C1

APPENDIX C
AMPL Modeling Language1

This appendix presents the principal syntactic rules of AMPL needed for the develop-
ment and solution of complex mathematical programming models. For additional
details, you may consult the basic language reference given at the end of this appendix
(Fourer and Associates, 2003). You may also consult www.ampl.com for additional
resources as well as the latest news and updates.

RUDIMENTARY AMPL MODEL

AMPL provides a facility for modeling mathematical programs (linear, integer, and
nonlinear) in a longhand format. Figure C.1 gives the (self-explanatory) LP code for
the Reddy Mikks model (file RM1.txt). All reserved words are in bold. The remaining
symbols, other than the special operators (+ — *,;: >< =), are generated by the user.

AMPL uses command lines and operates in a DOS environment. A recent beta
version of a Windows interface can be found in www. OptiRisk-Systems.com.

var x1 >=0; FIGURE C.1
var x2 >=0; Rudimentary AMPL model (file RM1.txt)
maximize z: 5*x1 +4*x2;
subject to
cl: 6*x1 +4*xX2 <=24;
c2: X1 +2*xX2<=6;

c3: -x1+x2<=1;
cd: xX2<=2;
solve;

display z,x1,x2;

'Folder AppenCFiles on the website includes all the files for this appendix.

C1

Cc.2

C.2

Appendix C AMPL Modeling Language

You can execute a model by clicking on ampl.exe in the AMPL folder and, at the
ampl prompt, typing the following command followed by Return:

ampl: model RM1.txt;

The output will be displayed on the screen as?

MINOS 5.5: Optimal solution found.
2 iterations

z=21
x1=3
x2=1.5

The rudimentary longhand format given here is not recommended for solving
practical problems because it is problem specific. The remainder of this appendix pro-
vides the details of how AMPL is used in practice.

COMPONENTS OF AMPL MODEL

Figure C.2 specifies the general structure of an AMPL model. The model is comprised
of two basic segments: The top segment (elements 1 through 4) is the algebraic repre-
sentation of the model, and the bottom segment (elements 5 through 7) supplies the
data that drive the algebraic model. Thus, in LP, the algebraic representation in AMPL
exactly parallels the following mathematical model:
Maximize z = chxj
j=1

FIGURE C.2

Basic structure of an AMPL model

Algebraic Representation . Sets definitions.
. Parameters definitions.

. Variables definitions.

F O R

. Model representation (objective and constraints).

Model implementation 4. Input data.
5. Solution of the model.
6. Output results.

2Every version of AMPL has a default solver that carries out the computations needed to optimize the
AMPL model. In the student version, MINOS is the default solver, and it can handle linear and nonlinear
problems. The website includes other solvers: CPLEX, KNITRO, LPSOLVE, and LOQO. CPLEX handles
linear, integer, and quadratic problems. LPSOLVE handles linear and integer problems. KNITRO and
LOQO handle linear and nonlinear problems.

C.2 Components of AMPL Model C.3

subject to
n
Eaijxj = bi’ i= 1,2,...,m
j=1

The advantage of this arrangement is that the same algebraic model can be used to
solve a problem of any size simply by changing the input data: m, n, ¢;, a;;, and b,.
A number of syntax rules apply to the development of an AMPL model:

AMPL files must be plain text (Windows Notepad editor creates plain text).

Commented text may appear anywhere in the model preceded with #.
Each AMPL statement, comments excluded, must terminate with a semicolon (;).

PN =

. An AMPL statement may occupy more than one line. Breakpoints occur at a
proper separator, such as a blank space, colon, comma, parenthesis, brace,
bracket, or mathematical operator. An exception to this rule occurs with strings
(enclosed in quotes ' ' or " ") where a breakpoint is designated by adding a
backslash ().

5. All keywords (with few exceptions) are in lower case.

6. User-generated names are case sensitive. A name must be alphanumeric, inter-
spersed with underscores, if desired. No other special characters are allowed.

We will use the Reddy Mikks problem of Section 2.1 to show how AMPL works.
Figure C.3 gives the corresponding model (file RM2.txt). For convenience, key (or
reserved) words are emphasized in bold.

The algebraic model starts with the sets that define the indices of the general LP
model. The user-generated names resource and paint each preceded by the keyword
set correspond to the sets {i} and {j} in the general LP model. The specific elements of
the sets resource and paint that define the Reddy Mikks model are given in the
input data section of the model.

The parameters are user-generated names preceded by the keyword param that
define the coefficients of the objective function and the constraints as a function of the
variable and constraint sets. The parameters unitprofit{paint}, aij{resource,
paint}, and rhs{resource} correspond, respectively, to the mathematical symbols
¢j, ajj, and b; in the general LP model. The subscripts i and j are represented by AMPL
sets resource and paint, respectively. The input data provide specific values of the
parameters.

The variables of the model, x;, are given the name product preceded by the key-
word var. Again, product is a function of the set paint. We can add the nonnegativity
condition (>=0) in the same statement. Else, the default is that the variables are
unrestricted in sign.

Having defined the sets, parameters, and variables of the model, the next step
is to express the optimization problem in terms of these elements. The objective-
function statement specifies the sense of optimization using the keyword maximize
or minimize. The objective value z is given the user name profit followed by a

C4 Appendix C AMPL Modeling Language

Hohokokkkkkkkkkkkkkkk k%% AT,GEBRATIC MODEL* % % % % % o o o o % % % % % % % % %

set paint;
set resource;

param unitprofit{paint};
param rhs {resource};
param aij {resource,paint};

Hommm variables
var product{paint} >= 0
Hommm model

maximize profit: sum{j in paint} unitprofit [j]*product[j];
subject to limit{i in resource}:

sum{j in paint} aij[i,j]*product [j]l<=rhs[i];
#************************DATA**************************

data;
set paint := exterior interior;
set resource := ml m2 demand market;

param unitprofit :=
exterior 5
interior 4;
param rhs:=

ml 24
m2 6
demand 1
market 2;

param aij: exterior interior : =

ml 6 4
m2 1 2
demand -1 1
market 0 1;

I
#**********************SOLUTION************************
solve;

Hommm output results
display profit, product, limit.dual, product.rc;

FIGURE C.3
AMPL model for the Reddy Mikks problem (file RM2.1xt)

colon (@), and its AMPL statement is a direct translation of the mathematical
expression Ecjxj:
i

sum{j in paint} unitprofit[j]*product[j];

The index j is user specified. Note the use of braces in {j in paint} to indicate that
j is a member of the set paint, and the use of brackets in [j] to represent a subscript.

C.2 Components of AMPL Model C.5

A model may include one or more constraint statements, and each such statement
can be preceded by the keywords subject to or simply s.t. Actually, s.t. and
subject to are optional, and AMPL assumes that any statement that does not start
with a keyword is a constraint. The Reddy Mikks model has only one set of constraints
named limit and indexed over the set resource:

limit{i in resource}:
sum{j in paint} aij[i,j]*product[j] <= rhs[i];

The statement is a direct translation of constraint Z, Eaijx,»j = b;.
J

The idea of declaring variables as nonnegative can be generalized to allow estab-
lishing upper and lower bounds on the variables, thus eliminating the need to declare
these bounds as explicit constraints. First, the two bounds are declared with the user-
generated names lowerbound and upperbound as

param lowerbound{paint};
param upperbound{paint};

Next, the variables are defined as

var product{j in paint}s>=lowerbound[j], <=upperbound[j];

Notice that the syntax does not allow comparing “vectors.” Thus, an error is generated
if we use

var product{paint}>=lowerbound{paint}, <=upperbound{paint};

We can use the same syntax to set conditions on parameters as well. For example,
the statement

param upperbound{j in paint}s>=lowerbound[j];

will guarantee that upperbound is never less than lowerbound. Else AMPL will issue
an error. The main purpose of using bounds on parameters is to prevent entering con-
flicting data inadvertently. Another instance where such checks may be used is when a
parameter is required to assume nonnegative values only.

The algebraic model in Figure C.3 is general in the sense that it applies to any number
of variables and constraints. It can be tailored to the Reddy Mikks situation by specifying
the data of the problem. Following the statement data; we first define the members of the
sets, and then use these definitions to assign numeric values to the different parameters.

The set paint includes the names of two variables, which we suggestively call
exterior and interior. Members of the set resource are given the names m1, m2,
demand, and market. The associated statements in the data section are thus given as

set paint := exterior interior;
set resource := ml m2 demand market;

c6

Appendix C AMPL Modeling Language

Members of each set appear to the right of the reserved operator : = separated by a
blank space (or a comma). String indices must be enclosed in double quotes when used
outside the data segment—that is, paint ["exterior"], paint["interior"],
limit ["m1"], limit["m2"], limit ["demand"], and limit ["market"].Otherwise,
the string index will be incorrectly interpreted as a (numeric) parameter.

We could have defined the sets at the start of the algebraic model (instead of in
the data segment) as

set resource ={"ml", "m2", "demand", "market"};
set paint ={"exterior", "interior"};

(Note the mandatory use of the double quotes " », the separating commas, and the
braces.) This convention is not advisable in general because it is problem specific,
which may limit tailoring the model to different input data scenarios. When this con-
vention is used, AMPL will not allow modifying the set members in the data segment.

The use of alphanumeric names for the members of the sets resource and paint
can be cumbersome in large problems. For this reason, AMPL allows the use of purely
numeric sets—that is, we can use

set paint:= 1 2;
set resource:= 1..4;

The range 1. .4 replaces the explicit 1 2 3 4 representation and is useful for sets with
a large number of members. For example, 1. .1000 is a set with 1000 members starting
with 1 and ending with 1000 in increments of 1.

