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Abstract
We present a novel approach of joint registration and co-segmentation for point sets where objects move in different ways.
We consider joint registration and co-segmentation as two problems that are heavily entangled with each other; thus, we
represent the input point sets as samples from a generative model and bring up with a novel formulation based on Gaussian
mixture model. By maximizing the posterior probability of the samples, we gradually recover the latent object models as well
as an object-level segmentation and simultaneously align the segmented points to the latent object models. Along with the
formulation, we design an interactive tool that helps users intuitively intervene the process to optimize the registration and
segmentation results. The experiment results on a group of synthetic and scanned point clouds demonstrate that our method
is powerful and effective for joint registration and co-segmentation on point sets of multiple objects.

Keywords Point cloud · Registration · Co-segmentation

1 Introduction

Many research projects and applications of indoor scenes
require segmented and even annotated 3D databases [5,8,10,
11,20]. One way to build such databases is to interactively
compose scenes using 3D meshes for objects, which yields
natural object segmentation and annotation. An alternative
method for database building is to segment and annotate
existing 3D scenes manually. This procedure is tedious and
time-consuming, despitemany efforts of improving the inter-
action experience [18,28]. Another way is to automatically
compose a scene model from an image based on existing
3D shape models [5,17]. In the aforementioned methods, a
retrieval procedure is usually needed, which inevitably lim-
its the results to a particular set of 3D models. However, the
actual 3D shapes that appear in the input image may still not
be produced.
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Generating scene models directly from captured point
clouds will significantly facilitate dataset construction and
increase the variety of the dataset. However, there is a large
gap between the desired 3D model dataset and available
scene capturing tools. Typically, clean, complete and sep-
arated models for objects are desired to construct a scene
database. By contrast, a noisy and incomplete point set of
different objects all in one is usually obtained with available
consumer-level scene capturing frameworks [7,13,21]. Thus,
a general object-level segmentation and modeling method
from scanned point sets is a strong demand to fill the gap.

A general object-level segmentation is not equivalent to
a multi-label classification problem since segmentation is
not limited to a fixed number of object categories prede-
fined in the training data. Existing approaches for segmenting
scanned 3D data require additional knowledge, such as a
block-based stability [14], or motion consistency of rigid
objects [29]. While a robot is employed to do proactive
pushes, movement tracking is used to verify and iteratively
improve the object-level segmentation result [29]. However,
it remains significantly challenging to recover the motion
consistency in a noninvasive way.

In this paper, we explore the motion consistency of rigid
objects fromanewperspective.While themotion consistency
of objects in indoor scenes is naturally revealed by human
activities over time,we expect the scanned point sets at differ-
ent times to be segmented into objects based on theirmotions.
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With these concepts in mind, onemust choose an appropriate
scanning scheme. One way is to record the change of a scene
along with human activities. Another option is to schedule a
periodic sweep that only records the result of human activities
without capturing human motion. In both schemes, it is non-
trivial to recover object correspondences in different point
sets due to occlusions. In the former scheme, the occlusions
are probably caused by human bodies; in the latter scheme,
they are likely caused by sparse sampling times. In the former
scheme, extra challenging processing may be required such
as tracking objects with severe occlusions by human bodies.
Therefore, we choose the latter scanning scheme.

Thus, our original intention of building 3D scene datasets
from scanned point sets leads us to the problem of coupled
joint registration and co-segmentation. By solving the prob-
lem of coupled joint registration and co-segmentation, we
not only partition point sets into objects, but also recover
the rigid object motions among different point sets. In this
problem, registration and segmentation are entangled with
each other. On the one hand, the segmentation problem
depends on the registration to connect the point clouds into a
series of rigid movement so that the object-level segmen-
tation can be done based on the motion consistency. On
the other hand, the registration problem relies on the seg-
mentation to break the problem into a series of rigid joint
registration of objects. Otherwise, the registration of multi-
ple scenes is a non-rigid joint registration with non-coherent
point drift. Non-coherent point drift means that a pair of
points are close to each other in one point set, but their cor-
responding pair of points in another point set are far from
each other. This happens when two points actually belong to
different objects. This makes a big difference from non-rigid
registration problemswhere point motions are smooth every-
where (such as the problem studied in [19]). Solving such a
non-coherent non-rigid joint registration is non-trivial. Con-
sequently, breaking it up into a series of rigid joint registration
with object-level segmentationmakes it possible to tackle the
problem.

In our method, we employ a group of Gaussian mixture
models (GMM) and each of these Gaussian mixture models
represents a potential object. This representation unentangles
the registration and segmentation in the way that the segmen-
tation can be done by evaluating the probability of belonging
to the Gaussian mixture models for each point, while the
registration can be done by evaluating a rigid registration in
different point sets against each Gaussian mixture model.

In summary, our work makes the following contributions:

1. To the best of our knowledge, we first put forward
the problem of object-level joint registration and co-
segmentation of multiple point sets.

