
25.1

CHAPTER 25

Markovian Decision Process

Chapter Guide. This chapter applies dynamic programming to the solution of a stochas-
tic decision process with a finite number of states. The transition probabilities between
the states are described by a Markov chain. The reward structure of the process is a
matrix representing the revenue (or cost) associated with movement from one state to
another. Both the transition and revenue matrices depend on the decision alternatives
available to the decision maker. The objective is to determine the optimal policy that
maximizes the expected revenue over a finite or infinite number of stages. The pre-
requisites for this chapter are basic knowledge of Markov chains (Chapter 17), pro-
babilistic dynamic programming (Chapter 24), and linear programming (Chapter 2).

This chapter includes 6 solved examples and 14 end-of-section problems.

25.1 SCOPE OF THE MARKOVIAN DECISION PROBLEM

We use the gardener problem (Example 17.1-1) to present the details of the Markovian
decision process.The idea of the example can be adapted to represent important appli-
cations in the areas of inventory, replacement, cash flow management, and regulation
of water reservoir capacity.

The transition matrices, and associated with the no-fertilizer and fertilizer
cases are repeated here for convenience. States 1, 2, and 3 correspond, respectively, to
good, fair, and poor soil conditions.

 P2
= £ .30 .60 .10

.10 .60 .30

.05 .40 .55
≥

 P1
= £ .2 .5 .3

0 .5 .5
0 0 1

≥

P2,P1
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25.2 Chapter 25 Markovian Decision Process

To put the decision problem in perspective, the gardener associates a return function
(or a reward structure) with the transition from one state to another. The return function
expresses the gain or loss during a 1-year period, depending on the states between which
the transition is made. Because the gardener has the option of using or not using fertilizer,
gain and loss vary depending on the decision made.The matrices and summarize the
return functions in hundreds of dollars associated with matrices and respectively.

The elements of consider the cost of applying fertilizer. For example, if the soil
condition was fair last year (state 2) and becomes poor this year (state 3), its gain will
be compared with when no fertilizer is used.Thus, R gives the net reward
after the cost of the fertilizer is factored in.

What kind of a decision problem does the gardener have? First, we must know
whether the gardening activity will continue for a limited number of years or indefinitely.
These situations are referred to as finite-stage and infinite-stage decision problems. In both
cases, the gardener uses the outcome of the chemical tests (state of the system) to determine
the best course of action (fertilize or do not fertilize) that maximizes expected revenue.

The gardener may also be interested in evaluating the expected revenue resulting
from a prespecified course of action for a given state of the system. For example, fertilizer
may be applied whenever the soil condition is poor (state 3).The decision-making process
in this case is said to be represented by a stationary policy.

Each stationary policy is associated with different transition and return matri-
ces, which are constructed from the matrices and For example, for the
stationary policy calling for applying fertilizer only when the soil condition is poor
(state 3), the resulting transition and return matrices are given as

These matrices differ from and in the third rows only, which are taken directly
from and the matrices associated with applying fertilizer.

PROBLEM SET 25.1A

1. In the gardener model, identify the matrices P and R associated with the stationary policy
that calls for using fertilizer whenever the soil condition is fair or poor.

*2. Identify all the stationary policies for the gardener model.

R2,P2
R1P1

P = £ .20 .50 .30
.00 .50 .50
.05 .40 .55

≥ , R = £7 6 3
0 5 1
6 3 -2

≥

R2.P1, P2, R1,

r23
1

= 1r23
2

= 0

R2rij
2

 
 
 

R2
= 7rij

2 7 =

 

 
1
2
3

1 2 3

£6 5 -1
7 4 0
6 3 -2

≥

 
 
 

R1
= 7rij

1 7 =

 

 
1
2
3

1 2 3

£7 6 3
0 5 1
0 0 -1

≥
P2,P1

R2R1
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25.2 Finite-Stage Dynamic Programming Model 25.3

25.2 FINITE-STAGE DYNAMIC PROGRAMMING MODEL

Suppose that the gardener plans to “retire” from gardening in N years.We are interested
in determining the optimal course of action for each year (to fertilize or not to fertilize)
that will return the highest expected revenue at the end of N years.

Let and 2 represent the two courses of action (alternatives) available to
the gardener. The matrices and representing the transition probabilities and
reward function for alternative k were given in Section 25.1 and are summarized
here for convenience.