The range representation can be made more general by first defining m and n as
parameters

param m;
param n;

In this case, the sets 1. .mand 1. .n can be used directly throughout the entire model as
shown in Figure C.4 (file RM2a.txt), eliminating altogether the need to use the set
names resource and paint.

Actually, the syntax 1. .m (or 1..n) has the general format

start..end by step

where start, end, and step are defined AMPL parameters whose values are specified
under data. If start < endand step > 0,then members of the set begin with start
and advance by the amount step to the highest value less than or equal to end. The
opposite occurs if start > end and step <0.For example,3..10 by 2 produces
the members 3,5,7,and 9,and 10. .3 by -2 produces the members 10,8, 6,and 4. The
default for step is 1, which means that start..end by 1 isthe same as start. .end.

Actually, the parameters start, end, and step can be any legitimate AMPL
mathematical expressions computed during execution. For example, given the parame-
tersmandn,thesetj in 2*n..m + n*2 by n/2 is perfectly legal. Note, however, that

C.2 Components of AMPL Model C.7

param m;
param n;

param unitprofit{l..n};
param rhs{l..m};

param aij{l..m,1..n};

Bommm variables
var product{l..n}>=0;
Bomm model

maximize profit:sum{j in 1..n}unitprofit[j]*product[j];
subject to limit{i in 1..m}:
sum{j in 1..n}aij[i,j]l*product[jl<=rhs[i];
data;
param m:=4;
param n:=2;

param unitprofit := 1 5 2 4;
param rhs:=1 24 2 6 3 1 4 2;
param aij: 1 2:=

1 6 4

2 1 2

3 -1 1

4 0 1;
solve;

display profit, product, limit.dual, product.rc;

FIGURE C.4
AMPL model for the Reddy Mikks problem (file RM2a.txt)

a fractional step is used directly to create the members of the set. For example, for
m = 5,n = 13,the members of the setm..n step m/2 are 5,7.5,10,and 12.5.

The Reddy Mikks model includes single- and two-dimensional parameters. The
parameters unitprofit and rhs fall in the first category and the parameter aij in the
second. In the first category, data are specified by listing each set member followed by
a numeric value, as the following statements show:

param unitprofit :=
exterior 5
interior 4;
param rhs:=

ml 24
m2 6
demand 1
market 2;

The elements of the list may be “strung” into one line, if desired. The only requirement
is a separation of at least one blank space. The format given here promotes better
readability.

C.8 Appendix C AMPL Modeling Language

Input data for the two-dimensional parameter aij are prepared similar to that of
the one-dimensional case, except that the order of the columns must be specified after
aij: to eliminate ambiguity, as the following statement shows:

param aij: exterior interior :=
ml 6 4
m2 1 2
demand -1 1
market 0 1;

Again, the list is totally free-formatted so long as the logical sequential order is
preserved and the elements are separated by blank spaces.

AMPL allows assigning default values to all the elements of a parameter.
For example, suppose that for a parameter c,c; = 11 and ¢g = 22 with ¢; = 0 for
i=2,3,...,7.We can use the following statements to take care of this situation:

param c{1..8};

data;
param c:=1 11 2 0 3 0 4 0506 0 7 0 8 22;

A more compact way of achieving the same result is to use the following statements:

param c{1..8} default 0;

data;
param c:=1 11 8 22;

Initially, c [1] through c [8] assume the default value 0, with c[1] and c [8] changed to 11
and 22 in the data segment. In general, default may be followed by any mathematical
expression. This expression is evaluated only once at the start of the execution.

The final segment of the AMPL model deals with obtaining the solution and the
presentation of the output. The command solve is all that is needed to solve the
model. Once completed, specific output results may be requested. The command
display followed by an output list is but one way to view the results. In the Reddy
Mikks model, the statement

display profit, product, limit.dual, product.rc;

requests the optimal values of the objective function and the variables, profit and
product ; the dual values of the constraints, 1imit.dual; and the reduced costs of the
variables, product.rc. The keywords dual and rc are suffixed to the names of the
constraints 1imit and variables product separated by a period. They may not be used
as stand-alone keywords. The output defaults to the screen. It may be directed to an
external file by inserting > filename immediately before the semicolon. Section C. 5
provides more details about how output is directed to files and spreadsheets.

C.2 Components of AMPL Model C.9

MINOS 5.5: optimal solution found.
2 iterations. objective 21

profit = 21

: product limit.dual product.rc i =
demand . 0 .

exterior 3 . 6.66134e-16
interior 1.5 . 0

ml
m2
market . 0

o O
(2N
ol

FIGURE C.5

AMPL output using display profit,product,limit.dual.product.rc;in the Reddy Mikks model

The execution command in DOS is

ampl: model RM2.txt;

The associated output is displayed on the screen, as the snapshot in Figure C.5 shows.

The layout of the output in Figure C.5 is a bit “cluttered” because it mixes the
indices of the constraints and the variables. We can streamline the output by placing its
elements in groups of the same dimension using the following two display statements:

display profit, product, product.rc;
display limit.dual;

In a typical AMPL model, such as the one in Figure C.3, the segment associated
with the logic of the model preferably should remain static. The data and output seg-
ments are changed as needed to match specific LP scenarios. For this purpose, the
AMPL model is represented by two separate files: RM2b.txt providing the logic of the
model and RM2b.dat accounting for the input data and the output results.? In this case,
the DOS line commands are entered sequentially as:

ampl: model RM2b.txt;
ampl: data RM2b.dat;

We will see in Section C.7 how commands such as solve and display can be issued
interactively rather than being hard-coded in the model.

The Reddy Mikks model provides only a “glimpse” of the capabilities of AMPL.
We will show later how input data may be read from external files and spreadsheet

3Actually, the output command may be processed separately instead of being included in the .dat file, as will
be explained in Section C.7

C.10 Appendix C AMPL Modeling Language

tables. We will also show how tailored (formatted) output can be sent to these media.
Also, AMPL interactive commands are important debugging and execution tools, as
will be explained in Section C.7.

PROBLEM SET C.2A

1. Modify the Reddy Mikks AMPL model of Figure C.3 (file RM2.txt) to account for a third
type of paint named “marine.” Requirements per ton of raw materials m1 and m2 are .5 and
.75 ton, respectively. The daily demand for the new paint lies between .5 ton and 1.5 tons.
The revenue per ton is $3.5 (thousand). No other restrictions apply to this product.

2. In the Reddy Mikks model of Figure C.3 (file RM2.txt), rewrite the AMPL code using the
following set definitions:

(a) paintand {1..m}.
(b) {1..n} and resource.
(¢) {1..m}and {1..n}.
3. Modify the definition of the variables in the Reddy Mikks model of Figure C.3

(file RM2.txt) to include a minimum demand of 1 ton of exterior paint and maximum
demands of 2 and 2.5 tons of exterior and interior paints, respectively.

4. In the Reddy Mikks model of Figure C.3, the command
display profit;

provides the value of the objective function. We can use the same command to display the
contribution of each variable to the total profit as follows:

display profit, {j in paint} unitprofit[j]*product[j];

Another convenient way to accomplish the same result is to use defined variable
statements as follows:

var extProfit=unitprofit["exterior"] *product ["exterior"]
var intProfit=unitprofit["interior"]*product ["interior"]

In this case, the objective function and display statements may be written in a less compli-
cated form as

maximize profit: extProfit + intProfit;
display profit, extProfit, intProfit;

In fact, defined variables can be in indexed form as:
var varProfit{j in paint} = unitprofit[j]*product[j];
The resulting objective function and display statement will then read as

maximize profit: sum {j in paint} varProfit[j];
display profit, varProfit;

Use defined variables with the Reddy Mikks model to allow displaying each variable’s

profit contribution and resource consumption of raw materials m1 and m2.
5. Develop and solve an AMPL model for the diet problem of Example 2.2-2, and find the
optimum solution. Determine and interpret the associated dual values and the reduced costs.

C3

C.3 Mathematical Expressions and Computed Parameters C.11

MATHEMATICAL EXPRESSIONS AND COMPUTED PARAMETERS

We have seen that AMPL allows placing upper and lower bounds on parameters.
Actually, the language affords more flexibility in defining parameters as complex
mathematical expressions, modified conditionally, if desired.

To illustrate the use of computed parameters, consider the case of a bank offering
n types of loans that charges an interest rate r; for loan i, 0 < r; < 1,i = 1,2, ..., n.
Unrecoverable bad debt, both principal and interest, for loan i equals v; of the amount
of loan i. The objective is to determine the amount x; the bank allocates to loan i to
maximize the total return subject to a set of restrictions.

The use of computed parameters will be demonstrated by concentrating on the
objective function. Algebraically, the objective function is expressed as

n n

Maximizez = D> rfl — v)x; — Dvx; = D[— vi(r; + D]
i=1 i=1 i=1

A direct translation of z into AMPL is the following:

param r{l..n}>
param v{1l..n}>
var x{1..n}>=0

maximize z: sum{i in 1..n}(r[i]l-vI[i]*(r[i]+1))*x[i];

(constraints)

Another way to handle the bank situation is to use a computed parameter to
represent the objective function coefficients in the following manner:

param r{l..n}>0, <1;

param v{1l..n}>0, <1;

param c{i in 1..n}=(r[i]-v[i]*(r[i]+1));
var x{1..n}>=0;

maximize z: sum{i in 1..n}cl[il*x[i];

(constraints)

AMPL will compute the parameter c [1] and use its value in the objective statement z.
The new formulation enhances readability. But in some cases the use of computed
parameters may be essential.

