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Abstract
Brick elements are very popular and have been widely used in many areas, such as toy design and architectural fields. Designing
a vivid brick sculpture to represent a three-dimensional (3D) model is a very challenging task, which requires professional
skills and experience to convey unique visual characteristics. We introduce an automatic system to convert an architectural
model into a LEGO sculpture while preserving the original model’s shape features. Unlike previous legolization techniques that
generate a LEGO sculpture exactly based on the input model’s voxel representation, we extract the model’s visual features,
including repeating components, shape details and planarity. Then, we translate these visual features into the final LEGO
sculpture by employing various brick types. We propose a deformation algorithm in order to resolve discrepancies between
an input mesh’s continuous 3D shape and the discrete positions of bricks in a LEGO sculpture. We evaluate our system on
various architectural models and compare our method with previous voxelization-based methods. The results demonstrate that
our approach successfully conveys important visual features from digital models and generates vivid LEGO sculptures.
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1. Introduction

Brick elements are very popular in construction systems, and have
been widely used in many areas, such as toy design and architectural
fields. The LEGO

R©
company has produced a large variety of bricks,

and a large number of LEGO sculptures have been made all over the
world by both kids and adults. Playing with LEGO bricks allows
people to build their own sculptures by hand and stimulates their
creativity. The magical power of the LEGO brick system mainly
comes from two features: universality and versatility. The univer-
sality of LEGO bricks enables users to assemble different types of
bricks together with a common connection structure. The versatil-
ity of the bricks allows users to build LEGO sculptures in various
shapes with rich details. These two features make LEGO sculptures
capable of expressing a wide range of objects, such as buildings,
cars, spaceships and so on.

The LEGO construction problem, which is defined as, ‘Given
any 3D body, how can it be built from LEGO bricks?’ [Tim98],
was presented for computer-aided design systems early in 1998. It
is a non-trivial and challenging problem [GHP98], even for human

experts. To create a fine LEGO sculpture, a designer needs to learn
to look at everything with ‘LEGO eyes’ [Sch14]. The size, detail
and pattern of a LEGO sculpture determine whether it is appealing.
A designer needs to choose a scale for a LEGO sculpture first by
considering the subject’s shapes. The pattern is also an important
factor to consider, especially for architectural sculptures. The most
impressive LEGO sculptures require careful planning by experi-
enced designers.

Since the LEGO construction problem was proposed, various
methods have been presented in order to generate LEGO brick
layouts from three-dimensional (3D) models in computer graph-
ics [PR03, vZS08, TSP13, LYH*15, Ste16]. These ‘legolization’
techniques mainly focus on the stability of the output sculpture.
Some other goals, such as minimizing the number of bricks and
retaining colour consistency, have also been considered. However,
visual factors, such as scale, shape details and patterns, which play
very important roles in the manual design process, are seldom con-
sidered. Figure 1 shows a manually designed LEGO sculpture and a
LEGO sculpture with a sloping roof fashioned from cuboid bricks.
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Figure 1: Simple examples of LEGO sculptures: (a) is a manu-
ally designed LEGO sculpture from [The13]; (b) is generated with
cuboid bricks to construct a sloping roof.

From this figure, it can be seen that the existing legolization tech-
niques render it difficult to generate vivid sculptures of non-cuboid
shapes.

Based on the LEGO architecture building instructions [The13,
Sch14, ALP15] and our observations of manually designed LEGO
architectural sculptures, the key factors that make a LEGO sculp-
ture feel attractive and lifelike are the patterns and shape details.
Therefore, we focus on retaining important visual features when
constructing LEGO sculptures. We categorize the visual features of
an input model into repeating components, shape details and pla-
narity. By respecting the component relationships and planar struc-
tures, we ensure that the brick layouts for repeated components are
consistent, thereby preserving a target model’s pattern. A model’s
shape details are maintained by reconstructing them using brick
blocks with similar surface features. A global scale of a sculpture is
selected to preserve most shape details.

However, our system faces a significant challenge in resolving
the discrepancies between an input mesh’s continuous 3D shape
and the discrete positions of bricks in a LEGO sculpture. It is non-
trivial to find an apposite scale and compose a set of brick blocks
in various shapes to express all the distinctive features. In our sys-
tem, we split the brick construction process into three steps. First,
we detect three kinds of visual features in an input mesh, includ-
ing repeating components, shape details and planarity. Second, we
compose brick blocks to represent the shape details by setting a tar-
get scale and searching for the best fitting bricks. Then, we render
these separately generated brick blocks compatible with the input
model through a deformation process while preserving the regular-
ities. The final LEGO sculpture is generated based on the deformed
model.