The gardener problem is expressed as a finite-stage dynamic programming (DP)
model as follows. For the sake of generalization, define

expected revenue of stages given that i is the 
state of the system (soil condition) at the beginning of year n

The backward recursive equation relating and is

where for all j.
A justification for the equation is that the cumulative revenue, re-

sulting from reaching state j at stage from state i at stage n occurs with probabil-
ity Let

The DP recursive equation can be written as

 fn1i2 = max
k
evi

k
+ a

m

j = 1
pij

kfn + 11j2 f , n = 1, 2, Á , N - 1

 fN1i2 = max
k
5vi

k6

vi
k

= a
m

j = 1
pij

krij
k

pij
k.

n + 1
rij

k
+ fn + 11j2,

fN + 11j2 = 0

fn1i2 = max
k
ea

m

j = 1
pij

k[rij
k

+ fn + 11j2] f , n = 1, 2, Á , N

fn + 1fn

n, n + 1, Á , N,fn1i2 = Optimal

m = Number of states at each stage 1year21=  3 in the gardener problem2

 P2
= 7pij

2 7 = £ .30 .60 .10
.10 .60 .30
.05 .40 .55

≥ , R2
= 7rij

2 7 = £6 5 -1
7 4 0
6 3 -2

≥
 P1

= 7rij
1 7 = £ .2 .5 .3

0 .5 .5
0 0 1

≥ , R1
= 7rij

1 7 = £7 6 3
0 5 1
0 0 -1

≥

RkPk
k = 1
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25.4 Chapter 25 Markovian Decision Process

To illustrate the computation of consider the case in which no fertilizer is used

Thus, if the soil condition is good, a single transition yields 5.3 for that year; if it is fair,
the yield is 3, and if it is poor, the yield is 

Example 25.2-1

In this example, we solve the gardener problem using the data summarized in the matrices
and given a horizon of 3 years 

Because the values of will be used repeatedly in the computations, they are summa-
rized here for convenience. Recall that represents “do not fertilize” and repre-
sents “fertilize.”

i

1 5.3 4.7
2 3 3.1
3 .4

Stage 3

Optimal 
solution

i

1 5.3 4.7 5.3 1
2 3 3.1 3.1 2
3 .4 .4 2

Stage 2

Optimal 
solution

i

1 8.19 2

2 5.61 2

3 2.13 2
+ .55 * .4 = 2.13+ 1 * .4 = - .6

.4 + .05 * 5.3 + .4 * 3.1-1 + 0 * 5.3 + 0 * 3.1

+ .3 * .4 = 5.61+ .5 * .4 = 4.75
3.1 + .1 * 5.3 + .6 * 3.13 + 0 * 5.3 + .5 * 3.1

+ .1 * .4 = 8.19+ .3 * .4 = 8.03
4.7 + .3 * 5.3 + .6 * 3.15.3 + .2 * 5.3 + .5 * 3.1

k*f2(i)k = 2k = 1

vi
k

+ pi1
k f3112 + pi2

k f3122 + pi3
k f3132

-1

k*f31i2k = 2k = 1
vi

k

-1

vi
2vi

1

k = 2k = 1
vi

k

1N = 32.R2,P1, P2, R1,

-1.

 v3
1

= 0 * 0 + 0 * 0 + 1 * -1 = -1

 v2
1

= 0 * 0 + .5 * 5 + .5 * 1 = 3

 v1
1

= .2 * 7 + .5 * 6 + .3 * 3 = 5.3

1k = 12. vi
k,
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25.2 Finite-Stage Dynamic Programming Model 25.5

Stage 1

Optimal
solution

i

1 10.74 2

2 7.92 2

3 4.23 2

The optimal solution shows that for years 1 and 2, the gardener should apply fertilizer
regardless of the state of the system (soil condition, as revealed by the chemical tests).

In year 3, fertilizer should be applied only if the system is in state 2 or 3 (fair or poor soil condi-
tion). The total expected revenues for the three years are if the state of the system
in year 1 is good, if it is fair, and if it is poor.

Remarks. The finite-horizon problem can be generalized in two ways. First, the
transition probabilities and their return functions need not be the same for all years.
Second, a discounting factor can be applied to the expected revenue of the successive
stages so that will equal the present value of the expected revenues of all the stages.

The first generalization requires the return values and transition probabilities
to be functions of the stage, n, as the following DP recursive equation shows

where

In the second generalization, given is the discount factor per year such
that D dollars a year from now have a present value of dollars, the new recursive
equation becomes

 fn1i2 = max
k
evi

k
+ aa

m

j = 1
pij

kfn + 11j2 f , n = 1, 2, Á , N - 1

 fN1i2 = max
k
5vi

k6

aD
a 16  12

vi
k,n

= a
m

j = 1
pij

k,nrij
k,n

 fn1i2 = max
k
evi

k,n
+ a

m

j = 1
pij

k,nfn + 11j2 f , n = 1, 2, Á , N - 1

 fN1i2 = max
k
5vi

k,N6
pij

k
rij

k
f11i2

f1132 = 4.23f1122 = 7.92
f1112 = 10.74

1k…
= 22

+ .55 * 2.13 = 4.23+ 1 * 2.13 = 1.13
.4 + .05 * 8.19 + .4 * 5.61-1 + 0 * 8.19 + 0 * 5.61

+ .3 * 2.13 = 7.92+ .5 * 2.13 = 6.87
3.1 + .1 * 8.19 + .6 * 5.613 + 0 * 8.19 + .5 * 5.61