In general, the expression defining the value of a computed parameter can be of
any complexity and may include any of the built-in arithmetic functions familiar to any
programming language (e.g., sin, max, log, sqrt, exp).Animportant requirement is
that the expression evaluate to a numeric value.

Computed parameters may also be evaluated conditionally using the construct

parameter = if condition then expressionl else expression2;

4AMPL manual provides an “exception” when a parameter is declared binary, in which case it can also be
treated as logical. This distinction is artificial, because treating such a parameter as numeric still produces the
same result.

c.12

Appendix C AMPL Modeling Language

The condition compares arithmetic quantities and strings using the familiar operators
=, <, >, <=, >=, and <> (together with and/or). Note that nonlinearity will result
if condition is a function of the model variables. As in other programming languages,
the construct may be used without else expression2. Nested if is also allowed follow-
ing then and else.

The if-then-else construct gives the computed parameters the numeric value
of either expressionl or expression2. This is the reason the if-then-else presented
here is an expression and not a statement. (Section C.7 introduces the if-then-else
statement together with the loop statements for{}, repeat while{}, and repeat
until{}. These statements are used mainly for automating solution scenarios and
formatting output.)

We will use a simple case to demonstrate the use of the i £ expression. In a multi-
period manufacturing situation, units of a certain item are produced to meet variable
demand. Unit production cost is estimated at p dollars for the first m periods, and
increases by 10% for the next m periods and by 20% for the following m periods.

The constraints of this model deal with capacity restrictions for each period and
the balance equations that relate inventory, production, and demand. To demonstrate
the use of the if expression, we will concentrate on the objective function. Let

x; = units produced in period j,j = 1,2,...,3m
The objective function is given as
Minimize
Z :P(Xl tx+ o+ xm) + 1-1P(Xm+1 t Xy + o me)

+ 1.2p(xomi1 + Xomao + -+ X3)

We can model this function in AMPL as
param p;
var x{1..3*m}>=0;

minimize cost: p*(sum{j in 1..m}x[j]+1.1*sum{j in m+1l..2*m}x[j]+
1.2*sum{j in 2*m+1..3*m}x[j]);

(constraints)

A more compact way that also enhances readability is to use if-then-else to
represent the objective-function parameter c [j]:

param m;
param n=3*m;
param p;
param c{j in 1..n}= if j<=m then p else
(if j>m and j<=2*m then 1.1*p else 1.2*p);

var x{j in 1..n};
minimize z: sum{j in 1..n}c[jl1*xI[j];

(constraints)

C.4 Subsets and Indexed Sets C.13

Note the nesting of the conditions. The parentheses () enclosing the second if are not
necessary and are used to enhance readability. Observe that then and else are always
followed by what must evaluate to numeric values. Note also that ¢ can be defined as

param c{j in 1..n}=p*(if j<=m then 1 else
(if j>m and j<=2*m then 1.1 else 1.2));

A particularly useful implementation of if-then-else occurs in the situation
where parameters or variables are defined recursively. A typical example of such a
parameter occurs in determining the inventory level /, in period ¢, t = 1,2, ..., n, with
initial zero inventory. The production amount and demand in period ¢ are p, and d,,
respectively. Thus, the inventory level is

10:0
It = I +pt - dtat: 152"-'9’1

The amount /, can be computed recursively in AMPL as follows:

param p{l..n};
param d{1..n};
var I{t in 1..n}= if i=1 then 0 else I[t-1])+plt]-dlt];

Notice that it would be somewhat cumbersome to compute , were it not for the use of
the if-then-else expression (see also Set C.3a).

The bus scheduling problem (Example 2.4-5) demonstrates the use of if . . .
then . . . else within the context of a complete model. These two models are detailed
in Section C.9.

PROBLEM SET C.3A

C4

*1. Consider the following set of constraints:
X; + Xit1 = Ci,i = 1,2,...,” -1
x+tx,=c¢,

Use 1f-then-else to develop a single set of constraints that represents all # inequalities.

2. In a multiperiod production-inventory problem, let x,, z,, and d, be, respectively, the amount
of entering inventory, production quantity, and demand for period ¢t = 1,2, ..., T. The
balance equation associated with period ¢ is x, + z; — d; — x,.1 = 0. In a specific situation,
x1 = ¢ (>0)and x7,; = 0. Write the AMPL constraints corresponding to the balance equa-
tions using if-then-else to account for x; = ¢ andxy.; = 0.

3. Consider the parameters a; and b; ;, i & {1,n} and j ¢ {1, a;}. Define a; and b; as AMPL

parameters.

2)

SUBSETS AND INDEXED SETS
Subsets. Suppose that we have the following constraint:

X+ x+ x5+ x5 +x7 =15

c.14

Appendix C AMPL Modeling Language

There are 7 variables in the model, and this particular constraint does not include the
variables x; and x;.

We can model this constraint by using subsets in a number of ways (all new
keywords are in bold):

var x{1..7}>=0;

subject to lim: sum{j in 1..7: j<=2 or j>=5}x[jl<=15;
b method 2 ———-----------
var x{1..7}>=0;

subject to lim: sum{j in 1..2 union 5..7}x[j]<=15;
b method 3 - ———-----------
var x{1..7}>=0;

subject to lim: sum{j in 1..7 diff 3..4}x[j]1<=15;
b method 4 - ——-----------———
var x{1..7}>=0;

subject to lim: sum{j in 1..7 diff (1..4 inter 3..7)}x[jl<=15;

In method 1, the set {j in 1..7} deletes the elements 3 and 4 by imposing
restrictions on j. A colon separates the modified set from the condition(s). Keywords
union, diff, and inter play the roles of AU B, A — B, and A N B, respectively.
Method 4 is a convoluted set representation. Nevertheless, it serves to represent the
use of the operator inter.

Indexed sets. A powerful feature of AMPL allows indexing sets over the elements of
a regular set. Suppose that two components A and B are used to produce products 1,2,
3,4, and 5. Component A is used in products 1, 3, and 5, and component B is used in
products 1,2,4,and 5. Each product requires one unit of the specified components. The
maximum availabilities of components A and B are 200 and 300 units, respectively. The
problem deals with determining the number of assembly units of each product. Other
pertinent data will be needed to complete the description of the problem, but we will
concentrate only on the constraints dealing with the components’ availability.

Let x; be the production quantity of product i,i = 1,2, ...,5. Then the con-
straints for components A and B can be expressed mathematically as

Component A: x; + x3 + x5 = 200

Component B: x; + x, + x4 + x5 = 300

The AMPL representation of the constraints can be achieved using indexed sets as
follows:

set comp;

set prod{comp};

param d{comp};

var x{1..5}>=0;

#- objective function here

C.4 Subsets and Indexed Sets C.15

subject to
c{i in comp}:sum{j in prod[il }x[§1<=d[i];

#- other constraints here
data;

set comp:= A B;

set prod[A]:=1 3 5;

set prod[B]:=1 2 4 5;

param d:= A 200 B 300;

The indices of set prod are the elements A and B of set comp, thus defining the
two indexed sets prod [A] and prod [B]. Next, the data of the problem define the
elements of prod [A] and prod [B]. With these data, the constraints of the components
(regardless of how many there are) are defined by the single statement:

c{i in comp}:sum{j in prod[il }x[§11<=d[i];

The applications of indexed sets are demonstrated aptly in the AMPL moments
following Examples 6.6-4 and 9.1-2.

PROBLEM SET C.4A

1. Use subsets to express the left-hand side by means of a single sum{ } function:

(a) Ex-F 2x+ Ex

j=m+k j=n+p
2n+k

(b) Ex-i- S xi=ck>1
i=n+k

*2. Suppose that 5 components (one unit per product unit) are used in the production of
10 products according to the following schedule:

Component Products that use the component Minimum availability
1 1,2,5,10 500
2 3,6,7,8,9 400
3 1,2,3,5,6,7,9 900
4 2,4,6,8,10 700
5 1,34,5,6,7,9,10 100

The unit assembly cost of each product is a function of the component used: $9, $4, $6, $5,
and $8 for components 1 through 5, respectively. The maximum demand for any of the
products is 300 units. Use AMPL indexed sets to determine the optimal product mix that
minimizes the installation cost. (Hint: Let x;; be the number of units of product i that use
component j.)

3. Repeat Problem 2 assuming that the unit installation cost of the components is a function
of the assembled product: $1, $3, $2, $6, $4, $9, $2, $5, $10, and $7 for products 1 through 10,
respectively.

C.16

C5

C5.1

Appendix C AMPL Modeling Language

ACCESSING EXTERNAL FILES

So far, we have used “hard-coded” data to drive AMPL models. Actually, AMPL data
may be accessed from external files, spreadsheets, and/or databases. The same is true for
retrieving output results. This section deals with reading data from or writing output to

1. External files, including screen and keyboard.
2. Spreadsheets.

More details can be found in Fourer and Associates, 2003, Chapter 10.

Simple read files

The statement for reading data from an unformatted external file is

read item-list <filename;

The item-list is a comma-separated list of nonindexed or indexed parameters. In the
indexed case, the syntax is {indexing}paramMName[index]. The list can include parameters
only. This means that any set members must be accounted for under data prior to
invoking the read statement. (We will see in Sections C.5.3 and C.5.4 how set members
are read from formatted files and spreadsheets.)

