤ γθ(k) ≤ 1.
The second equation of (3) implies that the estimator input
keeps a weighted value of the previous measurement when
the current measured value is not available. Each transmission
node j has its matching γj, where γj is the weighting parameter.

For i = 1, . . . , m̄, denote{

i =∑j∈Ni

diag{δ[j − 1], . . . , δ[j − m]}
ϒi = diag{γi, . . . , γi}m×m = γiIm

(4)

where δ ∈ {0, 1} is the Kronecker delta function

δ[n] =
{

0, if n 	= 0
1, if n = 0.

(5)

Then it follows from (1)–(5) that the remote estimator input
η(k) can be expressed as:

η(k) = 
θ(k)(y(k) + q(k)) + ϒθ(k)(Im − 
θ(k))η(k − 1). (6)

Denote

z(k) = [xT(k) xT(k − 1)
]T

ξ(k) = [zT(k) ηT(k − 1)
]T

β(k) = v(k) + q(k).

The estimation system with communication constraints and
quantification can be reformulated as the following system
model with Markov jump parameters:{

ξ(k + 1) = Ãθ(k)(k)ξ(k) + B̃θ(k)(k)ρ(k)
η(k) = C̃θ(k)(k)ξ(k) + 
θ(k)β(k)

(7)

where

Ãθ(k)(k) =
[

A(k) 0 0
0 A(k−1) 0


θ(k)C(k) 
θ(k)H(k−1) ϒθ(k)(Im−
θ(k))

]

B̃θ(k)(k) =
[

B(k) 0 0
0 B(k−1) 0
0 0 
θ(k)

]

C̃θ(k)(k) = [ 
θ(k)C(k) 
θ(k)H(k−1) ϒθ(k)(Im−
θ(k))
]

ρ(k) = [wT(k) wT(k − 1) βT(k)
]T

with ξ0 = E{ξ(0)} = [zT
0 , 0]T , since set η(−1) = 0.

III. LMMSE FILTER DESIGN

First, some variables and matrices are defined in order to
facilitate the subsequent derivation


̄(k) = E
{

θ(k)

} =
m̄∑

j=1

πj(k)
j

Ā(k) = E
{

Ãθ(k)(k)
}
, B̄(k) = E

{
B̃θ(k)(k)

}
.

Therefore, one has that

B̄(k) =
⎡
⎣B(k) 0 0

0 B(k − 1) 0
0 0 
̄(k)

⎤
⎦. (8)

By independence hypothesis, we have that

〈β(i), β(j)〉
= 〈v(i) + q(i), v(j) + q(j)〉
= 〈v(i), v(j)〉 + 〈v(i), q(j)〉 + 〈q(i), v(j)〉 + 〈q(i), q(j)〉
= R(i)δij + 0 + 0 + �(i)δij

= (R(i) + �(i))δij〈ρ(i), ρ(j)〉 (9)

=
〈⎡
⎣ w(i)

w(i − 1)

β(i)

⎤
⎦,

⎡
⎣ w(j)

w(j − 1)

β(j)

⎤
⎦
〉

=
⎡
⎣ 〈w(i), w(j)〉 〈w(i), w(j − 1)〉 〈w(i), β(j)〉

〈w(i − 1), w(j)〉 〈w(i − 1), w(j − 1)〉 〈w(i − 1), β(j)〉
〈β(i), w(j)〉 〈β(i), w(j − 1)〉 〈β(i), β(j)〉

⎤
⎦

(10)
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= �0(i)δij + �+1(i)δi,j+1 + �T+1(j)δi,j−1

〈β(i), ρ(j)〉
= 〈v(i) + q(i), ρ(j)〉
= 〈v(i), ρ(j)〉 + 〈q(i), ρ(j)〉

=
〈

v(i),

⎡
⎣ w(j)

w(j − 1)

v(j) + q(j)

⎤
⎦
〉

+
〈

q(i),

⎡
⎣ w(j)

w(j − 1)

v(j) + q(j)

⎤
⎦
〉

= �(i)δij (11)

where �0(i) = diag{Q(i), Q(i − 1), R(i) + �(i)}, �+1(i) =⎡
⎣ 0 0 0

Q(i − 1) 0 0
0 0 0

⎤
⎦, and �(i) = [0 0 R(i) + �(i)].