Overall, our main contributions include:

� An automatic system to generate vivid LEGO sculptures from
3D meshes.

� A brick-based construction algorithm that reconstructs mesh seg-
ments into brick blocks using a specified scale.

� A deformation algorithm that converts an input model into a
brick-compatible model in which the input model’s patterns are
preserved.

2. Related Work

Our system could be interpreted as a brick-based physical realization
of 3D models. It converts a 3D digital model into a LEGO sculpture
that can be physically built with LEGO bricks. Our system is related
to geometric feature detection techniques for extracting visual fea-
tures, as well as layout optimization problems. This section contains
descriptions of work that is closely related to our system.

2.1. Physical realizations of 3D models

Many techniques have been proposed to convert 3D models into real
objects for various purposes. For example, a strip-based approxi-
mate unfolding technique was proposed to generate papercraft toys
from 3D meshes [MS04]. Another example is buildable, interlock-
ing puzzle pieces that are generated based on a 3D model [LFL09].
Given 3D models, there are also many techniques that have been
proposed to automatically generate paper architecture that can be
folded into a plane [LSH*10, LJGH11]. We focus on a legoliza-
tion problem [Tim98, PR03, LYH*15], which converts an input
model into a sculpture composed of a set of bricks in different
shapes.

2.2. Computer-assisted LEGO construction

Instead of physical construction, many digital tools have been devel-
oped to help people virtually assemble and render LEGO sculptures,
such as LDraw [Jes95] and the LEGO digital designer [The12].
These tools allow users to search for and choose bricks from a
database and place them in a scene. Though these virtual design
software packages make it convenient for users to browse different
LEGO sculptures and test their own designs, it still takes a lot of
time for a user to search for suitable bricks and assemble them in
a way that best expresses his/her idea. Our system provides users
with a more direct way to generate a prototype of brick sculptures
by taking a 3D model as an input and automatically finding the best
bricks to compose a sculpture.

2.3. Brick layout optimization

Various methods have been proposed to solve the LEGO construc-
tion problem [Tim98] since it was first presented. These systems
typically follow the same pipeline. First, an input 3D model is vox-
elized. Then, cuboid bricks are used to generate brick layouts layer
by layer to fill in the voxel representation. Finally, an optimization
step is applied to the initial brick layout to satisfy different crite-
ria. Gower et al. [GHP98] first introduced six criteria to evaluate
the stability of a LEGO sculpture. A more advanced and flexi-
ble cost function was later proposed [PR03]. Heuristic methods,
such as the evolutionary algorithm [PR03, Pet01], the cellular au-
tomata method [vZS08], the greedy algorithm [OACN13, TSP13],
the genetic algorithm [LJKM15, LKKM15] and the multi-phase
search approach [Ste16] have been applied to generate brick lay-
outs. Kim et al. conducted a survey of different legolization tech-
niques [KKL14]. Other works have focused on stability analysis
of a given structure [WW12]. [FP98] predicted the resistance of
structures made of modular components, including LEGO bricks.
Recently, Luo et al. [LYH*15] proposed a force-based stability anal-
ysis method to generate stable brick sculptures. Their stability-aware
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refinement iteratively analyses and locally reconfigures a structure
to gradually improve overall stability.

Though a great deal of effort has been devoted to developing
techniques that reduce the complexity and improve the stability of
LEGO sculptures, these techniques are constrained by the cuboid
realization of input models. A detail-preserving oriented legoliza-
tion system [Lam08] generates more detailed LEGO sculptures by
using some of the specialized LEGO pieces that allow orthogonal
connections. However, no semantic structures are maintained, and
still, only cuboid bricks are used in this system. As a result, the
generated LEGO sculptures are visually similar to voxel represen-
tations. There is still a large gap between a voxel sculpture and a
sculpture made with LEGO products. In comparison, our system
automatically generates vivid LEGO sculptures by emphasizing the
visual features of an input model and supporting various brick types.

2.4. Regularity of 3D models

Regularity is useful for many geometric processing tasks. For ex-
ample, symmetrical structures could be used for mesh segmenta-
tion [SKS06] and shape understanding [MGP06]. Repeating struc-
tures are also significant features of architectural models. Pauly
et al. [PMW*08] conducted a pattern analysis on mesh models to
detect repeated geometric patterns. In point clouds, repeating struc-
tures were also detected for various purposes [DAB15b, KRBSG17].
Kalojanov et al. [KWS16] extracted basic construction sets from a
given mesh. The fabricated physical construction sets, similar to
bricks, could be used to assemble variants of the original geometry.
A fully automatic coupled segmentation and similarity detection
approach [DAB15a] could detect similar structures in 3D polygo-
nal building models. We modify this algorithm by adding colour
constraints and strict shape similarity to precisely detect repeating
structures rather than similar structures.

