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Figure 1: From sparse lines that coarsely describe a face, photorealistic images can be generated using our conditional self-
attention generative adversarial network (CSAGAN). With different levels of details in the conditional line maps, CSAGAN
generates realistic face images that preserve the entire facial structure. Previous works [4, 13] fail to synthesize certain struc-
tural parts (i.e. the mouth in this case) when the conditional line maps lack corresponding shape details.

ABSTRACT
In this paper, we explore the task of generating photo-realistic
face images from lines. Previous methods based on conditional
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generative adversarial networks (cGANs) have shown their power
to generate visually plausible images when a conditional image
and an output image share well-aligned structures. However, these
models fail to synthesize face images with a whole set of well-
defined structures, e.g. eyes, noses, mouths, etc., especially when
the conditional line map lacks one or several parts. To address this
problem, we propose a conditional self-attention generative adver-
sarial network (CSAGAN).We introduce a conditional self-attention
mechanism to cGANs to capture long-range dependencies between
different regions in faces. We also build a multi-scale discriminator.
The large-scale discriminator enforces the completeness of global
structures and the small-scale discriminator encourages fine de-
tails, thereby enhancing the realism of generated face images. We

https://doi.org/10.1145/3343031.3350854


evaluate the proposed model on the CelebA-HD dataset by two per-
ceptual user studies and three quantitative metrics. The experiment
results demonstrate that our method generates high-quality facial
images while preserving facial structures. Our results outperform
state-of-the-art methods both quantitatively and qualitatively.
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1 INTRODUCTION
When creating something from scratch, a natural and intuitive
way is to draw lines. Line drawing is an effective form of visual
thought. It describes the structure and shape of a desired object
more specifically than text. Turning lines into photorealistic images
has drawn a lot of attention in computer graphics and computer
vision for many years. Benefiting from the massive amounts of
images on the Internet, many approaches in the past decade have
been proposed based on line-based image retrieval and image syn-
thesis techniques [3, 9, 29, 36]. While these methods successfully
maintain the primary structure of the desired object or scene, they
typically fail to generate fine details due to the limited capability of
traditional image synthesis techniques.

With the emergence of deep neural networks (DNN), a series of
approaches based on generative adversarial networks (GANs) have
been proposed for realistic image synthesis [18, 30]. A generator and
a discriminator in GANs are trained by playing a min-max game to
guide the generated samples to become indistinguishable from real
ones. Image-to-image translation, which is a specific application of
conditional GANs, aims to translate an image in one domain to a
target image in another domain, while preserving main contents
and structures in these two images. Since the first image-to-image
translation model, pix2pix [13], was proposed, there have been
many variants in both supervised and unsupervised manners [16,
20, 33, 37, 39, 40]. These models successfully synthesize realistic
textures when complete and detailed structures are given in the
conditional image.

However, when the structure is partially provided in the con-
ditional image, which is exactly the case of line drawings or edge
maps, previous models fail to complete the missing structure. This
is mainly because these methods strictly follow the provided edges
when synthesizing the generated image; thus, they do not gen-
erate new structures at the place where few edges are provided.
Since faces are composed of well-defined structural parts, e.g. noses,
mouths, eyes, etc., the synthesized face images should contain the
whole set of these structural parts to appear realistic, even when
the conditional line maps lack edges around the supposed locations

of these parts. As Figure 1 shows, using our method, the generated
images from two line maps with different levels of details are more
realistic because of the complete global structures and fine textures.
Previous methods [4, 13] fail to render realistic face images while
edges around the mouth area are incomplete.

The underlying reasons for this failure are mainly two-fold. First,
existing GANs are built primarily on convolutional layers. Since the
convolutional operator has a local receptive field depending on its
kernel size, a large receptive field is achieved by stacking multiple
convolutional layers. However, it is non-trivial for current network
optimizers to discover proper parameter values that model the
long-range dependence through several convolutional layers [38].
Secondly, existing discriminators used in GANs focus on examining
local patches instead of capturing the global information; therefore,
they fail to enforce the generator to synthesize global structure of
the generated image.