To illustrate the use of read, consider the Reddy Mikks model where all the data
for the parameters unitprofit, rhs, and aij are read from a file named RM3.dat per
the model in file RM3.txt. The associated read statement is:

read {j in paint}unitprofitl[j],
{i in resource}rhs[i],
{i in resource, j in paint}aij[i,j]l<RM3.dat;

File RM3.dat lists the data in the exact order in which the items appear in the
read list—that is,

o
[N SE NN

The multiple-row organization of the data enhances readability, in the sense that we
could have had all the elements on one line (separated by blank spaces).5 Note that this
file happens to be all numeric. For convenience, nonnumeric data (such as parameter

SHidden codes in .dat files (and in . tab files, which will be presented later in this section) can trigger
AMPL errors such as “too few elements in line xx” or “unexpected end of file” (xx stands for a numeric
value) even though the text file may appear perfectly legal. To get rid of these hidden codes, click immedi-
ately to the right of the last data element in the file, then press the following keys in succession: Return,
Backspace, and Return.

C.5 Accessing External Files C.17

names) can appear in the data file provided that they are declared symbolic (for
details, see Sections 7.8 and 9.5 in Fourer and Associates, 2003).

The read statement allows accessing data from the keyboard. In this case, the
filename is replaced with a minus sign—that is, using <—. The execution of read in this
case will produce the DOS prompt ampl?, and it will be repeated until all the data re-
quested by read have been accounted for.

PROBLEM SET C.5A

C5.2

1. Prepare the input file RM3x.dat for the Reddy Mikks model (file RM3.txt), assuming that
the read statement is given as

read {j in paint}
{i in resource}
(
rhs[i],
{7 in paint}aijli,j]
) <RM3x.dat;

*2. For the Reddy Mikks model, explain why the following read statement is cumbersome:

read {i in resource}
(
rhs[i],
{i in paint} (unitprofit[jl,aijli,3])
) <RM3xx.dat;

Using print or printf to retrieve output

A simple way to retrieve output data in AMPL is to use preformatted print or for-
matted print£. As an illustration, in the Reddy Mikks model we can use the following
statements to send output data to a file we name file.out (output defaults to the
screen if a file is not designated):

printf "Objective value is %6.2f\n",profit >file.out;
printf {j in paint}:
"$8s5%8.2f%8.3f\n", j,product [j] ,product [j] .rc >file.out;

The output format always precedes the output list and must be enclosed in double
quotes. The same statement can be used with print simply by removing the format code.

In the first print£ statement, the format includes the optional descriptive text
Objective value is and mandatory specifications of how the output list is printed.
The code %6 . 2f says that the value of profit is printed in a field of length 6 with two
decimal points. The code \n moves printing to the next line in the file. These format
codes are the same as in C programming.

In the second print statement, the output list includes j, product[j],
product [j] .rc,where j is one of the members (exterior, interior)inthe AMPL
set paint. The code %8s reserves the first eight fields for printing the name exterior

Cc.18

Appendix C AMPL Modeling Language

or interior.If j were numeric (e.g., {j in 1..2}), then the format specification
would have to be integer, for example, $31.

The format specifications in this section are limited to %s, %1, £, and \n. AMPL
provides other specifications (see Table A-10 in Fourer and Associates, 2003).

PROBLEM SET C.5B

C.5.3

1. Use printf statements to present the optimal solution of the Reddy Mikks model (file
RM2.txt) in the following format where the suffixes .slack and .dual are used to
retrieve slack amount and the dual price:

Objective value =

Product Quantity Profit ($)

Constraint Slack amount Dual price

Input table files

The read statement in Section C.5.1 does not allow reading set members. This situation
is accounted for using table statements.

In table files, the data are presented as tables with properly labeled rows and
columns using the members of the defining sets. Access to table files requires a com-
panion read statement. The table statement formats the data, and the read statement
makes the data available to the model.

The syntax of table and read statements is as follows:

table ftableName IN "fileName" :SetName<- [SetColHdng) , parameters~ParamColHdng ;
read table tableName;

This syntax allows reading both the members of AMPL sets and the parameters from
tableName in fileName.

The default fileName where the text table is stored is tableName.tab . It may be
overridden by explicitly specifying fileName (in double quotes) with mandatory
.tab extension following the keyword IN. IN (in caps) means INput (as contrasted
with ouT, which, as shown later, is used to OUTput data to a table file). SetColHdng
may be an arbitrary heading name in the table which is cross-referenced to the
elements of SetName using <-. Similarly, AMPL parameters are cross-referenced to
the arbitrary names ParamColHdng using~. If SetColHdng happens to be the same
as SetName, the syntax SetName<- [SetColHdng] may be replaced with [SetName]
IN. In the case of parameters, ~ParamColHdng is deleted from the statement.

To illustrate the use of tables, Figure C.6 gives the contents of the files named
RMA4profit.tab, RM4rhs.tab, and RM4aij.tab for inputting the parameters unitprofit,

C.5 Accessing External Files C.19

File RM4profit.tab:
ampl.tab 1 1

COL1 COL2
exterior 5
interior 4

File RM4rhs.tab:
ampl.tab 1 1
resource rhs

ml 24
m2 6
demand 1
market 2

File RM4aij. tab:
ampl.tab 2 1

resource paint aij

ml exterior 6

ml interior 4

m2 exterior 1

m2 interior 2

demand exterior -1

demand interior 1 FIGURE C.6
market exterior 0

Contents of the table files for inputting the parameters
unitprofit, rhs,and aij of the Reddy Mikks model

=

market interior

rhs, and aij of the Reddy Mikks model. The first line in each file must always follow
the format

ampl.tab nbr_indexing_sets nbr_read_parameters

The first element, ampl. tab, identifies the table as a . tab file, with the succeeding two
elements providing the number of indexing sets of the parameters that will be read
from the table. In RMprofit.tab and RMrhs. tab, only one set is needed to define the
parameters unitprofit and rhs, and for this reason ampl.tab 1 1 is used as the
header line in these two files. For the parameter aij, two sets are needed, which
requires the use of the header line ampl.tab 2 1.

The header line is followed by a list of the exact or substitute names of the sets and
the parameters. The succeeding rows in the respective file list the values of the input
parameter as an explicit function of its indexing set(s) using blank space(s) as separa-
tors. For unitprofit and rhs, the listing is straightforward. For the double-indexed
parameter aij, each parameter list is identified by two explicit indices, even at the
expense of redundancy.

For the Reddy Mikks model, the associated tables are defined as follows:

table RM4profit IN: paint <- [COL1l], unitprofit~COL2;
table RM4rhs IN: [resource] IN, rhs;
table RM4aij IN: [resource, paint], aij;

C.20

Appendix C AMPL Modeling Language

Following the declaration of the table statements, we can use the following statements
to read in the data:

read table RMprofit;
read table RMrhs;
read table RMaij;

For readability, it is recommended that the table declaration statements follow the con-
straints segment. The read statements are then placed immediately below the table
declarations (see file RM4.txt).

The table statements above illustrate four syntactic rules:

1. In all three tables, the default file name is the table name with .tab extension
(else a file name enclosed in " " must be given immediately before the semicolon).

2. In the profit statement, the syntax paint<- [cOL1] tells AMPL that the entries
in the coLi-column in file RM4profit. tab define the members of the set paint.

3. In the profit statement, the syntax unitprofit~COL2 cross-references the
entries in cOL2 with the parameter unitprofit.

4. In the rhs statement, [resource] IN automatically defines the members of the set
resource because the name resource is used as a column heading in the table.

5. In the aij statement, aij has (at least) two dimensions, hence the statement
cannot be used to read the members of the associated sets. Instead, these sets
must be read from the single-dimensional tables RM4profit and RM4rhs. Thus,
[resource, paint] in the aij statement are used only to define the indices of
the parameter aij.

In general, if a model has no single-indexed parameters, a table can be declared for
the sole purpose of reading in the members of a set from a file. In this case, the header
line in the .tab file must read ampl.tab 1 0, indicating that the file includes one
column for the set members and no parameters. For example, the following statement
declares the table for reading the elements of the set paint from file paintset. tab:

table paintSet IN: [paint] IN;
In this case, the contents of paintSet . tab will be

ampl.tab 1 0
paint
exterior
interior

An alternative method for reading in aij without reading in the elements of
resource and paint first is to declare

set Z dimen 2;
param aij{z};

C54

C.5 Accessing External Files C.21
In this case, we can read in aij from table RM4aijj in the following manner

table RM4aij IN: Z<- [resource, paintl], aij;
read table RM4aij;

Keep in mind that these statements do not define the elements of the sets
resource and paint. To define the elements of the sets resource and paint

set resource=setof{ (i, j) in 2} i;
set paint=setoff{ (i, j) in 2} j;

File RM4x.txt implements these ideas. It should be clear, however, that this is a convo-
luted way for defining the sets resource and paint. The use of the two-dimensional
set Z as given above is advisable only if the sets resource and paint are not needed
to define variables or parameters in the model. In such a case, we can use dummy sets
X and Y to define the two-dimensional set z; that is, z<- [X, Y].
In some cases it may be convenient to read the data of a two-dimensional
parameter as an array in place of two indexed single elements, as given above for
aij. AMPL allows this by changing the definition of the table to:

table RM4arrayAij IN: [i~resource]l, {j in paint}<aij[i, F1~(3)>;

(The new table definition is somewhat “overcoded” in the sense that ~ (5) appears
redundant. Nevertheless, it gets the job done.) In this case, the file RM4array Aij.tab
must appear as

ampl.tab 1 2

resource exterior interior
ml 6 4
m2 1 2
demand -1 1
market 0 1

Note that the header ampl.tab 1 2 indicates that table RM4arrayaij has
one key index (namely, [i~resource]) and two data columns with the headings
exterior and interior. The new table, RM4arrayais, does not permit reading
the members of the sets resource and paint, the same restriction table RM4aij
has. (See file RM4.txt.)