+ .1 * 2.13 = 10.74+ .3 * 2.13 = 10.38
4.7 + .3 * 8.19 + .6 * 5.615.3 + .2 * 8.19 + .5 * 5.61

k*f1(i)k = 2k = 1

vi
k

+ pi1
k f2112 + pi2

k f2122 + pi3
k f2132

M25_TAHA5937_09_SE_C25.QXD  7/24/10  1:24 AM  Page 25.5



25.6 Chapter 25 Markovian Decision Process

PROBLEM SET 25.2A

*1. A company reviews the state of one of its important products annually and decides
whether it is successful (state 1) or unsuccessful (state 2). The company must decide
whether or not to advertise the product to further promote sales. The following matrices,

and provide the transition probabilities with and without advertising during any
year. The associated returns are given by the matrices and Find the optimal deci-
sions over the next 3 years.

2. A company can advertise through radio, TV, or newspaper. The weekly costs of advertis-
ing on the three media are estimated at $200, $900, and $300, respectively. The company
can classify its sales volume during each week as (1) fair, (2) good, or (3) excellent. A
summary of the transition probabilities associated with each advertising medium follows.

The corresponding weekly returns (in dollars) are

Find the optimal advertising policy over the next 3 weeks.

*3. Inventory Problem. An appliance store can place orders for refrigerators at the beginning
of each month for immediate delivery. A fixed cost of $100 is incurred every time an
order is placed. The storage cost per refrigerator per month is $5. The penalty for running
out of stock is estimated at $150 per refrigerator per month. The monthly demand is
given by the following pdf:

Demand x 0 1 2

p(x) .2 .5 .3

The store’s policy is that the maximum stock level should not exceed two refrigerators in
any single month. Determine the following:

(a) The transition probabilities for the different decision alternatives of the problem.
(b) The expected inventory cost per month as a function of the state of the system and

the decision alternative.
(c) The optimal ordering policy over the next 3 months.

Radio

£400 520 600
300 400 700
200 250 500

≥
 

TV

£1000 1300 1600
800 1000 1700
600 700 1100

≥
 

Newspaper

£400 530 710
350 450 800
250 400 650

≥

 
1
2
3

Radio
1 2 3

£ .4 .5 .1
.1 .7 .2
.1 .2 .7

≥
 

 
1
2
3

TV
1 2 3

£ .7 .2 .1
.3 .6 .1
.1 .7 .2

≥
 

 
1
2
3

Newspaper
1 2 3

£ .2 .5 .3
0 .7 .3
0 .2 .8

≥

 P2
= a .7 .3

.2 .8
b , R2

= a4 1
2 -1

b

 P1
= a .9 .1

.6 .4
b , R1

= a2 -1
1 -3

b

R2.R1
P2,P1
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25.3 Infinite-Stage Model 25.7

4. Repeat Problem 3 assuming that the pdf of demand over the next quarter changes ac-
cording to the following table:

Demand
Month

x 1 2 3

0 .1 .3 .2
1 .4 .5 .4
2 .5 .2 .4

25.3 INFINITE-STAGE MODEL

There are two methods for solving the infinite-stage problem.The first method calls for
evaluating all possible stationary policies of the decision problem. This is equivalent to
an exhaustive enumeration process and can be used only if the number of stationary
policies is reasonably small. The second method, called policy iteration, is generally
more efficient because it determines the optimum policy iteratively.

25.3.1 Exhaustive Enumeration Method

Suppose that the decision problem has S stationary policies, and assume that and
are the (one-step) transition and revenue matrices associated with the policy,

The steps of the enumeration method are as follows.

Step 1. Compute the expected one-step (one-period) revenue of policy s given
state 

Step 2. Compute the long-run stationary probabilities of the transition matrix 
associated with policy s. These probabilities, when they exist, are computed
from the equations

where 
Step 3. Determine the expected revenue of policy s per transition step (period),

by using the formula

Step 4. The optimal policy is determined such that

We illustrate the method by solving the gardener problem for an infinite-period
planning horizon.

Es*
= max

s
5Es6

s*

Es
= a

m

i = 1
pi

svi
s

Es,
Ps

= 1p1
s , p2

s , Á , pm
s 2.

p1
s

+ p2
s

+
Á

+ pm
s

= 1

PsPs
= Ps

Pspi
s,

i, i = 1, 2, Á , m.
vi

s,

s = 1, 2, Á , S.
Rs

Ps
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25.8 Chapter 25 Markovian Decision Process

Example 25.3-1

The gardener problem has a total of eight stationary policies, as the following table shows:

Stationary policy, s Action

1 Do not fertilize at all.
2 Fertilize regardless of the state.
3 Fertilize if in state 1.
4 Fertilize if in state 2.
5 Fertilize if in state 3.
6 Fertilize if in state 1 or 2.
7 Fertilize if in state 1 or 3.
8 Fertilize if in state 2 or 3.