Considering the first issue, we propose a conditional self-attention
mechanism to the image-to-image translation model generator
to address the problem. Self-attention, which computes the re-
sponse at one position as a weighted sum of the features at all
positions, is able to capture long-range dependency across different
parts [6, 31, 34, 38]. In order to adapt the conditional setting of
image-to-image translation and encourage the GAN model to fully
exploit the information from the conditional image directly, we pro-
pose a conditional self-attention module (CSAM), which enables the
higher layers to sense information from the conditional image and
capture long-range dependency. For the second issue, we establish
a multi-scale discriminator to capture information from different
levels. The small-scale discriminator has a local receptive field and
improves the fine textures of local patches, while the large-scale
discriminator ensures the completeness of the global structure in
the generated images.

In this paper, we focus on the task of portrait photograph gen-
eration from line drawings, while preserving well-defined face
structures, which are critically important for the realism of face
photos. Our contributions are summarized as follows:

(1) We first introduce the self-attention mechanism to line-
to-image translation and propose a novel conditional self-
attention generative adversarial networks. Unlike convolution-
based methods, the proposed model is able to model long-
range dependence and global structures in face images.

(2) We show the effectiveness of the proposed model by a series
of experiments on the CelebA-HDdataset. Ourmethod gener-
ates high-quality face images from sparse lines and preserves
facial structures. The proposed CSAGAN outperforms state-
of-the-art methods both quantitatively and qualitatively.

2 RELATEDWORK
Our CSAGAN method for generating face photos from line maps
is built upon previous work on image-to-image translation, atten-
tion mechanism, and line-based image synthesis. We discuss most
related techniques in this section.
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Figure 2: The architecture of our model. The proposed CSAM (the blue block) is added before the last convolutional layer.
The multi-scale discriminator (only two are drawn) are applied to encourage the generator to produce realistic results with
complete structure and delicate textures.

2.1 Image-to-Image Translation with GANs
Given an image in one domain, image-to-image translation meth-
ods generate a corresponding image in another domain, while de-
picting the same scene or object in different styles. The pix2pix
method [13] first introduced image-to-image translation with con-
ditional GAN for a range of applications. However, it is difficult for
the convolution-based architecture used in pix2pix to discover long-
range dependence across different regions. Moreover, the patch-
wise discriminator in pix2pix can not ensure that global structures
are well captured. Following pix2pix, many supervised techniques
have been proposed to improve the resolution and details of target
images. [15] studied how to generate images of outdoor scenes
from semantic label maps coupled with attributes. [40] presented a
framework that encourages the connection between the output and
the latent code to be invertible so as to model the multi-modal dis-
tribution of possible outputs. [2, 33] used coarse-to-fine refinement
frameworks to synthesize high-resolution photographic images
from semantic label maps. In comparison, our work focuses on
translating rough lines to realistic face photos, in which the key
challenge is to learn the global structure and long-range dependence
across different regions in a face image.

2.2 Self-Attention Mechanism
In order to sense global structures in a large receptive field, sev-
eral convolutional layers and large kernel sizes have typically been
required in previous GAN-based techniques. However, simply stack-
ing convolutional layers or increasing kernel sizes seriously harms
the computational efficiency. Self-attention, which computes the
response at one position as a weighted sum of the features at all
positions, is able to capture long-range dependence across different
parts. [31] applied self-attention to capture global dependence in

sequential data for machine translation, and they demonstrated
the plausible effectiveness of the self-attention mechanism. [24]
studied on combining the self-attention mechanism with autore-
gressive models, and proposed an image transformer model for
image generation. Inspired by non-local operations in computer
vision, [34] utilized the self-attention mechanism as a non-local
operation to model long-range spatial-temporal dependence for
video processing. [38] introduced self-attention to unconditional
GANs and showed its advantages in generating natural images from
noise vectors. [27] focused on saliency detection, utilizing a recur-
rent structure for shallow layers and a self-attention module for
deep layers. [32] proposed a novel parallax version of self-attention
for stereo image super-resolution. Inspired by previous works, we
first explore the self-attention mechanism in the context of lines-
to-photo translation to exploit global structures and long-range
dependence between different parts in faces.