2. We propose a generative model to simultaneously solve
the joint registration and co-segmentation of point sets.

3. We design an interactive tool for joint registration and
co-segmentation based on the generative model.

2 Related work

In this section, we review a series of techniques on point set
registration and segmentation that are related to our method.

2.1 Point set registration with GMM representation

Gaussian mixture models are widely used for point set
registration problems due to their general ability of repre-
senting point sets for both rigid and non-rigid registrations
and their robustness against noise. A comprehensive sur-
vey about point set registration approaches using Gaussian
mixture models can be found in [15]. They also present a
unified framework for rigid and non-rigid registration prob-
lems. These methods select one of the point sets as the
“template model” and fit the other point sets to this “tem-
plate model”. Myronenko and Song consider the registration
of two point sets as a probability density estimation prob-
lem [19]. They use GMM to represent the geometry and
force the GMM centroids to move coherently as a group
to preserve the topological structure of the point sets. This
method is applicable to both rigid registration and non-rigid
registration. Unlike the above approaches, [9] treats all point
sets equally as the realizations of a GMM and the reg-
istration is cast into a clustering problem. A more recent
method pushes this idea to the application on a large-scale
dataset [2]. Compared to these methods, our method can be
seen as an extension of the formulation of [9] to simul-
taneously handle joint registration and co-segmentation.
The difference between our method and non-rigid registra-
tion techniques is that we handle the non-coherent point
drift by estimating independent transformation for each
object.

2.2 Interactive segmentation and co-segmentation
of images

Many interactive methods have been proposed to leverage
human interaction on high-level hints and the powerful com-
putational ability of computers. An influential technique
for interactive image segmentation is GrabCut [22]. It uses
two GMMs for foreground and background, respectively.
To initialize these two Gaussian mixture models, a rect-
angle is manually placed to contain the foreground. Our
user interaction design draws on the experience from [22].
The difference is that our tool is designed for 3D space
and handles multi-object segmentation rather than binary
segmentation. Dating back to 2006, extensive research has
been done on image co-segmentation [23]. These works are
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based on the basic idea of exploring inter-image consis-
tent information to extract common objects from multiple
images. A more recent approach of [25] jointly recovers co-
segmentation and dense per-pixel correspondences in two
images. Though our input and output are totally different
from [25], we share with [25] the idea of jointly recover-
ing co-segmentation and point-to-point correspondences (by
registration).

2.3 Segmentation andmotion

Object motion, as a strong hint for object segmentation, is
widely used in many approaches. [29] employs a robot to
do proactive pushes and tracks the motion to learn prior
knowledge about object segmentation on the fly. [16] exploits
motions in a video and uses the motion edges as training
data to learn an edge detector for images. These methods
lean on the motion that is continuous over time and can
be tracked. In comparison, our method handles motion that
is non-continuous over time. [24] solves the object-level
segmentation along with the SLAM problem. However, its
object-level segmentation depends on retrieval from an exist-
ing object database. Neither a database nor prior knowledge
is required in our method.

2.4 3D object recognition based on correspondence
grouping

By interactively inputting the scene layout, the joint registra-
tion and co-segmentation problem can be treated as a series
of 3D object recognition problems in point sets. Our method
should be classified as one of the correspondence grouping
methods. Compared to previous methods [4,26], our method
simultaneously solves the problem formultiple targetmodels
in multiple scenes.

3 Problem definition

In this section, we introduce our formulation of the joint
registration and co-segmentation problem for point sets.
The input of our problem is a group of 3D point sets
V = {Vm}M

m=1 that are captured at M different times in a
scene, where objects move in different ways. Each point set
Vm = [vm1, vm2, . . . , vmLm ] contains Lm 3D points. Our
target is to simultaneously partition the point sets into N
objects and figure out the transformations from objects to
each point set. For partitioning, we assign point-wise label
vectors {ym} for each input point set to indicate its object
partition. For registration, we compute {Rmn, tmn} to indi-
cate the transformations from N objects to M point sets,
respectively.

3.1 Basic formulation

For robustness, we do not model a point set as a simple
composition of transformed 3D points in each object model.
Instead, we model each point set as a realization of several
unknown central Gaussian mixture models (GMMs) of the
transformed objects. In other words, we explicitly separate
the total Kall Gaussian models to N groups to represent N
objects {On}N

n=1 as

⎧
⎪⎨

⎪⎩
{x1,Σ1}, . . . , {xK1 ,ΣK1}︸ ︷︷ ︸

O1

,

{xK1+1,ΣK1+1}, . . . , {xK1+K2 ,ΣK1+K2}︸ ︷︷ ︸
O2

,

. . . , {xKS+1,ΣKS+1}, . . . , {xKS+Kn ,ΣKS+Kn }︸ ︷︷ ︸
On

, . . .

⎫
⎪⎬

⎪⎭
,

(1)

where KS = ∑n−1
i=1 Ki .