The matrices and for policies 3 through 8 are derived from those of policies 1 and 2
and are given as

 P8
= £ .2 .5 .3

.1 .6 .3

.05 .4 .55
≥ , R8

= £7 6 3
7 4 0
6 3 -2

≥
 P7

= £ .3 .6 .1
0 .5 .5
.05 .4 .55

≥ , R7
= £6 5 -1

0 5 1
6 3 -2

≥
 P6

= £ .3 .6 .1
.1 .6 .3
0 0 1

≥ , R6
= £6 5 -1

7 4 0
0 0 -1

≥
 P5

= £ .2 .5 .3
0 .5 .5
.05 .4 .55

≥ , R5
= £7 6 3

0 5 1
6 3 -2

≥
 P4

= £ .2 .5 3
.1 .6 .3
0 0 1

≥ , R4
= £7 6 3

7 4 0
0 0 -1

≥
 P3

= £ .3 .6 .1
0 .5 .5
0 0 1

≥ , R3
= £6 5 -1

0 5 1
0 0 -1

≥
 P2

= £ .3 .6 .1
.1 .6 .3
.05 .4 .55

≥ , R2
= £6 5 -1

7 4 0
6 3 -2

≥
 P1

= £ .2 .5 .3
0 .5 .5
0 0 1

≥ , R1
= £7 6 3

0 5 1
0 0 -1

≥

RsPs
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25.3 Infinite-Stage Model 25.9

The values of can thus be computed as given in the following table.

s

1 5.3 3.0
2 4.7 3.1 0.4
3 4.7 3.0
4 5.3 3.1
5 5.3 3.0 0.4
6 4.7 3.1
7 4.7 3.0 0.4
8 5.3 3.1 0.4

The computations of the stationary probabilities are achieved by using the equations

As an illustration, consider The associated equations are

(Notice that one of the first three equations is redundant.) The solution yields

In this case, the expected yearly revenue is

The following table summarizes and for all the stationary policies. (Although this will not af-
fect the computations in any way, note that each of policies 1, 3, 4, and 6 has an absorbing state:
state 3.This is the reason and for all these policies.)

s

1 0 0 1
2 2.256

3 0 0 1 0.4

4 0 0 1
5 1.724

6 0 0 1

7 1.734

8 2.21654
135

69
135

12
135

70
137

62
137

5
137

-1

80
154

69
154

5
154

-1

22
59

31
59

6
59

-1

Esp3
sp2

sp1
s

p3 = 1p1 = p2 = 0

Esps

 = A 6
59 B * 4.7 + A31

59 B * 3.1 + A22
59 B * .4 = 2.256

 E2
= p1

2v1
2

+ p2
2v2

2
+ p3

2v3
2

p1
2

=
6

59, p2
2

=
31
59, p3

2
=

22
59

 p1 +  p2 +  p3 = 1

 .1p1 + .3p2 + .55p3 = p3

 .6p1 + .6p2 + .4p3 = p2

 .3p1 + .1p2 + .05p3 = p1

s = 2.

p1 + p2 +
Á

+ pm = 1

PsPs
= Ps

-1.0

-1.0
-1.0

-1.0

i = 3i = 2i = 1

vi
s

vi
k
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25.10 Chapter 25 Markovian Decision Process

Policy 2 yields the largest expected yearly revenue. The optimum long-range policy calls for
applying fertilizer regardless of the state of the system.

PROBLEM SET 25.3A

1. Solve Problem 2, Set 25.2a, for an infinite number of periods using the exhaustive enumera-
tion method.

2. Solve Problem 2, Set 25.2a, for an infinite planning horizon using the exhaustive enumera-
tion method.

*3. Solve Problem 3, Set 25.2a, by the exhaustive enumeration method assuming an infinite
horizon.

25.3.2 Policy Iteration Method without Discounting

To appreciate the difficulty associated with the exhaustive enumeration method, let
us assume that the gardener had four courses of action (alternatives) instead of two:
(1) do not fertilize, (2) fertilize once during the season, (3) fertilize twice, and (4) fertil-
ize three times. In this case, the gardener would have a total of stationary
policies. By increasing the number of alternatives from 2 to 4, the number of stationary
policies “soars” exponentially from 8 to 256. Not only is it difficult to enumerate all the
policies explicitly, but the amount of computations may also be prohibitively large.This
is the reason we are interested in developing the policy iteration method.