2.3 Lines-based Synthesis
Synthesizing images and models [5] from strokes or lines is not
a novel idea. Earlier techniques of image synthesis from lines [3,
9] search for image patches in a large-scale database using the
drawn lines, and then they fuse the retrieved image patches. With
recently developed GANs, image-to-image translation techniques
have been applied to the edge-to-photo task [13, 33]. However,
these general frameworks, which are not specially designed for
line drawings, require input edge maps that contain complete and
carefully drawn lines to generate visually pleasing results. Taking
hand-drawn sketches as input, SketchyGAN synthesizes plausible
images for 50 object categories [4] . A masked residual unit (MRU)
is proposed to improve the information flow by injecting the input
image at multiple scales. However, when the conditional line maps



Figure 3: Dense distance field representation of sparse line
maps.

lack specific structural parts, these GAN-based methods suffer from
incomplete structures in the generated images. In comparison, our
method learns long-range dependence in face images and produces
photo-realistic images from line maps of different detail levels.

3 METHOD
In this section, we introduce our Conditional Self-attention Gen-
erative Adversarial Network (CSAGAN) for translating line maps
to photo-realistic photos of human faces. The architecture of our
model is shown in Figure 2. The generator is based on an encoder-
decoder architecture with residual blocks. Skip connections [25] are
applied between corresponding layers in the encoder and decoder.
We adopt masked residual units (MRUs) [4] in our framework. We
add our proposed conditional self-attention module (Sec.3.1) before
the last MRU to model long-range dependence among feature maps.
The conditional line map is resized and concatenated into feature
maps at multiple scales to use as input for the MRUs and CSAM.
Finally, to encourage the generator to produce realistic face images
with complete structures and fine textures, we use a multi-scale
discriminator (Sec. 3.2) to classify a face image globally and image
patches locally as real or synthesized.

Input to CSAGAN. Since line maps are very sparse and rough,
we adopt a dense representation using a distance transform. From
a black-white line map, an unsigned Euclidean distance field is
calculated as the conditional image. Figure 3 shows two examples
of the distance fields generated from two line maps with different
levels of details. Compared to the sparse and rough line maps, the
dense distance fields spread the shape information to all pixels so
that the extracted feature maps are more robust to incompleteness
and noise in the input line maps. Similar ideas of using distance field
representations can be found in several sketch-based applications [4,
11, 23]. On the other hand, some conditional GANs add a noise
vector to the generator as input to avoid producing a deterministic
output. However, the pix2pix model has shown that the noise vector
is ignored by the generator and hardly changes the output. We
observe the same phenomenon in our experiments, thus we do not
apply noise vectors in our model.

3.1 Conditional Self-Attention Module (CSAM)
Inspired by SAGANs [38], we propose a conditional self-attention
module (CSAM) for our lines-to-photo translation task to extract
long-range dependence. This module is designed as a general mod-
ule of conditional frameworks and can be added after any existing
conditional modules of feature extraction. Given feature maps ex-
tracted from the previous layer a ∈ RC×H×W and a resized con-
ditional line map x ∈ R1×H×W that matches the resolution of the

current layer of feature maps. we concatenate them to get [a, x]
as conditioned features, where [·, ·] is the concatenation operation,
and C , H , andW are the number of channels, height, and width of
the feature map a. This allows the network to form the attention
based on the conditional image as well as the feature maps. In order
to calculate the attention, we map the conditional features [a, x] to
two feature spaces:

f ([a, x]) =Wf [a, x], (1)

д([a, x]) =Wд[a, x], (2)

where Wf , Wд ∈ RĈ×(C+1) are trainable weights and are imple-
mented by 1 × 1 convolutions. Here, we use Ĉ = C/8 in our experi-
ments following the setting of SAGAN [38].

Let B ∈ RN×N be the attention map, where N = H ×W . Every
element in B, denoted as bj ,i , indicates the extent to which the
model attends to the ith pixel while synthesizing the jth pixel. bj ,i
is calculated by

bj ,i =
exp(si j )∑N
i=1 exp(si j )

, (3)

in which si j = f ([a, x])Tд([a, x]). Next, we use bj ,i as the attention
weights and compute the response map r = (r1, r2, · · · , rN ) ∈

RC×N at every position as a weighted sum of the features at all
positions, where

rj =
N∑
i=1

bj ,ih([a, x]), (4)

where h([a, x]) = Wh [a, x] and Wh ∈ RC×(C+1). As suggested in
[38], we further multiply the response of the attention layer by a
scale parameter γ and add it back to the input feature maps. The
final output is calculated by

oi = γ ri + ai , (5)

where γ is a trainable value and is set to 0 at the beginning of the
training process. In this way, the network learns local dependence
at early stages in the training process, and then it learns long-range
dependence by assigning more weights to the non-local evidences
progressively.