3. Overview

The input of our system is a 3D mesh M = {V,F }. Here, V repre-
sents vertexes and F represents faces.

The output of our system is a brick layout, denoted as a set of
bricks L = {B1, . . . , Bn} connected vertically in a 3D space. Each
item Bi = {p, θ, type} represents one brick. p is a brick’s position
in a voxel coordinate.

We divide a continuous 3D space into the voxel coordinate system
according to the standard LEGO unit size. θ is a brick’s orientation,
for which only four angles 0, π

2 , π, 3π

2 around the y direction are
allowed. type represents a brick’s type, which is identified according
to a brick’s shape. In our current database, there are 29 types of
bricks that are divided into three categories, as shown in Figure 2.
Besides 11 cuboid bricks that are frequently used in various LEGO
sculptures, we add 13 sloping bricks and five circular bricks that are
suitable for architectural sculptures.

In general, our goal is to compose a set of LEGO bricks into a
LEGO sculpture L that retains the visual features of an input model
M . By designating the visual features as repeating components,
shape details and planarity, we look for the best scale s for the
target model. In addition, we seek to use standard LEGO bricks

Figure 2: LEGO brick examples: (a) cuboid bricks, (b) sloping
bricks, (c) circular bricks.

to represent the shape details of L while maintaining repeating
patterns and planarity:

arg min
L ,s

E(L , sM) = Edetail(L , sM) + Epattern(L , M), (1)

where Edetail and Epattern define the deviation between a LEGO
sculpture and a target model with respect to the shape details and reg-
ularities.

However, it is tedious to explicitly define a closed form for the
two energies while considering several types of visual features and
regularities. Moreover, the combinatorial optimization problem is
highly complex because the brick number n and the brick parame-
ters in L are unknown. While innumerable potential brick layouts
exist, it is especially challenging to find the best brick layout un-
der defined criteria. We decompose this problem into three steps
in order to find a feasible solution. Figure 3 shows the pipeline.
First, repeating components, shape details and planes in an input
model are detected and segmented in the visual feature detection
step. These features define the shapes and patterns we want to keep
in the brick sculpture. Then, for the segmented shape details, we
generate brick blocks Lblock = {B1, . . . , Bm} to minimize Edetail .
We first select candidate types type of bricks inside Lblock and look
for an appropriate scale s to ensure that as many shape details as
possible are represented by chosen bricks. Then, the positions of
bricks are specified in order to complete a brick block. Finally, the
brick blocks are arranged together to generate a LEGO sculpture. In
this step, the target shape should be slightly deformed from the input
model to generate an interim mesh model that not only preserves
the pattern from the input mesh, but also ensures compatibility with
the discrete voxel coordinates.

4. Visual Feature Detection

Visual features represent distinctive shapes and patterns that we want
to depict in the generated brick sculpture. We extract three types of
visual features: repeating components, shape details and planarity.

4.1. Repeating component detection

Repeating components are common in architectural models and are
the basic elements to express building shapes. Besides geometry,
colour is also important for humans to recognize and understand a
building. We can easily separate a roof from a wall of a house by their
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(a) Input model (c) Brick block generation (d) LEGO sculpture generation(b) Visual feature detection

(d-1) Model deformation (d-2) Brick layout generation(b-1) Repeating component (b-2) Shape detail (b-3) Planarity

Figure 3: System overview. (a) A mesh model is used as a system input. (b) Three types of visual features are detected in the input model:
repeating components, shape details and planarity. Repeating components and planes are marked with different colours in (b-1) and (b-3).
(c) An optimal global scale is determined and brick blocks are composed to fit the detected shape details. (d) LEGO sculpture generation. A
deformation operation (d-1) is performed on an input mesh to make it compatible with the discrete voxel coordinate system. After brick blocks
are placed, cuboid bricks are used to fill the voxel representation of the deformed model (d-2).

colours. Windows made of glass are also easily distinguished on a
wall. Therefore, we implement a colour-based similarity detection
method on the model to find repeating components.