In Section 25.2, we have shown that, for any specific policy, the expected total re-
turn at stage n is expressed by the recursive equation

This recursive equation is the basis for the development of the policy iteration method.
However, the present form must be modified slightly to allow us to study the asymp-
totic behavior of the process. We define as the number of stages remaining for con-
sideration. This is in contrast with n in the equation, which defines stage n. The
recursive equation is thus written as

Note that is the cumulative expected revenue given that is the number of stages
remaining for consideration. With the new definition, the asymptotic behavior of the
process can be studied by letting 

Given that

is the steady-state probability vector of the transition matrix and

E = p1v1 + p2v2 +
Á

+ pmvm

P = 7pij 7
P = 1p1, p2, Á , pm2

h: q .

hfh

fh1i2 = vi + a
m

j = 1
pijfh- 11j2, i = 1, 2, 3, Á , m

h

fn1i2 = vi + a
m

j = 1
pijfn + 11j2, i = 1, 2, Á , m

43
= 256
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25.3 Infinite-Stage Model 25.11

is the expected revenue per stage as computed in Section 25.3.1, it can be shown that
for very large 

where f(i) is a constant term representing the asymptotic intercept of given state i.
Because is the cumulative optimum return for remaining stages given

state i and E is the expected revenue per stage, we can see intuitively why equals
plus a correction factor f (i) that accounts for the specific state i.This result assumes

that 
Now, using this information, we write the recursive equation as

Simplifying this equation, we get

Here, we have m equations in unknowns, and E.
As in Section 25.3.1, our objective is to determine the optimum policy that yields

the maximum value of E. Because there are m equations in unknowns, the opti-
mum value of E cannot be determined in one step. Instead, a two-step iterative ap-
proach is utilized which, starting with an arbitrary policy, will determine a new policy
that yields a better value of E. The iterative process ends when two successive policies
are identical.

1. Value determination step. Choose arbitrary policy s. Using its associated matrices
and and arbitrarily assuming solve the equations

in the unknowns and Go to the policy improvement step.
2. Policy improvement step. For each state i, determine the alternative k that yields

The values of are those determined in the value determi-
nation step. The resulting optimum decisions for states constitute the
new policy t. If s and t are identical, t is optimum. Otherwise, set and return
to the value determination step.

s = t
1, 2, Á , m

fs1j2, j = 1, 2, Á , m,

max
k
evi

k
+ a

m

j = 1
pij

kfs1j2 f , i = 1, 2, Á , m

fs1m - 12.Es, fs112, Á ,

Es
+ fs1i2 - a

m

j = 1
pij

s fs1j2 = vi
s, i = 1, 2, Á , m

fs1m2 = 0,RsPs

m + 1

f112, f122, Á , f1m2,m + 1

E + f1i2 - a
m

j = 1
pijf1j2 = vi, i = 1, 2, Á , m

hE + f1i2 = vi + a
m

j = 1
pij51h - 12E + f1j26, i = 1, 2, Á , m

h: q .
hE

fh1i2
hfh1i2

fh1i2
fh1i2 = hE + f1i2

h,
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25.12 Chapter 25 Markovian Decision Process

Example 25.3-2

We solve the gardener problem by the policy iteration method.
Let us start with the arbitrary policy that calls for not applying fertilizer. The associated ma-

trices are

The equations of the value iteration step are

If we arbitrarily let the equations yield the solution

Next, we apply the policy improvement step. The associated calculations are shown in the
following tableau.

Optimal
solution

i f(i)

1 13.36 2

2 9.19 2

3 4.24 2

The new policy calls for applying fertilizer regardless of the state. Because the new policy
differs from the preceding one, the value determination step is entered again. The matrices asso-
ciated with the new policy are

These matrices yield the following equations:

E + f132 - .05f112 - .4f122 - .55f132 =  .4

E + f122 -  .1f112 - .6f122 - .3f132  = 3.1

E + f112 -  .3f112 - .6f122 -  .1f132  = 4.7

P = £ .3 .6 .1
.1 .6 .3
.05 .4 .55

≥ , R = £6 5 -1
7 4 0
6 3 -2

≥

+ .55 * 0 = 4.24+ 1 * 0 = -1
.4 + .05 * 12.88 + .4 * 8-1 + 0 * 12.88 + 0 * 8

+ .3 * 0 = 9.19+ .5 * 0 = 7
3.1 + .1 * 12.88 + .6 * 83 + 0 * 12.88 + .5 * 8

+ .1 * 0 = 13.36+ .3 * 0 = 11.876
4.7 + .3 * 12.88 + .6 * 85.3 + .2 * 12.88 + .5 * 8

k*k = 2k = 1

vi
k

+ pi1
k f112 + pi2

k f122 + pi3
k f132

E = -1, f112 = 12.88, f122 = 8, f132 = 0

f132 = 0,

E + f132 - f132 = -1

E + f122 - .5f122 - .5f132  = 3

E + f112 - .2f112 - .5f122 - .3f132  = 5.3

P = £ .2 .5 .3
0 .5 .5
0 0 1

≥ , R = £7 6 3
0 5 1
0 0 -1

≥
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25.3 Infinite-Stage Model 25.13

Again, letting we get the solution

The computations of the policy improvement step are given in the following tableau.

Optimal 
solution

i f(i)

1 9.01 2

2 6.06 2

3 2.26 2

The new policy, which calls for applying fertilizer regardless of the state, is identical with the
preceding one.Thus the last policy is optimal and the iterative process ends.This is the same con-
clusion obtained by the exhaustive enumeration method (Section 25.3.1). Note, however, that
the policy iteration method converges quickly to the optimum policy, a typical characteristic of
the new method.