3.2 Multi-Scale Discriminator
The discriminators for the pix2pix model and SketchyGAN are
patch-wised, which distinguish real/fake images patch by patch
convolutionally in local receptive fields that are much smaller than
the size of the input images. The average value of all responses is
calculated as the ultimate output of the patch discriminator. This is
based on the assumption of independence between pixels separated
by more than one patch’s diameter. However, since the structural
constraint is global information across an entire image, the patch-
wise discriminator fails to capture the global structure. We design
a multi-scale discriminator consisted of ND subnetworks with dif-
ferent depths and, therefore, different sizes of receptive fields in
their last layers. The receptive field in the last layer of the deepest
subnetwork is as large as the entire image to capture the global
structure. These subnetworks share weights with each other in first
few layers since the lower-level features of these discriminators
should be the same.



Figure 4: Components of the proposed CSAM. Given the con-
ditional image and featuremaps from the previous layer, the
output feature maps are calculated in a self-attention man-
ner.

We note that similar ideas of employing multiple discriminators
has already been raised by [2, 7, 33]. They resize the real/fake im-
ages to multiple scales and apply discriminator subnetworks with
the same architecture to sense different levels of structures of the
real/fake images. In comparison, we fix the size of the real/fake
images, and apply discriminators of different depths to achieve mul-
tiple sizes of receptive fields. It is more stable and computationally
efficient to share the weights of the shallow convolutional layers.
Comparison experiments with different numbers of discriminator
subnetworks and previous multi-scale discriminators are described
in Sec.4.5.

3.3 Loss Function
With the multi-scale discriminator D, which consists of subnet-
works {Di , i = 0, 1, · · · ,ND }, the adversarial loss is written as

Ladv (G;D) =
1
ND

ND∑
i=0

E(x,y)∼pdata (x,y)
[
logDi (x, y)

]
+ Ex∼pdata (x)

[
log

(
1 − Di

(
x,G(x)

) )]
.

(6)

Similar to the pix2pix model, we also adopt an L1 loss to encour-
age the generated image G(x) from a line map x to be close to its
ground truth image y. The L1 loss is given by

LL1(G) = E(x,y)∼pdata (x,y)
[
∥y −G(x)∥1

]
. (7)

In order to achieve better perceptual quality in generated face
images, we add a feature matching loss Lf m . The feature match-
ing loss [33] is a variant of perceptual loss [8, 10, 14], which aims
to minimize errors between generated images and corresponding
ground-truth images in the feature space. Different from the pre-
vious techniques that employ perceptual loss through a pretained
VGG model, the feature matching loss uses the feature maps pro-
duced by the discriminator in our CSAGAN. This is because the
VGG models used in previous methods are always trained with the
ImageNet dataset and have domain gaps with face images. Our dis-
criminator is trained specially for face images; therefore, it is more
suitable for extracting features that present perceptual information
of faces. Specifically, let Dq

i (·) be the output of the q-th layer of the
i-th discriminator subnetwork with n

q
i elements, and the feature

matching loss is given:

Lf m (G) =
1

NDNQ
E(x,y)∼pdata (x,y)

ND∑
i=0

∑
q∈Q

1
n
q
i
∥D

q
i (G(x))−D

q
i (y)∥1,

(8)
where Q is the set of selected layers of discriminators, and NQ is
the number of selected layers. We select the last three convolutional
layers from each discriminator subnetwork in our experiments.

By combining the multi-scale discriminator and the feature
matching loss, the full objective to train our CSAGAN is

min
G

max
D

Ladv (G;D) + λLL1(G) + µLf m (G). (9)

where λ and µ are the weights to balance the three losses. We set
λ = 100.0, and µ = 1.0 in our experiments.

3.4 Training Techniques
Training GANs is non-trivial because it is hard for generator and
discriminator networks to find equilibria in the adversarial minmax
game. We apply several techniques to stabilize our training.

Two-Timescale Update Rule (TTUR). Previous works [12, 38] sug-
gest that separate learning rates for the generator and the discrimi-
nator are able to compensate for the problem of slow learning in the
discriminator. TTUR is applied in our training process and shown
to be effective.