A. Uncorrelatedness Properties

The reformulated model (7) implies that {ρ(i)} is uncorre-
lated with all past states and {β(i)} is uncorrelated with all
past and present states, i.e.,{ 〈ρ(i), ξ(j)〉 = 0, j ≤ i − 1

〈β(i), ξ(j)〉 = 0, j ≤ i

which we can write as

ρ(i) ⊥ ξ(j), j ≤ i − 1; β(i) ⊥ ξ(j), j ≤ i. (12)

The reason is that, according to (7) and independence
hypothesis, ξ(j) depends linearly only upon the random
variables {ξ(0), ρ(k), k ≤ j − 1} [or briefly, ξ(j) ∈
L{ξ(0), ρ(k), k ≤ j − 1}], and by (10), ρ(i) is uncorrelated
with or orthogonal to these random variables, and so is β(i).
However, for the present state, from (10)–(12), we have

〈β(i), ξ(i)〉 = 〈β(i), ξ(i − 1)〉ĀT(i − 1)

+ 〈β(i), ρ(i − 1)〉B̄T(i − 1)

= 0 (13)

and

〈ρ(i), ξ(i)〉 = 〈ρ(i), ξ(i − 1)〉ĀT(i − 1)

+ 〈ρ(i), ρ(i − 1)〉B̄T(i − 1)

= 0 + �+1(i)B̄
T(i − 1) = �+1(i)B̄

T(i − 1). (14)

For the same reason, we can see that {ρ(i), β(i)} are orthog-
onal to past outputs, i.e.,

ρ(i) ⊥ η(j), β(i) ⊥ η(j), j ≤ i − 1. (15)

Next, let us define �(k) � ‖ξ(k)‖2, the state covariance matrix
with initial value �(0) = �0.

Then g(k, i) � ξ(k)δ[θ(k) − i], i = 1, . . . , m̄, is intro-
duced to deal with the derivation on Markov chain, and g(k) �
[gT(k, 1), . . . , gT(k, m̄)]T . From independence hypothesis, we
define

Gi(k) � ‖g(k, i)‖2 = E
{
ξ(k)ξT(k)δ[θ(k) − i]

}
= ‖ξ(k)‖2E{δ[θ(k) − i]} = πi(k)�(k) (16)

G(k) � ‖g(k)‖2 = diag{Gi(k))} = diag{πi(k)�(k)} (17)

and set

ζ(0) = E{g(0)} =
⎡
⎢⎣

ξ0π1(0)
...

ξ0πm̄(0)

⎤
⎥⎦

P(0) = ‖g(0) − ζ(0)‖2 = G(0) − ζ(0)ζ T(0).

To derive recursive equation for matrices Gi(k), recalling (7),
we start with

g(k + 1, j)

= ξ(k + 1)δ[θ(k + 1) − j]

=
(

Ãθ(k)(k)ξ(k) + B̃θ(k)(k)ρ(k)
)
δ[θ(k + 1) − j] (18)

Gj(k + 1)

= ‖g(k + 1, j)‖2

= ‖Ãθ(k)(k)ξ(k)δ[θ(k + 1) − j]‖2

+ ‖B̃θ(k)(k)ρ(k)δ[θ(k + 1) − j]‖2

+
〈
Ãθ(k)(k)ξ(k)δ[θ(k + 1) − j], B̃θ(k)(k)ρ(k)δ[θ(k + 1) − j]

〉

+
〈
B̃θ(k)(k)ρ(k)δ[θ(k + 1) − j], Ãθ(k)(k)ξ(k)δ[θ(k + 1) − j]

〉
(19)

where
‖Ãθ(k)(k)ξ(k)δ[θ(k + 1) − j]‖2

= E
{

Ãθ(k)(k)ξ(k)ξT(k)ÃT
θ(k)(k)δ[θ(k + 1) − j]

}

=
m̄∑

i=1

E
{

Ãi(k)ξ(k)ξT(k)ÃT
i (k)δ[θ(k) − i]δ[θ(k + 1) − j]

}

=
m̄∑

i=1

Ãi(k)E
{
ξ(k)ξT(k)

}
ÃT

i (k)E{δ[θ(k) − i]δ[θ(k + 1) − j]}

=
m̄∑

i=1

Ãi(k)E
{
ξ(k)ξT(k)

}
ÃT

i (k)P{θ(k) = i, θ(k + 1) = j}

=
m̄∑

i=1

Ãi(k)E
{
ξ(k)ξT(k)

}
ÃT

i (k)P{θ(k + 1) = j|θ(k) = i}

× P{θ(k) = i}

=
m̄∑

i=1

pijπi(k)Ãi(k)�(k)ÃT
i (k)