PROBLEM SET 25.3B

1. Assume in Problem 1, Set 25.2a that the planning horizon is infinite. Solve the problem by
the policy iteration method, and compare the results with those of Problem 1, Set 25.3a.

2. Solve Problem 2, Set 25.2a by the policy iteration method, assuming an infinite planning
horizon. Compare the results with those of Problem 2, Set 25.3a.

3. Solve Problem 3, Set 25.2a by the policy iteration method assuming an infinite planning
horizon, and compare the results with those of Problem 3, Set 25.3a.

25.3.3 Policy Iteration Method with Discounting

The policy iteration algorithm can be extended to include discounting. Given the discount
factor the finite-stage recursive equation can be written as (see Section 25.2)

(Note that represents the number of stages to go.) It can be proved that as (in-
finite stage model), where f (i) is the expected present-worth (discounted)
revenue given that the system is in state i and operating over an infinite horizon.Thus the
long-run behavior of as is independent of the value of This is in contrast
with the case of no discounting where This result should be expected
because in discounting the effect of future revenues will asymptotically diminish to zero.
Indeed, the present worth f (i) should approach a constant value as h: q .

fh1i2 = hE + f1i2. h.h: qfh1i2
fh1i2 = f1i2, h: qh

fh1i2 = max
k
evi

k
+ aa

m

j = 1
pij

kfh- 11j2 f
a 1612,

+ .55 * 0 = 2.26+ 1 * 0 = -1
.4 + .05 * 6.75 + .4 * 3.80-1 + 0 * 6.75 + 0 * 3.80

+ .3 * 0 = 6.06+ .5 * 0 = 4.90
3.1 + .1 * 6.75 + .6 * 3.803 + 0 * 6.75 + .5 * 3.80

+ .1 * 0 = 9.01+ .3 * 0 = 8.55
4.7 + .3 * 6.75 + .6 * 3.805.3 + .2 * 6.75 + .5 * 3.80

k*k = 2k = 1

vi
k

+ pi1
k f 112 + pi2

k f 122 + pi3
k f 132

E = 2.26, f112 = 6.75, f122 = 3.80, f132 = 0

f132 = 0,
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25.14 Chapter 25 Markovian Decision Process

Based on this information, the steps of the policy iterations are modified as follows.

1. Value determination step. For an arbitrary policy s with its matrices and 
solve the m equations

in the m unknowns 
2. Policy improvement step. For each state i, determine the alternative k that yields

is obtained from the value determination step. If the resulting policy t is
the same as s, stop; t is optimum. Otherwise, set and return to the value
determination step.

Example 25.3-3

We will solve Example 25.3-2 using the discounting factor 
Starting with the arbitrary policy, the associated matrices P and R ( and 

in Example 25.3-1) yield the equations

The solution of these equations yields

A summary of the policy improvement iteration is given in the following tableau:

Optimal
solution

i f(i)

1 6.90 2

2 4.2 2

3 .54 2
+ .55 * -2.5] = .54+ 1 * -2.5] = -2.5

.4 + .6[.05 * 6.61 + .4 * 3.21-1 + .6[0 * 6.61 + 0 * 3.21
+ .3 * -2.5] = 4.2+ .5 * -2.5] = 3.21

3.1 + .6[.1 * 6.61 + .6 * 3.213 + .6[0 * 6.61 + .5 * 3.21
+ .1 * -2.5] = 6.90+ .3 * -2.5] = 6.61

4.7 + .6[.3 * 6.61 + .6 * .215.3 + .6[.2 * 6.61 + .5 * 3.21

k*k = 2k = 1

vi
k

+ .6[pi1
k f 112 + pi2

k f 122 + pi3
k f 132]

f1 = 6.61, f2 = 3.21, f3 = -2.5

f132 - .6[ f132] = -1.

f122 - .6[ .5f122 + .5f132] = 3.

f112 - .6[.2f112 + .5f122 + .3f132] = 5.3

R1P1s = 51, 1, 16,
a = .6.

s = t
fs1j2

max
k
evi

k
+ aa

m

j = 1
pij

kfs1j2 f , i = 1, 2, Á , m

fs112, fs122, Á , fs1m2.

fs1i2 - aa
m

j = 1
pij

s fs1j2 = vi
s, i = 1, 2, Á , m

Rs,Ps
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25.3 Infinite-Stage Model 25.15

The value determination step using and (Example 25.3-1) yields the following
equations:

The solution of these equations yields

The policy improvement step yields the following tableau:

Optimal
solution

i f(i)

1 8.96 1

2 6.62 2

3 3.37 2

Because the new policy differs from the preceding one, the value determination step
is entered again using and (Example 25.3-1).This results in the following equations:

The solution of these equations yields

The policy improvement step yields the following tableau:

Optimal
solution

i f(i)