Spectral Normalization. Spectral normalization [22] is a recently
proposed normalization technique, which restricts the spectral
norm in each layer of the discriminator to constrain its Lipschitz
constant. Spectral normalization is computationally efficient and
requires no extra hyper-parameter. Furthermore, spectral normal-
ization is beneficial for generator training because it prevents un-
usual gradients [38]. We apply spectral normalization for both our
generator and discriminators.

Multi-Stage Training. In order to stabilize training„ we divide
the training process into three stages. In the first stage, we train the
model without CSAM. Then, we add CSAM and train the CSAM
while fixing the weights of the other layers in the second stage.
Finally, we fine-tune the entire CSAGAN model together.



4 EXPERIMENT
We apply the proposed CSGAN framework to generate realistic
photos from sparse line drawings of faces. We conducted a series
of experiments to demonstrate the effectiveness of our method for
preserving facial structures and generating fine details. Compar-
isons with other state-of-the-art methods also show the superiority
of the proposed CSGAN.

Dataset. To train our network, we use the CelebA-HDdataset [16],
which contains 30K high-resolution celebrity images. We randomly
select 24K images for training and 6K for testing. All the images
are resized to 256 × 256 in our experiments. To generate pairs of
line drawings and face photos for supervised training, we adopt a
pipeline similar to pix2pix. Specifically, edges are first extracted us-
ing a deep edge detector named Holistically-nested Edge Detector
(HED) [35]. In a generated edgemap, each pixel has a valuepHED in-
dicating the probability of it being an edge. Several post-processing
steps, including thinning, short edge removal, and erosion, are con-
ducted to obtain simpler and clearer line maps with fewer edge
fragments.

Training Parameters. We use the Adam [17] optimizer with mo-
mentum parameters β1 = 0.5, β2 = 0.999. We update one step for
either G or D alternatively, and batch size is set to 8. Either the
first or the second training stage lasts 100 epochs with an initial
learning rate lrG = 0.0001 for the generator and lrD = 0.0004 for
the discriminator, while the third stage lasts 50 epochs with initial
learning rates lrG = 0.00001 and lrD = 0.00004. The learning rates
decay at the halfway point of each stage. The entire training process
takes about seven days on eight GeForce GTX 1080Ti GPUs.

4.1 Evaluation Metrics
The evaluation of generative models is an open and complicated
task. A model with good performance with respect to one crite-
rion does not necessarily imply good performance with respect
to another criterion [21, 28]. Traditional metrics, such as pixel-
wise mean-squared error, do not present the joint statistics of the
synthesized samples, and therefore are not able to evaluate the
performance of a conditional generated model.

Since the goal of our lines-to-image translation is to generate
face images that are visually plausible, we compare the results of
different models with perceptual user studies, which are commonly
used for evaluating GANmodels [2, 7, 19, 26, 33]. Following a similar
procedure as described in [2], we conduct two kinds of experiments:
an unlimited time user study and a limited time user study. In
addition, we use three popular quantitative evaluation metrics, the
inception score (IS) [26], Fréchet Inception Distance (FID) [12],
and Kernel Inception Distance (KID) [1], which are proved to be
consistent with human evaluation in assessing the realism of images.
More details are explained below.

User Study with Unlimited Time. In every trial of the user study
with unlimited time, we randomly select a conditional linemap from
the testing dataset and generate two synthesized images using two
approaches. The two synthesized images are displayed randomly
on the left and right side of the conditional line map. The user has
unlimited time to pick the one that "is more realistic andmatches the

conditional image better". No feedback is provided after each trial
to avoid disturbing the user’s perceptual judgment and preference.

User Study with Limited Time. In the study with limited time, we
evaluate how quickly users perceive the differences between images.
For each line map, we obtain four corresponding face images (one
ground truth image and three synthesized images generated by
our method, pix2pix [13], and SketchyGAN [4], respectively). In
each comparison, we randomly select two images from these four
corresponding face images and show the two selected images with
the conditional line map. Similarly, the two images are displayed to
the user on the left and right sides of the line map randomly. Within
a duration randomly selected from a set of {1/8, 1/4, 1/2, 1, 2, 4, 8}
seconds, the user is asked to pick the one that "is more realistic and
matches the conditional image better." We compute the percentage
of the results generated by different methods that are preferred
with different time durations.