=
m̄∑

i=1

pijÃi(k)Gi(k)Ã
T
i . (20)

Similarly, from (11) and (14), we have that
‖B̃θ(k)(k)ρ(k)δ[θ(k + 1) − j]‖2

=
m̄∑

i=1

pijπi(k)B̃i(k)�0(k)B̃
T
i (k) (21)

〈
Ãθ(k)(k)ξ(k)δ

[
θ(k + 1) − j

]
, B̃θ(k)(k)ρ(k)δ

[
θ(k + 1) − j

]〉

= E
{

Ãθ(k)(k)ξ(k)ρT(k)B̃T
θ(k)(k)δ[θ(k + 1) − j]

}

=
m̄∑

i=1

pijπi(k)Ãi(k)〈ξ(k), ρ(k)〉B̃T
i (k)

=
m̄∑

i=1

pijπi(k)Ãi(k)B̄(k − 1)�T+1(k)B̃
T
i (k) (22)
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〈
B̃θ(k)(k)ρ(k)δ[θ(k + 1) − j], Ãθ(k)(k)ξ(k)δ[θ(k + 1) − j]

〉

=
〈
Ãθ(k)(k)ξ(k)δ[θ(k + 1) − j], B̃θ(k)(k)ρ(k)δ

× [θ(k + 1) − j]
〉T

=
m̄∑

i=1

pijπi(k)B̃i(k)�+1(k)B̄
T(k − 1)ÃT

i (k). (23)

Define G(k) = (G1(k), . . . , Gm̄(k)) ∈ H
2n+m, D(k) =

(D1(k), . . . , Dm̄(k)) ∈ H
2n+m, D0(k) = (D0

1(k), . . . , D0
m̄(k)) ∈

H
2n+m, D+1(k) = (D+1

1 (k), . . . , D+1
m̄ (k)) ∈ H

2n+m as

Dj(k) = D0
j (k) + D+1

j (k) + D+1,T
j (k)

D0
j (k) =

m̄∑
i=1

pijπi(k)B̃i(k)�0(k)B̃
T
i (k)

D+1
j (k) =

m̄∑
i=1

pijπi(k)Ãi(k)B̄(k − 1)�T+1(k)B̃
T
i (k)

and set the operator T (k, ·) ∈ B(H2n+m) as follows. For � =
(�1, . . . , �m̄) ∈ H

2n+m, Tj(k, �) is given by

Tj(k, �) =
m̄∑

i=1

pijÃi(k)�iÃ
T
i (k), j = 1, . . . , m̄ (24)

and T (k, �) = (T1(k, �), . . . , Tm̄(k, �)). Therefore,
from (18)–(23), the Lyapunov-like recursive equation
for matrices Gi(k) is given by

G(k + 1) = T (k, G(k)) + D(k), Gi(0) = πi(0)�(0).

(25)

To guarantee the existence of the inverse of some matri-
ces which will be needed in the proof of Theorem 1, some
necessary assumptions are made as follows.

Assumption 1: We assume that

C(0)P(0)CT(0) + D(0)diag{R(0) + �(0)}DT(0) > 0.

Assumption 2: We assume that for k = 1, 2, . . .

D(k)diag{R(k) + �(k)}DT(k) > 0.

In addition, some matrices are given as follows before pre-
senting our theorem:

A(k) =
⎡
⎢⎣

p11Ã1(k) . . . pm̄1Ãm̄(k)
...

. . .
...

p1m̄Ã1(k) . . . pm̄m̄Ãm̄(k)

⎤
⎥⎦

Aπ (k) =
⎡
⎢⎣

π
1/2
1 (k)p11Ã1(k) . . . π

1/2
m̄ (k)pm̄1Ãm̄(k)

...
. . .

...

π
1/2
1 (k)p1m̄Ã1(k) . . . π

1/2
m̄ (k)pm̄m̄Ãm̄(k)

⎤
⎥⎦

B(k) =
⎡
⎢⎣

π
1/2
1 (k)p11B̃1(k) . . . π

1/2
m̄ (k)pm̄1B̃m̄(k)

...
. . .

...

π
1/2
1 (k)p1m̄B̃1(k) . . . π

1/2
m̄ (k)pm̄m̄B̃m̄(k)

⎤
⎥⎦

Bπ (k) =
⎡
⎢⎣

π1(k)p11B̃1(k) . . . πm̄(k)pm̄1B̃m̄(k)
...