1 8.98 1

2 6.63 2

3 3.37 2
+ .55 * 3.38] = 3.37+ 1 * 3.38] = 1.03

.4 + .6[.05 * 8.97 + .4 * 6.63-1 + .6[0 * 8.97 + 0 * 6.63
+ .3 * 3.38] = 6.63+ .5 * 3.38] = 6.00

3.1 + .6[.1 * 8.97 + .6 * 6.633 + .6[0 * 8.97 + .5 * 6.63
+ .1 * 3.38] = 8.90+ .3 * 3.38] = 8.97

4.7 + .6[.3 * 8.97 + .6 * 6.635.3 + .6[.2 * 8.97 + .5 * 6.63

k*k = 2k = 1

vi
k

+ .6[pi1
k f 112 + pi2

k f 122 + pi3
k f 132]

f112 = 8.97, f122 = 6.63, f132 = 3.38

 f132 - .6[.05f112 + .4f122 + .55f132] =  .4

 f122 - .6[ .1f112 + .6f122 +  .3f132] = 3.1

 f112 - .6[ .2f112 + .5f122 +  .3f132] = 5.3

R3P3

51, 2, 26

+ .55 * 3.37] = 3.37+ 1 * 3.37] = 1.02
.4 + .6[.05 * 8.89 + .4 * 6.62-1 + .6[0 * 8.89 + 0 * 6.62

+ .3 * 3.37] = 6.62+ .5 * 3.37] = 6.00
3.1 + .6[.1 * 8.89 + .6 * 6.623 + .6[0 * 8.89 + .5 * 6.62

+ .1 * 3.37] = 8.89+ .3 * 3.37] = 8.96
4.7 + .6[.3 * 8.89 + .6 * 6.625.3 + .6[.2 * 8.89 + .5 * 6.62

k*k = 2k = 1

vi
k

+ .6[pi1
k f 112 + pi2

k f 122 + pi3
k 132]

f112 = 8.89, f122 = 6.62, f132 = 3.37

 f132 - .6[.05f112 + .4f122 + .55f132] =  .4

 f122 - .6[ .1f112 + .6f122 +  .3f132] = 3.1

 f112 - .6[ .3f112 + .6f122 +  .1f132] = 4.7

R2P2
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25.16 Chapter 25 Markovian Decision Process

Because the new policy is identical with the preceding one, it is optimal. Note that
discounting has resulted in a different optimal policy that calls for not applying fertilizer if the
state of the system is good (state 3).

PROBLEM SET 25.3C

1. Repeat the problems listed, assuming the discount factor 
(a) Problem 1, Set 25.3b.
(b) Problem 2, Set 25.3b.
(c) Problem 3, Set 25.3b.

25.4 LINEAR PROGRAMMING SOLUTION

The infinite-state Markovian decision problems, both with discounting and without, can
be formulated and solved as linear programs. We consider the no-discounting case first.

Section 25.3.1 shows that the infinite-state Markovian problem with no discounting
ultimately reduces to determining the optimal policy, which corresponds to

The set S is the collection of all possible policies of the problem. The constraints of the
problem ensure that represent the steady-state probabilities of the
Markov chain 

The problem is solved in Section 25.3.1 by exhaustive enumeration. Specifically,
each policy s is specified by a fixed set of actions (as illustrated by the gardener problem
in Example 25.3-1). The same problem is the basis for the development of the LP for-
mulation. However, we need to modify the unknowns of the problem such that the op-
timal solution automatically determines the optimal action (alternative) k when the system
is in state i. The collection of all the optimal actions will then define the optimal policy.

Let

probability of choosing alternative k given that the system is in state i

The problem may thus be expressed as

subject to

pi Ú 0, qi
k

Ú 0, for all i and k

 qi
1

+ qi
2

+
Á

+ qi
K

= 1, i = 1, 2, Á , m

 p1 + p2 +
Á

+ pm = 1

pj = a
m

i = 1
pipij, j = 1, 2, Á , m

Maximize E = a
m

i = 1
piaa

K

k = 1
qi

kvi
kb

qi
k

= Conditional

s…,

Ps.
pi

s, i = 1, 2, Á , m,

max
seS
ea

m

j = 1
pi

svi
s
ƒPsPs

= Ps, p1
s

+ p2
s

+
Á

+ pm
s

= 1, pi
s

Ú 0 i = 1, 2, Á , m f
s…,

a = .9.

51, 2, 26
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25.4 Linear Programming Solution 25.17

Note that is a function of the policy selected and hence of the specific alternatives k
of the policy.

The problem can be converted into a linear program by making proper substitu-
tions involving Observe that the formulation is equivalent to the original one in
Section 25.3.1 only if for exactly one k for each i, which will reduce the sum

to where is the optimal alternative chosen. The linear program we
develop here does account for this condition automatically.