The Gaussian centroids {xk} represent the point positions
in objects. {Σk} represents the variance of point positions in
objects. On has Kn Gaussian models and {Kn}N

n=1 are prede-
fined, as described in Sec. 4. The total number of Gaussian
centroids is denoted as Kall = ∑N

n=1 Kn . Each object On is
rigidly transformed to each point set Vm with a transforma-
tion φmn(xk) = Rmnxk + tmn for xk ∈ On . Figure 1 shows
a simple illustration for this formulation. Hence, for each
point vmi in a point set Vm , given object models {On} and
their rigid transformations {φmn} to the point sets, we can
write:

P(vmi ) =
Kall∑

k=1

pkN (vmi |φmn(xk),Σk), (2)

where the observed point vmi is a sampling point from a large
Gaussian mixture model that represents N objects together.
{pk}Kall

k=1 are weights for Kall Gaussian models. Given the
generative representation, the unknown parameters of our
joint registration and segmentation problem are:

Θ =
{
{pk, xk,Σk}Kall

k=1, {φmn}M,N
m=1,n=1

}
. (3)

Once we estimate these parameters, each point in all input
point sets can be assigned to one of the Gaussian mod-
els according to the largest sampling probability. Since the
Gaussian models are simply predefined to be one of the N
objects, we can further deduce the {ym}M

m=1 indicating vec-
tors of object-level co-segmentation for each input point set
based on such assignment. To estimate the parameters Θ to
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Fig. 1 Our generative model for joint registration and co-segmentation
(left) and its associated graphicalmodel (right). The left figure illustrates
7 Gaussian models {xi ,Σi }7i=1 are grouped into two object models O1

and O2. Each object is transformed to a point setVi by φmi . A 3D point
in a point set Vm is a sampling point from a Gaussian mixture model
composed of the 7 transformed Gaussian models

fit all the input point sets without knowing object labels for
all 3D points, the problem can be solved in an Expectation–
Maximization (EM) framework. In particular, we bring in
hidden variables as:

Z = {zmi |m = 1, . . . , M, i = 1, . . . , Lm}, (4)

such that zmi = k, k ∈ {1, 2, . . . , Kall} assigns the observed
point vmi to the kth Gaussian model xk,Σk . We aim to max-
imize the expected complete-data log-likelihood:

E (Θ|V ,Z ) = EZ [ln P(V ,Z ;Θ)|V ]
=

∑

Z

P(Z |V ,Θ) ln P(V ,Z ;Θ). (5)

This formulation can be seen as an adaption of the joint
registration formulation in [9], uponwhichwe separateGaus-
sian models into groups to express multiple objects. Under
the assumption that the input points are independent and iden-
tically distributed, we can rewrite the objective defined in
Eq. (5) into:

Θ = argmax
∑

m,i,k

αmik
(
ln pk+ln P(vmi |zmi = k;Θ)

)
, (6)

where αmik = P(zmi = k|vmi ;Θ). By bringing in Eq. (2)
and ignoring constant terms, we can rewrite the objective as:

Θ = argmax
(

− 1

2

∑

m,i,k

αmik
(||vmi − φmn(xk)||2Σk

+ ln |Σk | − 2 ln pk
))

,

(7)

where the | · | denotes the determinant and ||x||2A = xTA−1x.
It is predefined that xk is one of theGaussian centroids used to

represent the nth object, which is why we apply the transfor-
mation φmn on xk . For the convenience of computation, we
restrict themodel to isotropic covariances, i.e.,Σk = σ 2I and
I is an identity matrix. Next, we can optimize the objective
through iterating between estimatingαmik (Expectation-step)
and maximizing E (Θ|V ,Z )with respect to each parameter
in Θ (Maximization-step).

E-step this step estimates the posterior probability αmik of
vmi to be a point generated by the kth Gaussian model.

αmik =
pkσ

−3
k exp

(

− 1
2σ 2

k
||vmi − φmn(xk)||2

)

∑Kall
s psσ

−3
s exp

(
− 1

2σ 2
s
||vmi − φmn(xs)||2

) . (8)

M-step-a: this step updates the transformationsφmn thatmax-
imize E (Θ), given instant values for αmik, xk , σk . We only
consider rigid transformations, making φmn(x) = Rmnx +
tmn . ThemaximizerR∗

mn, t∗mn ofE (Θ) is the same as themin-
imizers of the following constrained optimization problems:

{

minRmn ,tmn

∥
∥
(
Wmn − RmnXn − tmneT

)
Λmn

∥
∥2

F
s.t. RT

mnRmn = I, |Rmn| = 1
, (9)

where Λmn is a Kn × Kn diagonal matrix with elements

λmnk = 1
σk

√
∑Lm

i αmik, Lm is the number of points in
the mth input point set, Xn = [xKS+1, xKS+2, . . . , xKS+Kn ]
is the matrix stacked by the centroids of Gaussian mod-
els that are predefined to represent the nth object. eT is
a vector of ones, and || · ||F denotes the Frobenius norm.
Wmn = [wm(KS+1),wm(KS+2), . . . ,wmk, . . . ,wm(KS+Kn)]
where wmk is a weighted average point as:

wmk =
∑Lm

i=1 αmikvmi
∑Lm

i=1 αmik

. (10)
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This problem has a similar solution with [9]. The only
difference is that we are estimating the transformation from
Gaussian models to the input point sets instead of the trans-
formation from input point sets to Gaussian models, since
there are multiple groups of xk corresponding to multiple
objects in our Gaussian models. The optimal can be given
by:

R∗
mn = UmnCmnVT

mn, (11)

t∗mn = 1

tr(Λ2
mn)

(Wmn − Rmn Xn)Λ2
mne, (12)

where [Umn,S,Vmn] = svd
(
WmnΛmnPmnΛmnXT

n

)
and

Pmn = I − Λmne(Λmne)T

(Λmne)T Λmne
, I is identity matrix.

Cmn = diag(1, 1, |Umn ||Vmn|). (13)

M-step-b: in this step, we update the parameters related to the
Gaussian mixture model and the indicating vector for object
segmentation:

x∗
k =

∑M
m=1

∑Lm
i=1 αmik

(
R−1

mnvmi − tmn
)

∑M
m=1

∑Lm
i=1 αmik

, (14)

where xk is one of the Gaussian centroids that is predefined
to represent the nth object.

σ ∗2
k =

∑M
m=1

∑Lm
i=1 αmik

∥
∥
(
vmi − tmn − R∗

mnx
∗
k

)∥
∥2
2

3
∑M

m=1
∑Lm

i=1 αmik

(15)

p∗
k =

∑
m,i αmik

M
(16)

y∗
mi = argmax

n

∑n
s=1 KS∑

k=∑n−1
s=1 KS+1

αmik, (17)

where ymi is the i th entry of the indicate vector ym and it
assigns the i th point of the mth point set to one of the N
objects.

3.2 Bilateral formulation

In the basic formulation, only position information is used
in Gaussian models. When considering point-wise features
(such as color, texture, or other more complicated features
like the ones discussed in [12,27]), we can add bilateral terms
into the generative model.

P(vmi , fmi ) =
Kall∑

k=1

pkN
(
vmi |φmn

(
xv

k

)
, σvk

)
N

(
fmi |x f

k , σ
f

k

)
,

(18)

where fmi is the feature vector for point vmi , and x f
k is the

feature vector for kth point in object model. As shown in
the formulation, there is no transformation applied onto x f

k ,
which means that this formulation is only suitable to the fea-
ture that is rotation and translation invariant. For example,
we use the point color as a 3D feature vector in this paper. In
this formulation N (vmi |φmn(xvk), σvk) is the spatial term
andN (fmi |x f

k , σ
f

k ) is the feature term. For the bilateral for-
mulation, iteration steps will be as follows:

E-step: in this step, the posterior probability calculation
consider both the spatial terms and the feature terms:

αmik =
pk Pv

(
vmi , φmn

(
xv

k

)
, σvk

)
Pf

(
fmi , x

f
k , σ

f
k

)

∑Kall
s ps Pv

(
vmi , φmn

(
xv

s

)
, σ v

s

)
Pf

(
fmi , x

f
k , σ

f
s

) ,

(19)

where Pv(x, y, σ ) = σ−3exp
(
− 1

2σ 2 ||x−y||2
)

Pf (x, y, σ )=
σ−D(x)exp

(
− 1

2σ 2 ||x − y||2
)
and D(x)means the dimension

of the vector x.
M-step-a: for bilateral formulation, this step is the same with
the basic formulation and the update can be done as Eqs. (11)
and (12).
M-step-b: for bilateral formulation, this step not only updates
model centroids and variance for the spatial term as Eqs. (14)
and (15) but also updates the centroids and variance for the
feature term as in Eqs. (20) and (21).

x f ∗
k =

∑M
m=1

∑Lm
i=1 αmikfmi

∑M
m=1

∑Lm
i=1 αmik

, (20)

σ
f ∗2

k =
∑M

m=1
∑Lm

i=1 αmik

∥
∥
∥fmi − x f ∗

k

∥
∥
∥
2

2

D(f)
∑M

m=1
∑Lm

i=1 αmik

, (21)

where D(f) is the feature dimension. The update of pk for
bilateral formulation is the same as the basic formulation in
Eq. (16).

4 Initialization and optimization

Based on our formulation, as described in Sect. 3, ourmethod
for joint registration and co-segmentation can be summarized
in Algorithm 1. In this section, we will explain in detail the
parameter initialization and the user-guided optimization of
our algorithm.