. . .
...

π1(k)p1m̄B̃1(k) . . . πm̄(k)pm̄m̄B̃m̄(k)

⎤
⎥⎦

C(k) = [C̃1(k) . . . C̃m̄(k)
]

D(k) =
[
π

1/2
1 (k)
1 . . . π

1/2
m̄ (k)
m̄

]

and

ϕij(k) = δ[θ(k + 1) − j] − pij

b(k) =
m̄∑

i=1

B̃i(k)ρ(k)δ[θ(k) − i]

�1(k) =
⎡
⎢⎣
∑m̄

i=1 Ãi(k)g(k, i)ϕi1(k)
...∑m̄

i=1 Ãi(k)g(k, i)ϕim̄(k)

⎤
⎥⎦

�2(k) =
⎡
⎢⎣

b(k)δ[θ(k + 1) − 1]
...

b(k)δ[θ(k + 1) − m̄]

⎤
⎥⎦.

Let us define the linear operators M(k, ·) : H
2n+m →

B(Rm̄(2n+m)) and Dg(·) : H2n+m → B(Rm̄(2n+m)) as follows:
for � = (�1, . . . , �m̄) ∈ H

2n+m

M(k, �) = diag

{
m̄∑

i=1

pijÃi(k)�iÃ
T
i (k)

}
− A(k)diag{�i}AT(k)

Dg(�) = diag{�i}.
Theorem 1: Consider the system represented by (7). Then

for k = 0, 1, . . ., the linear minimum mean square estima-
tor (LMMSE) ξ̂ (k|k) is given by

ξ̂ (k|k) =
m̄∑

i=1

ĝ(k, i|k) (26)

where ĝ(k|k) satisfies the recursive equation

ĝ(k|k) = ĝ(k) + P(k)CT(k)R−1
e (k)

(
η(k) − C(k)ĝ(k)

)
(27)

ĝ(k + 1|k) = A(k)ĝ(k) + K(k)
(
η(k) − C(k)ĝ(k)

)
(28)

ĝ(0| − 1) = ζ(0). (29)

The matrices Re(k) > 0 and K(k) are given by

Re(k) = C(k)P(k)CT(k) + D(k)diag{R(k) + �(k)}DT(k)

(30)

K(k) = (A(k)P(k)CT(k) + B(k)diag{�T(k)}DT(k)

+ Bπ (k)diag
{
�+1(k)B̄

T(k − 1)
}
CT(k)

)
R−1

e (k).

(31)

The matrices P(k) = ‖g̃(k|k−1)‖2 ≥ 0 satisfy the Riccati-like
recurrent equation

P(k + 1) = A(k)P(k)AT(k) + M(k, G) + Dg(D(k))

− K(k)Re(k)K
T(k). (32)

Proof: Setting ζ(k) = E{g(k)}, it follows that:

ζ(k + 1) = A(k)ζ(k). (33)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

From (7), we have{
gc(k + 1) = A(k)gc(k) + �1(k) + �2(k)
ηc(k) = C(k)gc(k) + 
θ(k)β(k).

(34)

First, since one-step predicted quantities are often encountered,
we shall use the following briefer notations (except when
necessary for emphasis, or for some other special reason):

ĝ(k) � ĝ(k|k − 1), ĝc(k) � ĝc(k|k − 1)

g̃(k) � g̃(k|k − 1), g̃c(k) � g̃c(k|k − 1).

Second, the innovation e(k) and relevant Re(k) are defined as

e(k) � η̃(k|k − 1) = η(k) − η̂(k|k − 1), Re(k) � ‖e(k)‖2.

(35)

Finally, in what follows it will be convenient to introduce the
following notation. For any sequence of second order ran-
dom vectors {χ(k)}, we define the “centered” random vector
χc(k) as χ(k) − E{χ(k)}. χ̂ (k|t) is the best affine estimator
of χ(k) given {η(0), . . . , η(t)}, and χ̃(k|t) = χ(k) − χ̂(k|t).
Similarly χ̂c(k|t) is the best affine estimator of χc(k) given
{ηc(0), . . . , ηc(t)}, and χ̃c(k|t) = χc(k) − χ̂c(k|t). It is well
known (see [60]) that

χ̂ (k|t) = χ̂c(k|t) + E{χ(k)} (36)

and, in particular

χ̃c(k|t) = χ̃ (k|t). (37)

L{(ηc)t} denotes the linear subspace spanned by the ran-
dom vectors {ηc(0), . . . , ηc(t)}. For t ≤ k, the optimal linear
estimator ĝc(k|t) of the random vector gc(k), represented by

ĝc(k|t) =
⎛
⎜⎝

ĝc
1(k|t)

...