Inception Score (IS). IS [26] computes the KL divergence between
the conditional class distribution and themarginal class distribution.
Although it has been pointed out that IS has serious limitations
because it focuses more on the recognizability of generated images
rather than the realism of details or intra-class diversity [28], it is
still widely used to compare the quality of generated images.

Fréchet Inception Distance (FID). FID [12] is a recently proposed
andwidely used evaluationmetric for generativemodels. It is shown
to be consistent with human perceptual evaluation in assessing the
realism of generated samples. It employs an Inception network
to extract features and calculates the Wasserstein-2 distance be-
tween features of generated images and real images. Lower FID
values indicate that the synthetic distribution is closer to the real
distribution.

Kernel Inception Distance (KID). Similar to the FID, KID [1] mea-
sures the difference between two sets of samples by calculating
the squared maximum mean discrepancy between Inception rep-
resentations. Moreover, unlike the FID, which is reported to be
empirically biased, KID has an unbiased estimator with a cubic
kernel [1], and it matches human perception more consistently.

4.2 Comparisons with Previous Methods
We compare the proposed model with two state-of-the-art lines-to-
photo translation methods, pix2pix [13] and SketchyGAN [4]. We
train the pix2pix model on our edge-face dataset using the default
settings described in [13]. SketchyGAN is originally designed for
multi-class sketch-to-image generation.We remove its classification
branch and the loss term for classification, and train the pruned
network with our line-face dataset.

Firstly, the unlimited time user study was conducted to evaluate
the perceptual quality of generated images. 50 users participated in
these experiments, and each user was tested with about 250 trials.
The results are reported in Table 1. These results show that given
unlimited time, users are able to discover the visual differences
between the generated face images using our model and previous
ones. Compared with pix2pix and SketchyGAN, our results are
significantly preferable according to the test users.



Figure 5: The results of limited time user studies. Each line
indicates the user preference rate of one method over an-
other. Users observe more differences between these meth-
ods as the display time lengthens..

Secondly, the limited time user studies were conducted to evalu-
ate how quickly users can perceive the differences between images
generated by different methods. Figure 5 shows the results. When
images are shown for a very short time (1/8 seconds), the users
are not able to sense the differences among different methods and
the ground truth.As the time increases, more differences are per-
ceived by users, and more users prefer the results generated by our
CSAGAN.

Thirdly, Table 2 lists the quantitative comparisons of our method
and others. As we can see, our full model surpasses the pix2pix
model and SketchGAN by a large margin with regard to the mean
values of IS/FID/KID, demonstrating our model’s capability to gen-
erate more realistic face photos.

Finally, Figure 6 shows a group of synthesized face images using
the proposed model and previous methods (better viewed in color).
We observe that the results of our model contain more details,
especially in the areas with hairs, whiskers, and highlighted regions,
while the results of the previous models are over-smoothed and
lack realistic details. Moreover, our results appear more realistic
with regard to the illumination of faces.

Table 1: Results of user study with unlimited time.

Pix2pix [13] vs Ours SketchyGAN[4] vs Ours
Preference 6.9%/93.1% 24.0%/76.0%

4.3 Ablation Study
We examine the importance of every component within our model
based on IS/FID/KID, shown in the third and fourth row of Table 2.
The experiments were conducted by removing each specific part
from the full model and then training the rest of th model without
the absent part. Specifically, we remove 1) the proposed CSAM
(ours w/o CSAM), and 2) the multi-scale discriminator, using only
the patch discriminator Dp (ours w/ Dp ). As we can see, the perfor-
mance of our model without CSAM drops dramatically compared
to the full model, indicating the critical importance of CSAM in

Table 2: Quantitative comparison. (Larger IS and lower
FID/KID represent better results.)

Models IS FID KID
Pix2pix [13] 2.55 ± 0.20 605.97 ± 13.95 3.05 ± 0.08
SketchyGAN [4] 2.75 ± 0.17 479.09 ± 15.24 2.11 ± 0.09
Ours w/o CSAM 2.65 ± 0.08 426.78 ± 17.23 1.62 ± 0.04
Ours w/ Dp 2.73 ± 0.09 413.26 ± 13.92 1.57 ± 0.07
Ours w/ Dpix2pixHD 2.70 ± 0.08 398.78 ± 14.60 1.40 ± 0.05
Ours, ND = 2 2.71 ± 0.13 332.00 ± 9.26 0.98 ± 0.04
Ours, ND = 3 2.78 ± 0.09 269.96 ± 8.18 0.63 ± 0.04
Ours, ND = 4 2.76 ± 0.10 269.59 ± 8.89 0.62 ± 0.05