Define

By definition represents the joint probability of state i making decision k. From
probability theory

Hence,

We thus see that the restriction can be written as

Also, the restriction is automatically implied by the way we defined in
terms of (Verify!) Thus the problem can be written as

subject to

The resulting model is a linear program in Its optimal solution automatically
guarantees that for one k for each i. First, note that the linear program has m inde-
pendent equations (one of the equations associated with is redundant).P = PP

qi
k

wik.

wij Ú 0, i = 1, 2, Á , m; k = 1, 2, Á , K

 a
m

i = 1
a
K

k = 1
wik = 1

 a
K

k = 1
wjk - a

m

i = 1
a
K

k = 1
pij

kwik = 0, j = 1, 2, Á , m

Maximize E = a
m

i = 1
a
K

k = 1
vi

kwik

wik.
qi

kgK
k = 1qi

k
= 1

a
m

i = 1
a
K

k = 1
wik = 1

gm
i = 1pi = 1

qi
k

=

wik

a
K
k = 1wik

pi = a
K

k = 1
wik

wik

wik = piqi
k, for all i and k

k…vi
k…

,a
K
k = 1qi

kvi
k

qi
k

= 1
qi

k.

pij
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25.18 Chapter 25 Markovian Decision Process

Hence, the problem must have m basic variables. It can be shown that must be
strictly positive for at least one k for each i. From these two results, we conclude that

can assume a binary value (0 or 1) only. (As a matter of fact the preceding result also

shows that where is the alternative corresponding to )

Example 25.4-1

The following is an LP formulation of the gardener problem without discounting:

subject to

The optimal solution is and and
This result means that Thus, the optimal policy selects alternative

for and 3.The optimal value of E is 
It is interesting that the positive values of exactly equal the values of associated with the
optimal policy in the exhaustive enumeration procedure of Example 25.3-1. This observation
demonstrates the direct relationship between the two methods.

We next consider the Markovian decision problem with discounting. In Section
25.3.2 the problem is expressed by the recursive equation

These equations are equivalent to

f1i2 Ú aa
m

j = 1
pij

kf1j2 + vi
k, for all i and k

f1i2 = max
k
evi

k
+ aa

m

j = 1
pij

kf1j2 f , i = 1, 2, Á , m

piwik

.41.37292 = 2.256.3.11.52542 +4.71.10172 +i = 1, 2,k = 2
q1

2
= q2

2
= q3

2
= 1.w32 = .3729.

w12 = .1017, w22 = .5254,w11 = w12 = w31 = 0

wik Ú 0, for all i and k

 w11 + w12 + w21 + w22 + w31 + w32 = 1

 w31 + w32 - 1.3w11 + .1w12 + .5w21 + .3w22 + w31 + .55w322 = 0

 w21 + w22 - 1.5w11 + .6w12 + .5w21 + .6w22 +  .4w322 = 0

 w11 + w12 - 1.2w11 + .3w12 + .1w22 + .05w322 = 0

Maximize E = 5.3w11 + 4.7w12 + 3w21 + 3.1w22 - w31 + .4w32

wik 7 0.k…pi = gK
k = 1wik = wik*,

qi
k

=

wik

a
K
k = 1wik

wik
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25.4 Linear Programming Solution 25.19

provided that f(i) achieves its minimum value for each i. Now consider the objective
function

where ( for all i) is an arbitrary constant. It can be shown that the optimization of
this function subject to the inequalities given will result in the minimum value of f(i).
Thus, the problem can be written as

subject to

Now the dual of the problem is

subject to

Example 25.4-2

Consider the gardener problem given the discounting factor If we let 
the dual LP problem may be written as

subject to

The optimal solution is and and
The solution shows that that optimal policy is (1, 2, 2).w32 = 2.8145.

w11 = 1.5678, w22 = 3.3528,w12 = w21 w31 = 0

wik Ú 0, for all i and k

w31 + w32 - .6[.3w11 + .1w12 + .5w21 + .3w22 + w31 + .55w32] = 1

w21 + w22 - .6[.5w11 + .6w12 + .5w21 + .6w22 + .4w32] = 1

w11 + w12 - .6[.2w11 + .3w12 + .1w22 + .05w32] = 1

Maximize 5.3w11 + 4.7w12 + 3w12 + 3.1w22 - w31 + .4w32

b3 = 1,b2 =b1 =a = .6.

 wik Ú 0, for i = 1, 2, Á , m; k = 1, 2, Á , K

 a
K

k = 1
wjk - aa

m

i = 1
a
K

k = 1
pij

kwik = bj, j = 1, 2, Á , m

Maximizea
m

i = 1
a
K

k = 1
vi

kwik

f1i2 unrestricted in sign for all i

f1i2 - aa
m

i = 1
pij

kf1j2 Ú vi
k, for all i and k

Minimizea
m

i = 1
bif1i2

70bi

Minimizea
m

i = 1
bif1i2
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25.20 Chapter 25 Markovian Decision Process

PROBLEM SET 25.4A

1. Formulate the following problems as linear programs.
(a) Problem 1, Set 25.3b.
(b) Problem 2, Set 25.3b.
(c) Problem 3, Set 25.3b.
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