ĝc
m̄(k|t)

⎞
⎟⎠, gc(k) =

⎛
⎜⎝

gc
1(k)
...

gc
m̄(k)

⎞
⎟⎠ (38)

is the projection of gc(k) onto the linear subspace L{(ηc)t}
and satisfies the following properties (see [60]):

1) ĝc
j (k|t) ∈ L{(ηc)t}, j = 1, . . . , m̄;

2) ĝc
j (k|t) is orthogonal to L{(ηc)t}, j = 1, . . . , m̄;

3) if ‖(η)t‖2 is nonsingular then

ĝc(k|t) = 〈gc(k),
(
ηc)t〉‖(η)t‖−2(ηc)t (39)

ĝc(k|k) = ĝc(k) + 〈gc(k), η̃(k|k − 1)〉‖η̃(k|k − 1)‖−2

× (
ηc(k) − η̂c(k|k − 1)

)
(40)

where

(η)t =
⎛
⎜⎝

η(0)
...

η(t)

⎞
⎟⎠, (ηc)t =

⎛
⎜⎝

ηc(0)
...

ηc(t)

⎞
⎟⎠.

From (35) and (37), (40) can be rewritten as

ĝc(k|k) = ĝc(k) + 〈gc(k), e(k)〉R−1
e (k)e(k). (41)

Denote by P t the orthogonal projection onto L{(ηc)t}.
From (39), for any null mean random vector χ

Pk−1(χ) = 〈χ,
(
ηc)k−1〉‖(η)k−1‖−2(ηc)k−1

. (42)

It follows from (42) and (15) that:

Pk−1(
θ(k)(k)β(k)
)

=
〈

θ(k)(k)β(k),

(
ηc)k−1

〉
‖(η)k−1‖−2(ηc)k−1

=
m̄∑

i=1

E

{

θ(k)(k)β(k)

((
ηc)k−1

)T |θ(k) = i

}
πi(k)‖(η)k−1‖−2

× (
ηc)k−1

=
m̄∑

i=1


i(k)E{β(k)}E
{((

ηc)k−1
)T
}
πi(k)‖(η)k−1‖−2(ηc)k−1

= 0. (43)

Since E{β(k)} = 0. From (34) and (43) it is immediate to see
that

η̂c(k|k − 1) = Pk−1(ηc(k)
) = C(k)ĝc(k). (44)

Thus, recalling (37), it follows from (34) and (44) that:

e(k) = η̃(k|k − 1) = ηc(k) − η̂c(k|k − 1)

= C(k)gc(k) + 
θ(k)β(k) − C(k)ĝc(k)

= C(k)g̃(k) + 
θ(k)β(k). (45)

From (12) and (45) and setting P(k) = ‖g̃(k)‖2 ≥ 0, (30) is
obtained as

‖η̃(k|k − 1)‖2

= C(k)P(k)CT(k) +
m̄∑

i=1

E
{

i(k)β(k)βT(k)
T

i (k)δ[θ(k) − i]
}

= C(k)P(k)CT(k) +
m̄∑

i=1


i(k)‖β(k)‖2
T
i (k)πi(k)

= C(k)P(k)CT(k) + D(k)diag{R(k) + �(k)}DT(k)

= Re(k) > 0

from Assumptions 1 and 2. Then

〈
gc(k), 
θ(k)β(k)

〉 =
m̄∑

i=1

E
{
gc(k)βT(k)
T

i (k)δ[θ(k) − i]
}

=
m̄∑

i=1

E
{
gc(k)δ[θ(k) − i]

}
E
{
βT(k)

}

T

i (k)

(46)

= 0, and it follows from (45) and (46) that:

〈gc(k), η̃(k|k − 1)〉 = 〈gc(k), g̃(k)〉CT(k)

= 〈ĝc(k) + g̃(k), g̃(k)〉CT(k)

= 〈ĝc(k), g̃(k)〉CT(k) + 〈g̃(k), g̃(k)〉CT(k)

= P(k)CT(k). (47)

From (30), (41), (44), and (47), it can be seen as the following
form:

ĝc(k|k) = ĝc(k) + 〈gc(k), e(k)〉R−1
e (k)e(k)

= ĝc(k) + P(k)CT(k)R−1
e (k)e(k)

= ĝc(k) + P(k)CT(k)R−1
e (k)

(
ηc(k) − C(k)ĝc(k)

)
.
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From (36) and noticing that e(k) = ηc(k)−C(k)ĝc(k) = η(k)−
C(k)ĝ(k), we obtain

ĝ(k|k) = ĝ(k) + P(k)CT(k)R−1
e (k)

(
η(k) − C(k)ĝ(k)

)
. (48)

Let us now derive (28). It follows from (34) that:

ĝc(k + 1) = A(k)ĝc(k|k) + Pk
(
�1(k)

)
+ Pk

(
�2(k)

)
.

(49)

It can be seen from (39) that

Pk
(
�1(k)

)
= 〈�1(k),

(
ηc)k〉‖(η)k‖−2(ηc)k (50)

and

Pk

(
m̄∑

i=1

Ãi(k)g(k, i)ϕij(k)

)

=
m̄∑

i=1

〈Ãi(k)g(k, i)ϕij(k),
(
ηc)k〉‖(η)k‖−2(ηc)k

=
m̄∑

i=1

E

{
Ãi(k)ξ(k)δ[θ(k) − i]

(
δ[θ(k + 1) − j] − pij

)

×
((

ηc)k)T
}

× ‖(η)k‖−2(ηc)k

=
m̄∑

i=1

Ãi(k)E

{
ξ(k)

((
ηc)k)T

}
‖(η)k‖−2(ηc)k

× E
{
δ[θ(k) − i]

(
δ[θ(k + 1) − j] − pij

)}
= 0 (51)

where the last step of the equation holds because

E
{
δ[θ(k) − i]

(
δ[θ(k + 1) − j] − pij

)}
= P(θ(k) = i, θ(k + 1) = j) − pijP(θ(k) = i)

= P(θ(k + 1) = j|θ(k) = i)P(θ(k) = i) − pijP(θ(k) = i)

= 0. (52)

This shows that Pk(�1(k)) = 0. It can be shown that from (41)

Pk
(
�2(k)

)
= Pk−1

(
�2(k)

)
+ 〈�2(k), e(k)〉R−1

e (k)e(k).

(53)

From the independence hypothesis and (39), it can be obtained
that

Pk−1(b(k)δ[θ(k + 1) − j])

=
m̄∑

i=1

〈
B̃i(k)ρ(k)δ[θ(k) − i]δ[θ(k + 1) − j],

(
ηc)k−1

〉

× ‖(η)k−1‖−2(ηc)k−1

=
m̄∑

i=1

B̃i(k)E{ρ(k)}E
{((

ηc)k−1
)T
}
‖(η)k−1‖−2(ηc)k−1

× E{δ[θ(k) − i]δ[θ(k + 1) − j]}
= 0 (54)

where the last step of the equation holds because E{ρ(k)} = 0.
From (45), we have that

〈b(k)δ[θ(k + 1) − j], e(k)〉
= 〈b(k)δ[θ(k + 1) − j], C(k)g̃(k)

〉+ 〈b(k)δ[θ(k + 1) − j]

× 
θ(k)β(k)
〉

(55)

where

〈b(k)δ[θ(k + 1) − j], C(k)g̃(k)〉

=
〈

m̄∑
i=1

B̃i(k)ρ(k)δ[θ(k) − i]δ[θ(k + 1) − j], C(k)g(k)

〉

=
〈

m̄∑
i=1

B̃i(k)ρ(k)δ[θ(k) − i]δ[θ(k + 1) − j],
m̄∑

i=1

C̃i(k)ξ(k)

〉

=
m̄∑

i=1

pijπi(k)B̃i(k)〈ρ(k), ξ(k)〉C̃T
i

=
m̄∑

i=1

pijπi(k)B̃i(k)�+1(k)B̄
T(k − 1)C̃T

i (56)

since ρ(k) ⊥ ĝ(k), and〈
b(k)δ[θ(k + 1) − j], 
θ(k)β(k)

〉

=
m̄∑

i=1

B̃i(k)
〈
ρ(k)δ[θ(k) − i]δ[θ(k + 1) − j], 
θ(k)β(k)

〉

=
m̄∑

i=1

B̃i(k)〈ρ(k), β(k)〉
T
i E{δ[θ(k) − i]δ[θ(k + 1) − j]}

=
m̄∑

i=1

pijπi(k)B̃i(k)�
T(k)
T

i . (57)

Therefore

Pk
(
�2(k)

)
= (Bπ (k)diag

{
�+1(k)B̄

T(k − 1)
}
CT(k)

+ B(k)diag
{
�T(k)

}
DT(k)

)
R−1

e (k)e(k).