Output table files

Table files may also receive output from AMPL after the solve command has been
executed. The syntax is similar to that of the input files, except that in the table decla-
ration, IN is replaced with ouT. For example, in the Reddy Mikks model, suppose that
we are interested in retrieving the following information:

1. Values of the variables and their reduced costs.
2. Slack and dual values associated with the constraints.

Cc.22

Appendix C AMPL Modeling Language

This information requires the use of two tables because the two item are functions of
distinct sets: paint and resource:

table varData OUT: [paint], product, product.rc;
table conData OUT:

[resource], limit.slack~slack, limit.dual-~Dual;

The OUT-table declaration statements should be placed after the constraints segment
to ensure that names of variables and constraints used in these statements have
already been defined (see file RM4.txt). The syntax limit.slack~slack and
limit.dual~Dual assign the descriptive header names slack and Dual to the
columns where the corresponding data are written in the file. Otherwise, the default
header names will be 1imit.slack and limit.dual.

To retrieve the output, we need to issue the command solve and then follow it
with the following write statements:

write table varData;
write table conData;

The output will be sent to files varData.tab and conData.tab, respectively. As with
the input case, we can override the default file name by entering (in double quotes) a
specific name (with .tab extension) following the keyword ouT and immediately before
the colon.

Output tables can also be used to send two-dimensional arrays to a file. For
example, either one of the following two definitions can be used to send the array aij
to a .tab file:

table AijMatrix OUT: [resource, paint], aij;
table Aijout OUT:{i in resource}->[RESOURCES], {j in paint}<aijl[i, 31~(3)>;

In the first definition, file AijMatrix.tab lists each element of aij with its two indices on
the same row. In the second, file Aijout.tab lists aij in an array format, with the user-
specified name RESOURCES being the heading of the first (key) column.

PROBLEM SET C.5C

*1. In RM4.txt, suppose the statements

read table RM4profit;
read table RM4rhs;
read table RM4aij;

are replaced with

read table RM4aij;

data;

param unitprofit:= exterior 5 interior 4;
param rhs:=ml 24 m2 6 demand 1 market 2;

C5.5

C.5 Accessing External Files C.23

Explain why AMPL will not execute properly with the proposed change. (Hint: The best
way to find out the answer is to experiment with the model.)

2. Suppose that the contents of file RM4rhs.tab read as

ampl.tab 1 1

constrName Availability
ml 24

m2 6

demand 1

market 2

Make the necessary changes in RM4.txt, and execute the model.

Spreadsheet input/output tables

Accessing data from and sending data to a spreadsheet uses syntax similar to that of the
table files presented in Section C.5.4. The following statements show how the input data of
the Reddy Mikks model can be accessed from an Excel spreadsheet file named RMS5.xIs:

table profitVector IN "ODBC" "RM5.xls":paint<-[COL1l], unitprofit~COL2;
table rhsVector IN "ODBC" "RM5.xls": [resource] IN, rhs;
table aijMatrix IN "ODBC" "RM5.xls": [resource, paint], aij;

The user-generated names profitVector, rhsVector, and aijMatrix are those of
the tables within the spreadsheet RM5.xls. These names define the ranges in the
spreadsheet that correspond to the respective data tables.® "opBc™ is the standard
data-handling interface for the spreadsheet. A read table then inputs the data to the
model (see file RM5.txt). Note the use of COL1 and COL2 in table profitvector,
which correspond to the (arbitrary) column names in the spreadsheet. The syntax is the
same as in input tables (Section C.5.3). Each data table of the model may be stored in
a separate sheet, if desired.

As in Section C.5.3, two-dimensional data can be read in an array format using
the following table definition:

table aijArray IN "ODBC" "RM5.x1s": [i~resourcel, {j in paint}<aij[i, J1~(3)>;

In this case, the array aij appears in the range aijArray of RM5.xls and must include the
proper row and column headings. It is also important to remember that numeric column
headings when used in the table must be converted to strings by using Excel TEXT function,
else AMPL will issue some undecipherable error messages.

The same table declaration can be used to export output data to a spreadsheet.
The only difference is to replace IN with oUT, exactly as in the case of table files. In this
case,a write table command (following the solve command) will send the output
to the spreadsheet. The following examples demonstrate the use of ouT tables:

table variables OUT "ODBC" "RM5a.xls":

[paint], product~solution, product.rec~reducedCost;

To name a range, highlight it and type its name in the “name box” to the left of the Excel formula bar, then
click Enter, or use Excel’s Insert/Names/Define.

c.24

C.6

Appendix C AMPL Modeling Language

table constraints OUT "ODBC" "RM5a.xls":
[resource], limit.slack~slack, limit.dual-~dual;

The output tables variables and constraints will go to Excel file RM5a.xIs follow-
ing the execution of the write table command, each appearing automatically in the
northwest corner of a separate sheet.

INTERACTIVE COMMANDS

AMPL allows the user to solve the model interactively and to check/modify data and
retrieve output to the screen or to a file. The following is a partial list of a number of
useful commands:

delete comma-separated names of objective function and constraints;
drop comma-separated names of objective function and constraints;
restore comma-separated names of objective function and constraints;
display comma-separated item_list;

print/printf unformatted/formatted item_list;

expand comma-separated names of objective function and constraints;
let parameter or variable (indexed or nonindexed):= value;

fix variable (indexed or nonindexed):= value;

unfix variable (indexed or noindexed);

reset;

reset data;

solve;

Such commands are entered interactively at the ampl : prompt. Some, such as display
and print, may appropriately be hard-coded in the model, if desired.

The delete command completely removes the listed objective function and/or
constraints, whereas drop temporarily yanks them out of the model. The drop command
may be annulled by the restore command. A new objective function or constraint may
be added to the model by entering it from the keyboard, exactly as we do in a hard-coded
model. (See Example 9.2-1 for an application to the B&B algorithm.)

We have used display with the Reddy Mikks model. The output may be directed
to an external file using > filename immediately before the terminating semicolon. Else,
the output defaults to the screen.

The print/printf command has been discussed earlier in Section C.5.2. The
output defaults to the screen, or it may be directed to an output file as in display.

The expand command provides a longhand representation of the objective function
and the constraints. For example, in the Reddy Mikks model, the command

expand profit;
prints out the objective function as

maximize profit:5*product ["exterior"]+4*product ["interior"];

C.6 Interactive Commands C.25

In this manner, the user can see if the model has retrieved the input data correctly. In a
similar manner, the command

expand limit;

will expand all the constraints of the model. If you are interested in a specific constraint,
then 1imit must be properly indexed. For example,

expand limit["m1l"];

will display the first constraint of the model.

The let command allows entering new values of parameters and variables
(using : = as assignment operator). The right-hand side may be a simple numeric
value or a mathematical expression. It is used to test different solution scenarios as we
will show in Section C.7.

The £ix command is used to assign a specific value to a variable prior to solving
the model. For example, suppose that the following statements are issued interactively
prior to solving the Reddy Mikks model.

ampl: fix product ["exterior"]:=1.5;
ampl: solve;

With these commands, AMPL solves the problem with the added restriction
product ["exterior"] = 1.5.The change caused by £ix can be undone by issuing the
unfix command as

ampl: unfix product ["exterior"];

The £ix/unfix commands can be useful in experimenting with the model when some
of the variables are either eliminated (=0) or held constant. (See AMPL moment
following Example 9.3-4 for an application to the traveling salesperson problem.)

The command reset removes all reference to the current model from AMPL.
A fresh model command will thus be necessary to restart the model. Also, the command
reset data; will delete all the data of the model. Specific data elements may be
selectively removed by listing them after the command. For example, reset dataa b
c; will delete the values of the parameters a, b, and c.

It is important to note that when two AMPL models are executed in the same
session, the command reset; must separate the execution of successive models. For
example, the two AMPL models al.txt and aZ2.txt are executed as follows:

ampl: model al.txt;
ampl: reset; model a2.txt;

If reset; is not used, AMPL will spew an enormous list of undecipherable errors.
There is a large number of useful interactive commands in AMP, but their detailed
presentation is beyond the scope of this abridged presentation.

C.26

C.7

Appendix C AMPL Modeling Language

ITERATIVE AND CONDITIONAL EXECUTION OF AMPL COMMANDS

Suppose in the Reddy Mikks model we are interested in studying the sensitivity of the
optimal solution to changes in specific parameters. For example, in file RM2.txt, how is
the optimal solution affected when the availability of raw material m1 (=rhs ["m1"]) is
changed from its current value of 24 tons to the new values of 27 and 30 tons? After
executing RM2.txt and getting the solution for rhs [*m1"] =24, we can enter the following
statements interactively:

ampl: let rhs["ml"]:=27;
ampl: solve;
ampl: display profit, product;

The output will be displayed on the screen (it can also be sent to a file, if desired, as we
explained earlier). To secure results for rhs["m1"] =30, the same statements are
repeated with the let statement specifying the new value. This, however, is not the
most efficient way to do the task.