4.1 Initialization

In our formulation, there are a large number of parameters
that can not be easily initialized. We provide an interactive
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Algorithm1 Joint Registration andCo-segmentation (JRCS)
Input:
{Vm}: M 3D point sets
Θ0: Initial parameters
{βik}m : Layout prior
Output:
Θq : Final parameters

1. q ← 1
2. repeat
3. E-step:UseΘq−1 to estimateα

q
mik according toEq. (8) (useEq. (19)

for the bilateral formulation);
4. if q < qalt then Alter α

q
mik with {βik}m according to Eq. (24);

5. M-step-a: use α
q
mik, x

q−1
k to estimate {Rq

mn} and {tqmn} according to
Eqs. (11), (12);

6. M-step-b: use α
q
mik, {Rq

mn} and {tqmn} to update other parameters
for Gaussian models according to Eqs. (14), (15), (16), (17) (or
Eqs. (20), (21) for the bilateral formulation);

7. q ← q + 1
8. until q > qmax
9. return Θq

tool to help with the initialization, as shown in Fig. 2. A set
of boxes can be manually placed to indicate a rough seg-
mentation of different objects in one point set. Each object
can be roughly indicated by multiple boxes. Based on the
roughly placed boxes, we can initialize the parameters in our
formulation.
Number of objects N : N is naturally determined as the num-
ber of box groups placed in the point set.
Number of Gaussian models in each object {Kn}N

n=1: While
objects in an indoor scene have varying volumes, we use
different numbers of Gaussian models for objects according

Fig. 2 The procedure of interaction: a load all the input point sets into
the system. Our system shows these point sets inmultiple sub-windows.
These point sets record the same scene at different time. The objects
inside the scene have been moved. b Pick one point set (by picking one
sub-window) to add boxes to indicate the object layout. The box inwhite
is the box currently under editing. c Add boxes to represent each object
inside the scene. One color represents one object. The interaction allows
multiple boxes to represent same object (e.g., the desk is represented
by three boxes in same color). d The interaction is finished

to their volumes. We set Kn as:

Kn = vol(On)
∑

vol(On)
Kall, (22)

where vol(On) represents the total volume of the boxes for
On . The total number of Gaussian models Kall in the scene is
initialized as 1

2

(
median({Lm}M

m=1

)
, where Lm is the number

of points in Vm . This is an empirical choice borrowed from
[9].
Gaussian parameters {pk, xk,Σk}Kall

k=1: We initially set pk =
1

Kall
, which means each Gaussian model is equally weighted

at the beginning. For object On , we initialize its Kn Gaus-
sian centroids {xk}KS+Kn

KS+1 as random positions uniformly
distributed on the surface of a sphere, whose radius r is cho-
sen as the median of the radius of the input point sets. The
radius of a point set is defined as half of the length of diagonal
line of its axis-aligned bounding box.

The center of the nth sphere is cn = (0, 0, zn), where
zn ∈ {−(N−1)r ,−(N−3)r , . . . , (N−1)r}. Thismeans that
the object models are vertically arranged as shown in Fig. 3b.
We choose vertical arrangement for groups of objects merely
for the convenience of visualization. Figure 4b E00 shows
an example of the initial Gaussian centroids of a scene with
three objects. The variance {Σk} is all initialized as Σk =
σ 2I in which σ = r . Without any prior knowledge, such
initialization for Gaussian parameters puts all the objects at
similar starting points and they can compete fairly to group
points in the input point sets. If we set r differently for each
object based on the size of input boxes, it could be easily
stuck to a local minimum that all the points are assigned to
the largest object.
Transformations {φmn}M,N

m=1,n=1 = {Rmn, tmn}M,N
m=1,n=1: Since

we have chosen spheres as the initial shapes, we can initialize
all the Rmn to an identity matrix. For translations, we initial-
ize them as tmn = −cn so that all the object models start
with position at the origin point when they are transformed
to the space of each input set. However, if boxes are manu-
ally placed in the point set Vm , we treat the associated tmn

differently:

tmn =
∑

vmi ∈Bn
vmi

N (Bn)
− cn, (23)

where N (Bn) here is the number of points enclosed by the
manually placed boxes indicating object On .

4.2 Layout constrained optimization

Our formulation inherits the disadvantage of easily getting
stuck at a local optimal from the EM framework. Without
further constraint, the EM framework usually fails to get a
globally optimal solution. This is shown in Fig. 3 wherein
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Fig. 3 An example result when our algorithm converges to a local
optimal with bad initialization. a The segmentation result in six point
sets. The algorithm gets stuck at a local optimal wherein a part of the
table and a part of the chair are segmented into one combined object.
b The same result as a, but in the view of Gaussian centroids. It shows
three groups of Gaussian centroids vertically arranged. Each row shows
one group of Gaussian centroids representing one object. It shows that
the chair and the table are not perfectly segmented

the chair and the table are not perfectly segmented. To cope
with this problem, we adopt the user placed boxes as soft
constraints to guide the optimization and confine the shapes
of generated object models. Such constraints are enforced by
altering the posterior probability as

α∗
mik = αmikβmik

∑
i,k αmikβmik

, (24)

where βmik is the prior probability according to the boxes,
defined as:

βmik =
⎧
⎨

⎩

1, vmi ∈ Bn

exp

(

−minvmj ||vmi −vmj ||22
2r2

)

, vmi /∈ Bn and vmj ∈ Bn

(25)

where Bn is a set of points that are enclosed by the boxes used
to represent object On . minvmj ||vmi −vmj ||22 is the minimum
distance from a point vmi to the points {vmj } in object On . r
is the median of the radius of input point sets. This alteration
on posterior probability is only done for the points in the
point set where boxes are manually placed.