(58)

From (27), (49) and above results, (31) is given by

ĝc(k + 1)

= A(k)ĝc(k) + (A(k)P(k)CT(k) + B(k)diag{�T(k)}DT(k)

+ Bπ (k)diag
{
�+1(k)B̄

T(k − 1)
}
CT(k)

)
R−1

e (k)e(k)

= A(k)ĝc(k) + K(k)e(k) (59)

where

K(k) = (A(k)P(k)CT(k) + B(k)diag{�T(k)}DT(k)

+ Bπ (k)diag
{
�+1(k)B̄

T(k − 1)
}
CT(k)

)
R−1

e (k)

is directly (31). From (59), (36), and (33), (28) is obtained.
Finally, it follows from (28) and (36) that:

g̃(k + 1) = g(k + 1) − ĝ(k + 1)

= gc(k + 1) + ζ(k + 1) − ĝ(k + 1)

= A(k)gc(k) + �1(k) + �2(k) + A(k)ζ(k)

− (
A(k)g̃(k) + K(k)

(
C(k)g̃(k) + 
θ(k)β(k)

))
= (A(k) − K(k)C(k))g̃(k)

+ �1(k) + �2(k) − K(k)
θ(k)β(k). (60)

Set

�0(k) = (A(k) − K(k)C(k))g̃(k)

�3(k) = −K(k)
θ(k)β(k).
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Hence, it follows from (60) that:

g̃(k + 1) =
3∑

κ=0

�κ(k). (61)

From the independent hypothesis mentioned above, namely,
β(k) ⊥ ξ(k) and β(k) ⊥ g̃(k), it can be seen that
〈�3(k),�κ(k)〉 = 0, κ = 0, 1. Moreover, from (52) one has
〈�1(k),�0(k)〉 = 0. Therefore, it can be seen that

P(k + 1) = ‖g̃(k + 1)‖2

=
3∑

κ=0

‖�κ(k)‖2 +
3∑

κ=0,κ 	=2

〈
�2(k),�κ(k)

〉

+
3∑

κ=0,κ 	=2

〈
�κ(k),�2(k)

〉
. (62)

It can be seen that

‖�0(k)‖2 = (A(k) − K(k)C(k))P(k)(A(k) − K(k)C(k))T .

(63)

Applying the similar derivation procedures used before, we
have that

‖�1(k)‖2 = M(k, G) (64)

‖�2(k)‖2 = Dg
(

D0(k)
)

(65)

‖�3(k)‖2 = K(k)D(k)diag{R(k) + �(k)}DT(k)KT(k). (66)

Similarly, the rest of covariance matrices are simplified as
follows:
〈
�0(k),�2(k)

〉
= (A(k) − K(k)C(k))diag

{
B̄(k − 1)�T+1(k)

}
× BT

π (k) (67)〈
�1(k),�2(k)

〉
= Dg

(
D+1(k)

)
− Aπ (k)diag

× {
B̄(k − 1)�T+1(k)

}× BT(k) (68)〈
�2(k),�3(k)

〉
= −B(k)diag

{
�T(k)

}
DT(k)KT(k)0. (69)

Putting all these results together, we get that

P(k + 1)

= (A(k) − K(k)C(k))P(k)(A(k) − K(k)C(k))T + M(k, G)

+ Dg(D(k)) + K(k)D(k)diag{R(k) + �(k)}DT(k)KT(k)

− B(k)diag{�T(k)}DT(k)KT(k)

− K(k)D(k)diag{�(k)}BT(k)

− Bπ (k)diag
{
�+1(k)B̄

T(k − 1)
}
CT(k)KT(k)

− K(k)C(k)diag
{
B̄(k − 1)�T+1(k)

}
BT

π (k) (70)

and (32) is obtained after some algebraic manipulations.
Remark 2: From (31), it can be seen that the computa-

tional complexity of filtering algorithm in Theorem 1 mainly

depends on dimensions of system matrix A(k), B(k), C(k) and
the number of transmitting nodes m̄. The calculation time will
increase as these parameters become larger, especially in the
calculation of R−1

e (k).