AMPL allows building convenient commands files that will eliminate the unneces-
sary chore of retyping commands. Specifically, for the present example, a command file
(which we arbitrarily name cmd.txt) may have the following statements:

for (i in 1..2}

{

let rhs["ml"] :=rhs["m1"]+3;
solve;
display profit, product;

}

Following the execution of the model (with rhs ["m1"]=24), we can execute the
remaining two cases by entering

ampl: commands cmd.txt;

Of course, we can modify cmd.txt to include rhs["m1"]=24 as well. See Problem 1, Set C.7a.
We can use the statement repeat while condition{...}; or repeat until
condition{...}; toreplace for{...} as follows:

repeat while rhs["m1l"]<=30

{

let rhs["ml"] :=rhs["ml"] +3;
solve;

display profit, product;

Alternatively, we may use
repeat until rhs["ml"]>30

{

let rhs["ml"] :=rhs["m1"]+3;

C.8 Sensitivity Analysis Using AMPL C.27

solve;
display profit, rhs["ml"], product;

}i

Note that repeat while will loop so long as the condition is true, whereas repeat until
will loop so long as the condition is false.

Another useful statement in commands file is i £-then-else. In this case, i £ may
be followed by any legitimate condition, whereas then and else can be followed only
by command statements. With the if statement, AMPL commands continue; and
break; may be used within the loop construct to either skip to the next index of the
loop or exit the loop altogether.

Example 9.3-5 (Figure 9.14) provides a good illustration of the use of the loop
and conditional statements to print formatted output.

PROBLEM SET C.7A

Cc.8

1. Modify RM2.txt so that rhs ["m1"] will assume the values 20 to 35 tons in steps of 5 tons.
All solve commands must be executed from within the command file cmd.txt in the
following manner:

ampl: model RM2.txt;
ampl: commands cmd.txt;

The command file cmd.txt is developed using the three different versions to construct the loop:

(a) for{}.
(b) repeat while{};.
(¢) repeat until{};.

SENSITIVITY ANALYSIS USING AMPL

We have seen previously how the dual values and the reduced costs can be determined
in an AMPL LP model by using the ConstraintName .dual and VariableName .rc in
the display command. To complete the standard LP sensitivity analysis report, AMPL
additionally provides facilities for the determination of the optimality ranges for the
objective-function coefficients and the feasibility ranges for the (constant) right-hand
sides of the constraints. We will use file RM2.txt (see Figure C.3) to demonstrate how
AMPL generates the sensitivity analysis report.
In the model in Figure C.3, replace the solve and display statements with

option solver cplex;

option cplex options ’sensitivity’;

solve;

display limit.down, limit.current, limit.up, limit.dual;
display product.down, product.current, product.up, product.rc;

The output can be directed to a file if desired (see file RM6.txt). The two option state-
ments must precede the solve command. The first display command provides the

Cc.28

Cc9

Appendix C AMPL Modeling Language

feasibility ranges for all the constraints (named limit in the model). The suffixes
.down, .current,and .up give the lower, current, and upper values, respectively, for
the right-hand side of each member constraint. In a similar manner, the second
display command provides the optimality ranges for the objective-function coeffi-
cients. The following output is self-explanatory.

profit = 21
product.down product.current product.up product.rc

exterior 2 5 6 0

interior 3.33333 4 10 0
limit.down limit limit.up

demand -1.5 0 le+20

ml 20 0.75 36

m2 4 0.5 6.66667

market 0 0 0

SELECTED AMPL MODELS

This section fully develops AMPL models for a number of examples used throughout
the book. For convenience, the models are categorized by chapter. In addition to
demonstrating the use of AMPL programming facilities given in Sections C.1 through
C.8 in real applications, the examples also serve to introduce new AMPL features.

Chapter 2

The bus scheduling problem (Example 2.4-5). The constraints of the bus scheduling
problem have a special structure that allows formulating the left-hand side of the
constraints in a compact generalized formulation. Specifically, the left-hand side of con-
straint 1 can be written as x; + x,,,, where m is the total number of periods in a 24-hour day
(=6 in the present example). For the remaining constraints, the left-hand side takes the
formx;_y + x;,i = 2,3, ...,m.Using if. . .then. . .else (as explained in Section C.3),
all m constraints can be represented compactly as given in Figure C.7 (file BusSched.txt).

Chapter 5

Transportation model (Example 5.3-1). Figure C.8 provides the AMPL model for the
transportation model of Example 5.3-1 (file TansportA.txt). The names used in the model
are self-explanatory. Both the constraints and the objective function follow the format of
the LP model presented in Example 5.1-1.

The model uses the sets sNodes and dNodes to conveniently allow the use of the
alphanumeric set members {s1, s2, s3}and {D1, D2, D3, D4}, which are entered
in the data section. All the input data are then entered in terms of these set members as
shown in Figure C.8.

Although the alphanumeric code for set members is more readable, generating
them for large problems may not be convenient. File TransportB.txt shows how the
same sets can be defined as {1..m} and {1..n}, where m and n represent the number
of sources and the number of destinations. By simply assigning numeric values for m
and n, the sets are automatically defined for any size model.

C.9 Selected AMPL Models C.29

param m;
param min nbr buses{l..m};
var x_nbr buses{l..m} >= 0;
minimize tot nbr buses: sum {i in 1..m} x _nbr buses[i];
subject to constr nbr{i in 1..m}:
if i=1 then
x nbr buses[i]+x _nbr buses [m]
else
x _nbr buses[i-1]+x nbr buses[i] >= min nbr buses[i];

data;
param m:=6;
param min nbr buses:= 1 4 2 8 3 10 4 7 5 12 6 4;

solve;
display tot nbr buses, x nbr buses;

FIGURE C.7
AMPL model of the bus scheduling problem of Example 2.4-5 (file BusSched.txt)

FIGURE C.8
AMPL model of the transportation model of Example 5.3-1 (File TransportA.txt)

H#H----- Transporation model (Example 5.3-1)-----
set sNodes;
set dNodes;
param c{sNodes, dNodes};
param supply{sNodes};
param demand{dNodes};
var x{sNodes, dNodes}>=0;
minimize z:sum {i in sNodes,j in
dNodes}c[i,jl*x[1,3];
subject to
source{i in sNodes}:sum{j in dNodes}x[i,j]l=supply[i];
dest{j in dNodes}:sum{i in sNodes}x[i,j]=demand[]];
data;
set sNodes:=81 S2 S3;
set dNodes:=D1 D2 D3 D4;
param c:
D1 D2 D3 D4 :=
S1 10 2 20 11
S2 12 7 9 20
S3 4 14 16 18;
param supply:= S1 15 S2 25 S3 10;
param demand:= D1 5 D2 15 D3 15 D4 15;
solve;display z, x;

Cc.30

Appendix C AMPL Modeling Language

The data of the transportation model can be retrieved from a spreadsheet (file
TM.xls) using the AMPL table statement. File TansportC.txt provides the details. To
study this model, you will need to review the material in Section C.5.5.

Chapter 6

Figure C.9 provides the AMPL model for solving Example 6.3-6 (file ShortestRouteA.txt).
The variable x[i, j] assumes the value 1 if arc [i,] is on the shortest route and 0
otherwise. The model is general in the sense that it can be used to find the shortest route
between any two nodes in a problem of any size.

As explained in Example 6.3-6, AMPL treats the problem as a network in which
an external flow unit enters and exits at specified start and end nodes. The main input

FIGURE C.9
AMPL shortest route model (file ShortestRouteA.txt)

#--------- shortest route model (Example 6.3-6)---------

param start;
param end;
param M=999999; #infinity
param d{i in 1..n, j in 1..n} default M;
param rhs{i in 1..n}=if i=start then 1
else (if i=end then -1 else 0);
var x{i in 1..n,j in 1..n}>=0;
var outFlow{i in 1..n}=sum{j in 1..n}xI[i,3];
var inFlow{j in 1..n}=sum{i in 1..n}x[i,3];

minimize z: sum{i in 1..n, j in 1..n}d[i,3]1*x[i,3];
subject to limit{i in 1..n}:outFlow[i]-inFlow[i]l=rhs[i];

data;

param n:=5;
param start:=1;
param end:=2;

param d:
1 2 3 4 5:=
1 100 30
2 20
3 . . . 10 60
4 15 . . 50
5 . ;
solve;
print "Shortest length from",start,"to",end,"=",z;

printf "Associated route: %2i",start;
for {i in 1..n-1} for {j in 2..n}
{if x[i,jl=1 then printf" - %2i",j;} print;

C.9 Selected AMPL Models C.31

data of the model is an n X n matrix representing the distance d[i, 3] of the arc join-
ing nodes i and j. Per AMPL syntax, a dot entry in d[i, j] is a placeholder that
signifies that no distance is specified for the corresponding arc. In the model, the dot
entry is overridden by the infinite distance M (= 999999) in

param d{i in 1..n, j in 1..n}default M;

The constraints represent flow conservation through each node:
(Input flow) — (Output flow) = (External flow)

Fromx[i, j1,we candefine the input and output flow for node i using the statements

var inFlow{j in 1..n}=sum{i in 1..n}x[i, JI;
var outFlow{i in 1..n}=sum{j in 1..n}x[i, 3j1;

The left-hand side of the constraint i is thus given as outFlow[i] -inFlow[i].
The right-hand side of constraint i (external flow at node i) is defined as

param rhs{i in 1..n}=if i=start then 1 else(if i=end then -1 else 0);

(See Section C.3 for details of if...then...else.) With this statement, specifying
start and end nodes automatically assigns 1, -1, or 0 to rhs,the right-hand side
of the constraints. This statement allows finding the shortest distance between any two
nodes in the network.

The objective function seeks the minimization of the sum of d[i, j1*x[i, j]over
all i and 5.