This alteration prevent object models from deforming into
arbitrary shape. Figure 4 demonstrates the converging pro-
cedure with box constraints. We can see that with the boxes
placed in one point set as constraints, our framework con-
verges to a good segmentation result. Thepoint sets arefinally
segmented to three objects, and the object models develop
from an initial sphere shape at q = 1 to a dense point cloud
which fits the input point sets well. However, in Fig. 4a, the
objective function is not monotonically increasing. This is
due to our alteration on the posterior probability in Eq. (24).
This alteration is quite a brutal solution to enforce the shape
constraint, and it will interfere with the convergence of EM

algorithms. Thismakes it difficult to set a stop criterion based
on the objective value. We simply stop the iteration when the
maximum iteration number qmax is reached.

As highlighted in Fig. 4b “A01”–“A08”, the segmentation
in the first point set seldom changes until the last few iter-
ations. This is due to the alteration in Eq. (24) as well. In
order to constrain the object shape, we do alteration on the
posterior probability of the point set where boxes are placed.
This alteration is only done in qalt iterations, as described
in the step 4 in Algorithm 1. However, the initial segmen-
tation based on the boxes is not accurate. Therefore, we no
longer do such alteration in the last few iterations and let the
algorithm to refine the segmentation based on the result of
registration. We set qalt = qmax − 10 for all experiments in
this paper.

For initialization and object shape constraint, the boxes are
first roughly placed in one point set only. Inmore challenging
cases, if the user is not satisfied with the segmentation and
registration results, we also allow the user to add more box-
shape constraints in different point sets to refine the results.
The same alteration as Eq. (24) is performed in the opti-
mization. We will discuss an example of such case later in
Sect. 5.4.

5 Experiment and discussion

In this section, we will show a series of experimental results
including evaluation for co-segmentation and joint registra-
tion on synthetic data for quantitative analysis, investigation
on the robustness of our method on point completeness and
amount of user interaction, and testing on one group of real
data.

5.1 Synthetic data collection

We generate a group of synthetic datasets ( synthetic point
sets) to quantitatively evaluate our algorithm. For each
dataset, we model a 3D scene using object models from 3D
Warehouse. We convert the mesh model of the scene into a
point set using the Poisson sampling method [6]. Then, we
manually move the objects according to their functions and
generate multiple point sets.

5.2 Co-segmentation on synthetic data

From the perspective of co-segmentation, we quantitatively
evaluate our algorithm on two groups of synthetic data of
indoor scenes. To estimate the power of the proposed algo-
rithm, the interaction of placing boxes is only performed at
one point set. No further interaction is required. For numeri-
cal estimation,we calculate the intersection over union (IOU)
scores for the induced segmentation against the ground-truth
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Fig. 4 The convergence process of our algorithm. aObjectivew.r.t. iter-
ation number. The objective value is calculated according to (7). Note
that the curve is not monotonic increasing, which makes it difficult to
set a stop condition based on our objective. b Segmentation results of
three points sets (12 point sets are used in total). Column “00” shows
the input point sets and the initial Gaussian centroids, among which

“B00” has two images: the left one is the input layout (boxes) which is
only placed in the first point set. The column “01”–“08” shows result
of segmentation (in row “B”–“D”) and Gaussian centroids (in row ”E”)
at different iteration numbers q. The q is shown at top of each column.
The row “A” shows highlighted areas of “B01”–“B08”

Table 1 The means and standard deviations of IOU scores on two
synthetic datasets

Datasets Study room Office desk

JRCS-Basic 0.808 ± 0.032 0.831 ± 0.027

JRCS-Bilateral 0.876 ± 0.012 0.829 ± 0.028

PointNet [3] 0.402 ± 0.032 0.439 ± 0.049

JRCS-Basic is our basic formulation. JRCS-Bilateral is our bilateral
formulation with point color as feature

Fig. 5 Segmentation evaluations on two groups of synthetic data (study
room and office desk). Three examples of point set from each group are
shown

segmentation. We compare our results with the state-of-the-
art semantic segmentationmethod, PointNet [3],which trains
a network using a large-scale database. Table 1 shows the
numeric result, and Fig. 5 shows visual results of three input
point sets including the one that is equipped with input lay-

out. For the object class that is not annotated in the training
data, PointNet [3] treats it as a special class of ”clutter” (the
black points in Fig. 5). This is why we have different ground
truth for our method and PointNet. As shown in Fig. 5, we
have “GT” as ground truth used to evaluate our method and
“GT for PointNet” as ground truth used to evaluate Point-
Net. Comparing our method to PointNet is not an exact fair
comparison in the following aspects:

1. Our method allows user interaction, while PointNet is
fully automatic in the test phase.

2. Our synthetic data are quite different from the data in
Stanford 3D semantic parsing dataset [1], which is used
to train the semantic segmentation network of PointNet.