IV. NUMERICAL EXAMPLES

In this section, a simulation example is presented to demon-
strate the effectiveness of designed LMMSE filter for discrete-
time stochastic systems with communication constraint and
data quantization.

The plant which is modeled by (1) is considered with the
following parameters:

A(k) =
[

0.3 0.7
0.2 0.6

]
+ 2sin(0.5πk)

[
0.1 0.05
0.2 0.1

]

B(k) = [1 0.5
]T

, C(k) =
[

0.5 1
1 1

]
, H(k) =

[
0.25 0.5
0.5 0.5

]

w(k) and v(k) are uncorrelated white Gaussian noises with
zero means and variances Q(k) = 0.1 and R(k) = 0.02I2,
respectively. It is assumed that the initial states z(0) = z0 =
[2 1 2 1]T and �z,0 = 0.1I4. The output y(k) is measured
by two sensors independently. The measurement outputs are
quantified and transmitted by each sensor to the remote esti-
mator via a shared transmission channel. The communication
constraint is subject to a Markov protocol with transition

probability matrix being Pm̄ =
[

0.8 0.2
0.2 0.8

]
and the initial

probability distribution is set as π1(0) = 0.1, π2(0) = 0.9.
Before transmitted through the shared channel, data are quan-
tified by an uniformed quantizer with M = 10, b = 8, leading
to the quantizer level length U is relatively small. After that,
we choose γ1 = γ2 = 0.

In order to confirm the effectiveness of our algorithm, by
applying Theorem 1, Fig. 2 shows that the estimated values
tracked the states well, and the trace of the estimation error
covariance matrix is convergent.

Now, we consider different scenarios with different param-
eters. First, we discuss the impact on state estimation effect
with different weighting parameters γ1 and γ2 keeping other
parameters unchanged. From Table I, it can be seen that as γ1
or γ2 becomes larger, the estimation error also becomes larger.
In what follows, we shall study the influence on estimation
performance under different choices of transition probability
matrix Pm̄ maintaining other parameters unvaried. From data in
Table II, it can be inferred that the transition probability matrix
Pm̄ also effects the estimation performance. Therefore, one can
improve estimation performance by changing Pm̄. Finally, the
impact of quantizer to estimation performance is shown in
Fig. 3. It can be seen that as long as the quantization density
is not very small, the estimation performance is satisfactory
in some degree.

In summary, in addition to the noises {w(k), v(k)}, the
different choice of weighting parameters {γ1, γ2}, transition
probability matrix Pm̄ and the quantization density of quantizer
can also affect the state tracking performance.
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Fig. 2. LMMSE filter of system (1) with given parameters.

Fig. 3. Steady value of tr(P(k|k − 1)) with different quantization density.

Remark 3: Notice the fact that

P(k) = ‖g̃(k)‖2, ξ(k) =
⎡
⎣ x(k)

x(k − 1)

η(k − 1)

⎤
⎦

g(k) =

⎡
⎢⎢⎢⎣

ξ(k)δ[θ(k) − 1]
ξ(k)δ[θ(k) − 2]

...

ξ(k)δ[θ(k) − m]

⎤
⎥⎥⎥⎦.

Therefore, we can find that only part of P(k) reflects the esti-
mated error of state x(k). In this section, we use the trace of

TABLE I
UPPER BOUND OF STEADY VALUE OF TR(P(k|k − 1))

WITH DIFFERENT γ1 AND γ2

TABLE II
STEADY VALUE OF TR(P(k|k − 1)) WITH DIFFERENT Pm̄

the matrix P(k) to measure the size of the error covariance
matrix. Consequently, part of such trace is used to measure
the size of the estimated error of x(k). Therefore, any “trace
of P(k|k−1)” appearing in this section stands for part of trace
related to system state x(k) only.

V. CONCLUSION

The linear minimum mean square filter design problem
has been studied in this paper for a networked discrete
time-varying linear system subject to data quantization and
communication constraints. It has been shown that estimation
performance depends on the transition probability matrix of
the Markov chain, quantization error, and the shared chan-
nel weighting parameter. A Kalman-like filter is presented in
Theorem 1, based on the Lyapunov and Riccati-like equations.
A numerical example has demonstrated that the effectiveness
and applicability of the proposed LMMSE filters. Modeling
uncertainty and numerical error will be considered in our
future work. To overcome this problem, an FIR filter might be
used to solve the corresponding robust estimation problems.
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