Figure 6: The above face images are generated from
edge maps using three methods: pix2pix [13], Sketchy-
GAN [4] (without a classification network), and our pro-
posed method. Ground truth (GT) images that we use to ob-
tain the edgemaps are shown in the right-most column. The
results generated by our model contain more details, espe-
cially in the areas with hairs, whiskers, and highlighted re-
gions. Also, our results appear more realistic with regard to
the illumination of faces.

our model. The performance of our model also benefits from the
multi-scale discriminator.

We also visualize the attention maps to demonstrate how pixels
in different locations are related and dependent in the learned



Figure 7: The attentionmaps are shownwith the conditional
edge maps and the generated images. Three locations of the
nose and two eyes are marked in red while the attention
maps with respect to these locations are shown. The larger
values in the attention maps are brighter in the figure. We
observe that long-range dependence between different parts
of faces is captured by our CSAM.

model. Figure 7 shows a group of examples of attention maps.
Three locations (i.e., the nose and the two eyes) are marked in red,
and the attention maps with respect to these locations are shown,
respectively. The larger values in the attention maps are brighter in
the figure. We observe that the long-range dependence is captured
by the CSAM. For example, to generate the pixels in one eye, the
regions of both eyes are assigned high attentions. In another words,
the information for generating a specific pixel comes from not only
its local area but also related regions far away from this pixel.

4.4 Different Levels of Details in Line Maps.
To evaluate the robustness of our CSAGAN, we use line maps with
different levels of details to produce face images. As discussed in
the dataset construction, we produce edge maps based on pHED
with several post-processing steps. The lines in each edge map
are generated by keeping edge pixels that are pHED > τ . A larger
τ value causes less detail in the edge maps. By setting different
values for τ , we generate edge maps with different levels of details,
as shown in Figure 8. The proposed model is robust enough to
generate face images with the whole structure when the inputs are
line maps with different levels of details. In comparison, the two
previous models fail to generate some parts of the face (i.e., the
nose) when detail edges are missing in the line maps with larger τ
value (0.3 and 0.6 in this case).

4.5 Comparison of Different Multi-scale
Discriminators

We compare our multi-scale discriminator with its variants and the
one from previous work [33]. More specifically, if we let ND be the
number of discriminator subnetworks, we train the models with the
same generator and discriminator as ND = {2, 3, 4} subnetworks,
denoted as ours, ND = {2, 3, 4}. Each subnetwork shares weights
with others in the first few layers, while the depths are different.

Figure 8: The face images generated from linemapswith dif-
ferent levels of details. Our proposed model is able to gener-
ate realistic face images with complete structures and fine
textures (the second row). Whereas, the two previous mod-
els [4, 13] fail to generate the nose and the left eye when τ
is set to 0.3 and 0.6. The area around the nose is zoomed in,
and the ground truth is displayed on the right.

Therefore, the receptive fields of the last layers in the subnetworks
are different, and the subnetworks distinguish generated samples
from real ones in different scales. Quantitative comparison results
based on IS/FID/KID are shown in the last three rows of Table 2.

Also, we compare our multi-scale discriminator with the one in
[33]. Specifically, we use our generator and switch our discriminator
to the one from [33] (ND = 3) and train this model with our three-
stage training process, which is denoted as ours w/ Dpix2pixHD .
Results shown in Table 2 indicate that our multi-scale discriminator
(ours, ND = 3) exceeds its counterpart in the measure of IS/FID/KID
and shows its advantages on quantitative evaluation.

5 CONCLUSION
In this work, we propose a conditional self-attentionGAN (CSAGAN)
to synthesize photo-realistic face images from sparse lines. By intro-
ducing the self-attentionmechanism and amulti-scale discriminator
into conditional GANs, our method is able to capture long-range
dependence across different regions and global structures in face
images. Comprehensive experiments illustrate the effectiveness of
the proposed method via two perceptual studies and three quan-
titative metrics. Our framework shows its promising capability to
generate high-quality face images by synthesizing complete facial
structures as well as fine details, even when some parts of the input
line map are missing.
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