3. Our method generates object-level segmentation without
semantic label, while PointNet generates semantic labels.

However, by comparison, the generalization ability of cur-
rent learning-based methods is still far from enough to be
used as tool to prepare data and build dataset. The seman-
tic segmentation method is limited to certain set of object
classes (13 classes for PointNet) and cannot be used to carry
on our task.

5.3 Joint registration on synthetic data

From the perspective of joint registration,wefirst evaluate the
result by transferring the point cloud of objects to each input
point set based on the estimated results {φmn} and calculating
the average distance from a point to its true correspondent
point for each input point set. We use this average distance
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Table 2 Registration errors of the three groups of synthetic data in
Fig. 5

Method@Dataset Maximum Median Minimum

Basic@Study room 0.441 0.085 0.027

Bilateral@Study Room 0.139 0.052 1.31e−05

Basic@Office desk 0.309 0.0408 5.82e−03

Bilateral@Office desk 0.222 0.0574 8.33e−03

The errors are measured in meter

Fig. 6 Joint registration results on two scenes using two variants of our
method. Point-wise correspondences are color-coded. The three rows
show three point clouds captured at different times in the same scene,
respectively. Columns A and B show results of JRCS-Basic and JRCS-
Bilateral for study room. Columns C and D show results of JRCS-Basic
and JRCS-Bilateral for the office desk

as the fitness error to evaluate the registration quality with
respect to each input set.

Table 2 shows the evaluation results. The Maximum,
Median andMinimumof the fitness error across input sets are
reported.We find that even the input set with high IOU scores
in segmentation can result in high fitness error. We believe
this is due to the symmetric and near-symmetric objects in
the scene. For symmetric objects, even if the registration is
correct, the distance from one point to its true corresponding
point may still be high. This distance is due to the fact that
the registration result’s rotation may differ from the one used
to generate the synthetic data. For near-symmetric objects,
the registration often gets stuck in a local optimal and results
in a high IOU score but a high fitness error. In Fig. 6, the
registration of the round carpet is correct, but its point-wise
correspondences do not followan identity transformation due
to its symmetry, while the shelf corner highlighted in the red
rectangles is not correctly aligned and it gets stuck at a local
minimum that maps its left part to the right part.

We then compare our method (JRCS-Basic) with [9]
(JRMPC) on the synthetic point sets released by [9]. These
data contain four point sets of Stanford Bunny with differ-
ent noise and outliers. The experiment results in Table 3 and
Fig. 7 show that our method generates similar results with
[9] when dealing with a single object.

Table 3 RMSE of joint registration on 4 point sets of Stanford Bunny
by two methods

Point Sets View 2 View 3 View 4

JRMPC [9] 0.1604 0.1719 0.1838

JRCS-Basic 0.0822 0.1570 0.2301

Fig. 7 Joint registration results on 4 point sets of Stanford Bunny by
JRMPC [9] (left) and our JRCS-Basic (right)

5.4 Amount of interaction

For parameter initialization and object shape constraint, we
only need the user to input layout (boxes) in one of the input
point sets. However, our algorithm sometimes gets stuck at a
local minimum on handling non-local motion of objects. In
such challenging cases, more user input is desired to further
guide the optimization. Figure 8 shows how the IOU score
increases along with the amount of interaction. In this exper-
iment, we use JRCS-Basic. In Fig. 8, the Minimum IOU
curve does not monotonically increase with the amount of
manual input, which means more interaction does not guar-
antee improvement of the segmentation results in all point
sets. When the initial correspondences in most point sets are
far from correct, our method loses its ability to transfer the
information among different point sets. The further interac-
tion only improves the segmentation in the point set which
the user adds layout into and barely improves the segmenta-
tion in other point sets. From Fig. 9, we can see that actually
quite a lot of interactions are needed for the overall segmen-
tation result to be visually satisfying for the dataset in this
experiment.

5.5 Influence of point incompleteness

In the previous evaluations on the synthetic data, the point
sets are sampled as the objects in the scene are completely
covered. In this subsection, we investigate how the point set
incompleteness affects the result of our algorithm. To test
this, we pick a group of point sets and gradually remove
certain percentage (0–30%) of points from each point set.
Using a simple method to simulate the occlusion-induced
point incompleteness, we generate the incomplete point sets
with incompleteness of p% as follows:
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Fig. 8 IOU scores of co-segmentation results based on different amount
of user interaction. The X axis is the ratio: x = Input Box Number

Total Object Number . x =
1.0 means that the user places one box for each object in all point sets

Fig. 9 Given the same input point sets, more accurate segmentation
results can be obtained with more interaction. From left to right: 3 out
of 16 input point sets, the ground-truth segmentation, our result when
only one point set is equipped with manual input layout, and our result
when 11 out of 16 point sets are equipped with manual input layout

1. Randomly pick one point from each complete point set.
2. For one point set, sort all points in ascending order

according to their Euclidean distances to the picked point.
3. Remove the first p%points from the point set to generate

a point set with incompleteness of p%.