In the present example, start=1 and end=2, meaning that we want to determine
the shortest route from node 1 to node 2. The associated output is

Shortest length from 1 to 2 =55
Associated route: 1 - 3 - 4 - 2

Remarks. The AMPL model as given in Figure C.9 has one flaw: The number of
active variables x;; is n?, which could be significantly much larger than the actual num-
ber of (positive-distance) arcs in the network, thus resulting in a much larger LP. The
reason is that the model accounts for the nonexisting arcs by assigning them an infinite
distance M (= 999999) to guarantee that they will be zero in the optimum solution.

The situation can be remedied by using a subset of {i in 1..n, j in 1..n}
that excludes nonexisiting arcs, as the following statement shows:

var x{i in 1..n, j in 1..n:d[i, jl<M}>=0;

(See Section C.4 for the use of conditions to define subsets.) The same logic must be
applied to the constraints as well by using the following statements:

var inFlow{j in 1..n}=sum{i in 1..n:d[i, jI<M}xI[i, 3F1;
var outFlow{i in 1..n}=sum{j in 1..n:d[i, jl<M}xI[i, J];

File ShortestRouteB.txt gives the complete model.

C.32

Appendix C AMPL Modeling Language

Maximal flow model (Example 6.4-2). Figure C.10 provides the AMPL model for the
maximal flow problem. The data applies to Example 6.4-2 (file MaxFlow.txt). The overall
idea of determining the input and output flows at a node is similar to the one detailed for
the shortest-route model. However, because the model is designed to find the maximum
flow between any two nodes, start and end, two additional constraints are needed to
ensure that no external flow enters start and no external flow leaves end. Constraints
inStart and outEnd in the model ensure this result. These two constraints are not
needed when start=1 and end=5 because the nature of the data guarantees the desired

FIGURE C.10
AMPL model of the maximal flow problem of Example 6.4-2 (file MaxFlow.txt)

- Maximal Flow model (Example 6.4-2)----------
param n;

param start;

param end;

param c{i in 1..n, j in 1..n} default 0;

var x{i in 1..n,j in 1..n:c[i,3]1>0}>=0,<=c[i,3];
var outFlow{i in 1..n}=sum{j in 1..n:c[i,jl>0}x[i,]];
var inFlow{i in 1..n}=sum{j in 1..n:c[j,i]1>0}x[3F,1i];

maximize z: sum {j in 1..n:c[start,jl>0}x[start,]j];
subject to
limit{i in 1..n:

i<>start and i<send}:outFlow[i]-inFlow[i]=0;
inStart:sum{i in 1..n:c[i,start]>0}x[i,start]=0;
outEnd:sum{j in 1..n:clend,jl>0}x[end,jl=0;

data;
param n:=5;
param start:=1;
param end:=5;
param cC:
1 2 3 4 5 :=

1 20 30 10 O

2 40 O 30

3 0 10 20

4 5 . 20

5 i

solve;

print "MaxFlow between nodes",start,"and",end, "=",z;

printf "Associated flows:\n";
for {i in 1..n-1} for {j in 2..n:cl[i,j]>0}
{if x[i,j]1>0 then
printf" (%2i-%$21)=%5.2f\n",i,Jj,x[1,3];} print;

C.9 Selected AMPL Models C.33

result. However, for start =3, node 3 allows both input and output flow (arcs 4-3 and
3-4) and, hence, constraint inStart is needed (try the model without instart!).

The objective function maximizes the sum of the output flow at node start.
Equivalently, we can choose to maximize the sum of the input flow at node end.

CPM model (Example 6.5-2). Figure C.11 provides the AMPL model for any CPM
network (file CPM.txt). The model is driven by the data of Example 6.5-2. It makes use

FIGURE C.11
AMPL model for Example 6.6-2 (file CPM.txt)

———————————————————————— CPM (Example 6.5-2) -----------------———
param n;

param D{1..n,
set into{l..n
set from{l..n
var x{i in 1..n,j in from[i] }>=0;
var ET{i in
var LT{i in
var TF{i in
var FF{i in
data;

param n:=6;
param D: 1 2 3 4 5 6:=

.n} default -1;

1.
b
Vi

5L

7

}i
}

.n, j in froml[il};
.n, j in froml[il};

N

1 5 6 .

2 3 8 .
3 2 11
4 0 1
5 12
6 ;

for {i in 1..n} {let from[i]:={j in 1..n:D[i,3]1>=0}};

for {j in 1..n} {let into[j]l:={i in 1..n:D[i,3]1>=0}};

———————————— nodes earliest and latest times and floats

let ETI[1]:=0; #earliest node time

for {i in 2..n}let ET[i]:=max{j in into[i] }(ET[j1+D[3,1]);

let LT[n] :=ET[n]; #latest node time

for {i in n-1..1 by -1}let LT[i]:=min{j in from[i]}(LT[j]1-D[i,3]);

printf "%1s-%1s %5s %5s %58 %58 %55 %58 %5s \n\n",
nin, uju’ n"p","ES","EC","L8","LC","TF","FF" >Ex6.6-20ut.txt;

for {i in 1..n, j in from[i]}

{

let TF[i,j]:=LT[j]-ET[i]-DI[i,7];

let FF[i,j]:=ET[j]-ET[i]-DI[i,7];

printf "%$1i-%11i %5i %5i %51 %5i %5i %51 %5i %3s\n",
i,j,bli,3j],ET[i],ET[i]1+DI[i,]j],LT[j]-DI[i,3]1,LT[3],TFI[i,3],FFI[i,]],
if TF[i,j]1=0 then "c" else "" >Ex6.6-20ut.txt;

C.34

Appendix C AMPL Modeling Language

of indexed sets (see Section C.4) and requires no optimization. In essence, no solve
command is needed, and AMPL is implemented as a pure programming language
similar to Basic or C.

The nature of the computations in CPM requires representing the network by
associating two indexed sets with each node: into and from. For node i, the set
into[i] defines all the input nodes that feed into node i, and the set from[i] defines
all the output nodes that are reached from node i (recall that in CPM all the arcs are
directional, hence it makes sense to speak of input and output nodes). For example, in
Example 6.5-2, from[1] ={2, 3},and into[1] is empty.

The determination of subsets from and into is achieved in the model as follows:
Because D[i, j] can be zero when a CPM network uses dummy activities, the default
value for D[i, 3] is -1 for all nonexisting arcs. Thus, the set from[i] represents all the
nodes j in the set {1..n} that can be reached from node i, which can happen only if
D[i, j1>=0.Thissays that from[i] is defined by the subset {j in 1..n:D[i, j1>=0}.
Similar reasoning applies to the determination of subsets into [i].The following AMPL
statements automate the determination of these sets and must follow the D[i, j] data,
as shown in Figure 6.48:

for {i in 1..n} {let from[il:={j in 1..n:DI[i, j1>=0}};
for {j in 1..n} {let into[jl:={i in 1..n:DI[i, j1>=0}};

Once the sets from and into have been determined, the model goes through the
forward pass to compute the earliest time, ET [1]. With the completion of this pass, we
can initiate the backward pass by using

let LT[n]:=ET[n];
The rest of the model is needed to obtain the output shown in Figure C.12. This output

determines all the data needed to construct the CPM chart. The logic of this segment is
based on the computations given in Examples 6.5-2 and 6.5-4.

FIGURE C.12
Output of AMPL model for Example 6.5-2 (file CPM.txt)

i-j D ES EC LS LC TF FF
1-2 5 0 5 0 5 0 0 c
1-3 6 0 6 5 11 5 2
2-3 3 5 8 8 11 3 0
2-4 8 5 13 5 13 0 0 c
3-5 2 8 10 11 13 3 3
3-6 11 8 19 14 25 6 6
4-5 0 13 13 13 13 0 0 c
4-6 1 13 14 24 25 11 11
5-6 12 13 25 13 25 0 0 c

C.9 Selected AMPL Models C.35

Chapter 8

Preemptive goal programming mode (Example 8.2-2). AMPL lends itself readily to
applying the idea presented in Example 8.2-2, where constraints are added to ensure that
higher-priority solutions are not degraded. Figure C.13 provides a generic AMPL code
that allows the application of the preemptive method interactively (file GoalProg.txt).

The design of the model is standard except for the provisions that allow applying
the preemptive method interactively. Specifically, the model assumes that the first r
constraints are goal constraints and the remaining m — r — 1 are strict constraints.
The model has r distinct goal objective functions, which can be included in the same
model by using the following indexed AMPL statement (only an indexed name is
allowed for multiple objective functions):

minimize z{i in 1..r}:p*sminus[i]l+g*splus[i];

FIGURE C.13
AMPL model for interactive application of the preemptive method (file GoalProg.txt)

param n;
param m;

param r;

param p;

param q;

param a{l..m,1..n};
param b{1l..m};
param um{1l default 100000;
param up{1l default 100000;
var x{1..n} >=0;

var sminus{i in 1..r}>=0,<=uml[i];
var splus{i in 1..r}>=0,<=upli];

..m
..m

|~ =~

minimize z{i in 1..r}: p*sminus([i]+g*splus[i];
subject to
cl{i in 1..r}:

sum{j in 1..n}ali,jl*x[j]+sminus([i]-splus[il=b[i];
c2{i in r+1l..m}: sum{j in 1..n} ali,jl*x[jl<=bl[i];

data;

param m:=4;

param n:=4;

param r:=4;

param a: 1 2 3 4:=
1 550 35 55 .075
2 55 -31.5 5.5 .0075
3 110 7 -44 .015
4 0 0 0 1;

param b:=1 16 2 0 3 0 4 2;

C.36

Appendix C AMPL Modeling Language

The given definition of the objective function accounts for minimizing z; = s;
and z; = s; by setting (p = 1,¢ = 0) and (p = 0,q = 1), respectively.