Figure 10 shows the IOUscoreswith three levels of incom-
pleteness p = 0.0, 14.0, 30.0, and Fig. 11 shows the test
data and segmentation results. Some objects in the scene
are occluded severely, and over half of the points are miss-
ing (Fig. 11 A09-E09). Even with serious incompleteness
on some objects, our algorithm converges to a relative good
result.

5.6 Test on real data

Tocapture real data,we employ thevoxel hashingmethod [21]
and use plane fitting to remove walls and floors. The meshes
are transferred into point sets using a Poisson sampling pro-
cess [6]. Figure 12 shows a scanned point set, where we can

Fig. 10 IOU scores of co-segmentation with different data incomplete-
ness. The test data are partially shown in Fig. 11

Fig. 11 Experiments on data incompleteness. This figure shows results
at three different levels of incompleteness which are 0.0% at row 01–
04, 14% at row 05–08 and 30% at row 09–12. Each column shows the
information of the same point set. Rows 01, 05, 09 show the inputs. Col-
umn A shows one point set and the manual input for initialization. The
initial segmentation and final segmentation of this point set are shown
in column A as well. Rows 02, 06, 10 are ground-truth segmentation.
Rows 03, 07, 11 are our segmentation results. Rows 04, 08, 12 show
the point-wise correspondences of joint registration by color-coding

see that, there are noised and blurred color, shape distortion,
partial scanning and outliers in real data. Figure 13 shows the
segmentation and registration results on a group of scanned
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Fig. 12 Common challenges in scanned data

point sets of a kid’s table. We use JRCS-Bilateral in this test,
and Fig. 13d shows the only point set that is equipped with
layout in this test. From Fig. 13e, we can see that all input
point sets are partitioned into objects. In Fig. 13g, we align
the point sets all together respective to each of the objects.
There are four objects in the scene, so there are four different
aligned results in Fig. 13g. The light blue rectangle highlights
the object that is used to align the point sets. We can verify
that the objects from each input set are aligned together by the
result transformation. Figure 14 shows the results on another
group of scanned point sets of an office desk.

5.7 Limitations and future work

With all the experiments above, we now summarize the lim-
itations and discuss possible future directions of our work.

Amajor limitationholdingus back is the timeperformance
of our current implementation, which prevents us from going

over more initialization and optimization strategies. For a
group of 11 point sets with about 9K points in each point
set, our current implementation will take about 110 min to
run 100 iterations. Our algorithm could be sped up with a
parallelized implementation in the future.

The requirement of human input is another major limi-
tation, though our solution is already better than manually
segmenting each point set. For this matter, we believe inte-
grating learning-based method is necessary. However, a
semantic segmentation method as [3] will lead to a loss of
generality. It is better to lean on methods that predict gen-
eral object boundaries, so that we could use them to initialize
segmentation for general objects.

For now our method uses fused scanned data (the result
of [21]) as input, it is more attempting to develop a method
that accepts a set of single view scans as input and do joint
registration and co-segmentation. To work on this direction,
we need improve out current approach to handle much more
severe data incompletion respecting to each object.

6 Conclusion

For the challenging problem of point set joint registration
and co-segmentation, we come up with a formulation that
simultaneously models the two entangled subproblems. For
the difficult initialization and optimization of this formula-
tion, we provide a strategy that leans on a fewmanual inputs.
In the evaluation, we thoroughly investigate the performance
of our algorithm. Our algorithm presents a series of success-
ful cases on both synthetic and real data. We also summarize
the limitations of the current solution and discuss possible
future solutions for these issues.

Fig. 13 Segmentation and registration on the scanned data of a kid’s
table. a Scanned mesh using method in voxel hashing [21]. b Remove
walls and floors by plane fitting. c Sampled point set using [6]. d With
roughly placed boxes on only one point set, the points are initially
segmented in this one point set. Note that parts of the chair legs are
segmented to the table due to the rough box placement by users. e Pairs
of input point sets and corresponding segmentation results. f The final

Gaussian centroids for the five objects in the scene. gVerification of the
registration result by aligning all point sets with respect to each object in
f. The light blue rectangle highlights the object that is aligned together.
Except the aligned object, the other objects are placed quite messy since
they came from different point sets and have different arrangement rel-
ative to the aligned object
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Fig. 14 Segmentation and registration on the scanned data of an office
desk. a Scanned mesh using method in [21]. b Remove walls and floors
by plane fitting. c Sampled point set using [6]. d With roughly placed
boxes on one point set, the points are initially segmented in this one
point set. Note that parts of the chair legs are segmented to the table
due to the rough box placement by users. e Pairs of input point sets
and corresponding segmentation results. f The final Gaussian centroids

for the nine objects in the scene. g Verification of the registration result
by aligning all point sets with respect to each object in f. The light
blue rectangle highlights the object that is aligned together. Except the
aligned object, the other objects are placed quite messy since they came
from different point sets and have different arrangement relative to the
aligned object
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