Instead of adding a new constraint each time we move from one priority
level to the next, we use a programming trick that allows modifying the upper
bounds on the deviational variables. The parameters um[i] and up [1] represent
the upper bounds on sminus[i] (s;j) and splus[i] (s;), respectively.
These parameters are modified to impose implicit constraints of the types
sminus[i]<=um[i] and splus[i] <=up[i], respectively. The values of um and
up in priority goal i are determined from the solutions of the problems of
priority goals 1,2,and i — 1. The initial (default) value for um and up is infinity.

We will show shortly how AMPL activates any of the r objective func-
tions, specifies the values of p and q, and sets the upper limits on s; and s;, all
interactively, which makes AMPL ideal for carrying out goal programming
computations.

Using the data of Example 8.1-1, the goals of the model are

Minimize G| = s

Minimize G, =

I
©u
[3e)

Minimize G5 =

I
©u
W

Minimize G4 = s,
Suppose that the goals are prioritized as
G, > G, > G; > G,

The implementation of AMPL model thus proceeds in the following manner:
For Gy, setp = 1 and g = 0 because we are minimizing z [2] =sminus [2].The
following commands are used to carry out the calculations:

ampl: model GoalProg.txt;

ampl: let p:=1;let g:=0;

ampl: objective z[2];

ampl: solve; display z[2], x, sminus, splus;

These commands produce the following results:

z[2] =0

: b4 sminus splus :=
1 2.6236le-28 16 0

2 0 0 0

3 8.2564e-28 0 0

4 0 2 0

The solution (x; = 0,x, = 0,x3 = 0, and x4 = 0) shows that goal G, is
satisfied because z [2] = 0 (that is, s, = 0). However, the next-priority goal,
G, is not satisfied because s; = 16. Hence, we need to optimize goal G; with-
out degrading the solution of G,. This requires changing the upper bounds on
s, to the value specified by the solution of G,—namely, zero. For goal Gy,

C.9 Selected AMPL Models C.37

current p = 1 and ¢ = 0 from G, remain unchanged because we are minimizing s;.
The following interactive AMPL commands achieve this result:

ampl: let um[2]:=0;

ampl: objective z[1l]; solve; display z[1l], x, sminus, splus;
The ouput is

z[1] =0

: X sminus splus :=

1 0.0203636 0 0

2 0.0457143 0 0

3 0.0581818 0 0

4 0 2 0

The solution shows that all the remaining goals are satisfied. Hence, no further
optimization is needed. The goal programming solution is x, = .0203636,x; = .0457143 ,
x, = .0581818,and x, = 0.

Remarks.

1. We can replace let um[2]:=0; with either fix sminus[2]:=0; or let
sminus [2] : =0; with equal end result.

2. The interactive session can be totally automated using a commands file that
automatically selects the current goal to be optimized and imposes the proper
restrictions before solving the next priority goal. The use of this file (named
amplCmds.txt) requires making some modifications in the original model as
shown in file GolaProgA.txt. To be completely versatile, the data of the model
are stored in a separate file named amp/Data.txt. In this case, the execution of the
model requires issuing two command lines:

ampl: model amplEx8.1-1A.txt;
ampl: data amplData.txt;
ampl: commands amplCmds.txt;

See Section C.7 for more information about the use of commands.

Chapter 9

Set covering model (Example 9.1-2). Figure C.14 presents a general AMPL model for
any set-covering problem (file SetCovering.txt). The formulation is straightforward,
once the use of indexed set is understood (see Section C.4). The model defines street as
a (regular) set whose elements are A through K. Next, the indexed set corner{street}
defines the corners as a function of street. With these two sets, the constraints of the
model can be formulated directly. The data of the model give the elements of the
indexed sets that are specific to the situation in Example 9.1-2. Any other situation is
handled by changing the data of the model.

C.38

Appendix C AMPL Modeling Language

e Example 9.1-2------------------
param n; #maximum number of corners
set street;
set corner{street};
var x{1..n}binary;
minimize z: sum {j in 1..n} x[j];
subject to limit {i in street}:

sum {j in corner[i]} x[j]l>=1;
data;
param n:=8;
set street:=A B CDEF GHTIJK;
set corner[A]:=1
set corner[B] :=2
set corner|[C]:=4
set corner[D] :=7
set corner[E] :=6
set corner|[F]:=2
set corner[G]:=1
set corner[H] :=4
set corner|[I]:=2
set corner|[J] :=5
set corner[K] :=3

Ul o b J0 00 J 0 U1 W N

option solver cplex;
solve;
display z,x;

FIGURE C.14
General AMPL model for the set covering problem of Example 9.1-2 (file SetCovering.txt)

Job sequencing model (Example 9.1-4). File JobSeq.txt provides the AMPL model
for the problem of Example 9.1-4. The model in Figure C.15 is self-explanatory because
it is a direct translation of the general mathematical model. It can handle any number
of jobs by changing the input data. Note that the model is a direct function of the raw
data: processing time p, due date d, and delay penalty perDayPenalty.

Chapter 13

General multi-item EOQ (Example 13.3-3). The AMPL nonlinear model for the gen-
eral multi-item EOQ with storage limitation is given in Figure C.16 (file ConstrEOQ.txt).
The model follows the same rules used in solving linear programs. However, AMPL
nonlinear models exhibit peculiarities that may impede reaching a solution. In particular,
“judicious” initial values must be specified for the variables. In Figure C.16, the definition
statement

var y{1..n}>=0, :=10; #initial trial value = 10;

C.9 Selected AMPL Models C.39

- - Example 9.1-4------------------
param n;

set I={1..n};

set J={1..n}; #I is the same as J

param p{I};
param d{I};

param perDayPenalty{I};
param M=1000;

var x{J}>=0; #continuous
var y{I,J} binary; #0-1
var sMinus{J}>=0; # s=sMinus-sPlus

var sPlus{J}>=0;

minimize penalty: sum {j in J}
perDayPenalty[j] *sPlus[]j];

subject to

eitherOr1{i in I,j in J:i<>j}:

M*y[i,J1+x[i]l-x[]j]l>=p[]];
eitherOr2{i in I,j in J:i<>j}:

M* (1-y[i,3])+x[j]-x[1i]l>=p[il;
dueDate{j in J}:x[j]+sMinus[j]-sPlus[jl=d[j]l-p[jl;
data;
param n:=3;
param p:= 1 5 2 20 3 15;
param d:= 1 25 2 22 3 35;
param perDayPenalty := 1 19 2 12 3 34;
option solver cplex; solve;
display penalty, x;

FIGURE C.15
AMPL model of the job sequencing problem of Example 9.1-4 (file JobSeq.txt)

includes the code : =10 that assigns the initial value 10 to all the variables. If you use an
initial value of 1 in the present example, division by zero will result during the itera-
tions. Thus, you may need to replace K;D;/y;with K;D;/(y; + A), A > 0and very small,
to prevent division by zero during the iterative process. Indeed, Problems 1 and 4,
Set 13.3c, could not be solved with AMPL without invoking this trick.

Chapter 21

Modeling nonlinear problems (Example 21.2-2). Figure C.17 gives the AMPL model
(file NLPxt). The only deviation from LP (other than the nonlinearity, of course) is that
you may need to specify “appropriate” initial values for the variables to get the solution
iteration to converge. In Figure C.17, the arbitrary initial values x; = 10 and x, = 10 are
specified by appending :=10 and :=10 to the definition of the two variables. If you do
not specify initial values at all, AMPL will not reach the optimum solution and will print
the message “too many major iterations.” Although a solution is given in this case, it

C.40 Appendix C AMPL Modeling Language

param n;
param K({ ;
param D{
param h{
param a(
param A;

var y{1..n}>=0, :=10; #initial trial value = 10
minimize z: sum{j in 1..n}(K[3]1*D[3]1/y[31+h[31*y[31/2);
subject to storage:sum{j in 1..n}al[jl*y[jl<=A;

7

N

}
}i
}
}

BBb B

7

data;

param n:=3;

param K:= 1 10 2 5 3 15;
param D:=1 2 2 4 3 4;
param h:=1 .3 2 .1 3 .2;
param a:=1 1 2 1 3 1;

param A:=25;
solve;display z,vy;
printf{"SOLUTION:\n"}>a.out;
printf{" Total cost = %4.2\n"},z>a.out;
for {i in 1..n}
printf{" y%1i = %4.2f\n"},i,y[i]l>a.out;

FIGURE C.16
AMPL model for Example 13.3-3 (file ConstrEOQ.txt)

var x1>=0 :=10; #inital value = 10
var x2>=0 :=10; #initial value = 10

maximize z: x1-xX2;

subject to cl: 3*x174+x2<=243;
subject to c2: x1+2*x2"2<=32;
subject to c3: x1>=2.1;
subject to c4: x2>=3.5;

FIGURE C.17
AMPL model of Example 21.2-2 (file solve;
NLPixt) display z,x1,x2;

usually is not correct. In essence, the most logical way to deal with a nonlinear problem
is to specify different initial values for the variables and then decide if a consensus can
be reached regarding the optimum solution.

BIBLIOGRAPHY

Fourer, R., D. Gay, and B. Kernighan, AMPL, A Modeling Language for Mathematical
Programming, 2nd ed., Brooks/Cole-Thomson, Pacific Grove, CA, 2003.