Our detection method is built on the coupled segmentation
and similarity detection method [DAB15a]. Taking a 3D mesh
M as input, this method segments it into a set of components
C = {C1, . . . , CNc

}. Each component consists of a set of instances

Ck = {c1
k , . . . , c

NCk

k |{Ti}NCk

i=1 }. Each instance ci
k is a set of triangles,

and {Ti} is the transformation matrix from c1
k to ci

k . This coupled
segmentation and similarity detection problem is formulated as a
weighted minimum exact cover problem, so that the component set
C covers all the mesh triangles, and there is no overlapping between
any instances.

In order to fit this similarity detection algorithm into our problem,
we add two more constraints. First, we add a colour constraint so
that only triangles with the same colour can be grouped in the
same component. Second, each instance that belongs to the same
component must have the exact same triangle set, and the rotation
matrix of Ti is restricted to rotations by π

2 , π, 3π

2 around the y-
axis or mirror-symmetry. This constraint is based on LEGO brick
systems, which render it so that a brick is only able to be rotated
horizontally to fit in a voxel space. Thus, repeating instances with
this constrained relationship can be represented by the same brick
block with rotations.

4.2. Shape detail detection

After an input model is segmented, we detect shape details both
inside repeating structures and in non-repeating components. In
Figure 2, we illustrate the three categories of bricks in our dataset:
cuboid bricks, sloping bricks and circular bricks. Based on these
three categories, we detect two kinds of shape details, slopes and
cylinders, which can be constructed using sloping and circular
bricks, respectively. The rest of the model is built by cuboid bricks.
In order to build correspondence between shape details and bricks,
we use the same set of parameters to describe sloping shapes and
cylindrical shapes in both the input model and the bricks, as shown
in Figure 4.

Sloping shapes. In Figure 4(1-a), a sloping shape is denoted as
slope = {n, w, h}, where n is its normal, and w and h are the width
and height of the sloping area. For each component, we detect

θ

h

(a) (b)
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n
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Figure 4: Sloping and cylindrical shape features.

sloping planes in one instance. We traverse all faces in this instance
using breadth-first search and group the connected facets that have
the same normal, which is neither horizontal nor vertical. The shape
detection result in this instance is easily extended to other repeating
instances. In order to filter out small shapes that could be noises,
planes with w × h > τslopeArea(c) are accepted as a sloping shape,
where Area(c) is the surface area of the instance. We set τslope = 0.1
in our experiments.

Cylindrical shapes. We also detect cylindrical shapes inside each
component. As shown in Figure 4(1-b), a cylindrical shape is de-
noted as cylinder = {h, θ, r}, where h is the height of the cylinder,
θ is the central angle and r is the radius of the cylinder.

We first detect a set of thin planes and then check normal differ-
ences between adjacent planes. If the normals of these connected
planes change smoothly with the same gradient, we regard these con-
nected planes as a cylindrical shape. Currently, θ from each detected
cylindrical shape is reassigned to the nearest value in π

2 , π, 3π

2 , 2π ,
because the circular bricks in our current database can only represent
these cylindrical shapes.

4.3. Planarity detection

Besides repeating components, planarity is also an important visual
feature. A building’s walls and roofs are typically represented by
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large planes. In a sculpture, bricks should correspond to these areas
by forming a planar piece to maintain regularity. Similar to the
process of slope detection, connected triangles from the input mesh
that have the same normal are grouped into one planar segment. A
planar segment with an area larger than τpArea(M) is considered to
be a detected plane in our system. We set τp = 0.05 in our system.
The colour pieces in Figure 3(b-3) are the detected planes.

5. Brick Block Generation

In this section, we compose brick blocks that retain an input model’s
shape details. Due to the limited brick shapes and sizes, not every
shape detail from an input model can be preserved in a composed
sculpture at an arbitrary scale. We try to preserve most shape details;
thus, we divide our brick block generation into three steps: brick
candidate selection, model scale selection and block construction.
The brick candidate selection step picks several candidate brick
types for each shape detail independently. Then, we globally choose
a model scale s that preserves the most shape details using candidate
bricks. Finally, we choose the best fitting bricks from the candidates
according to the chosen model’s scale to generate a brick block for
each repeating component.

5.1. Brick candidate selection

We match the shape parameters in order to pick sloping bricks
and circular bricks to compose brick blocks for sloping shapes and
cylindrical shapes, respectively.

Slopes. For each detected slope, we choose only one brick that has
the minimum shape difference, which is defined as

d(slopei , slopej ) = λn|ni − nj | +
∣∣∣∣wi

hi

− wi

hj

∣∣∣∣ . (2)

The former term evaluates the normal difference between two
slopes and the latter term evaluates the slope surface difference. λn

is a relatively large value so as to ensure that the normal difference
has a higher priority than the surface difference.

Cylinders. Due to the standard dimensions and angles of circular
bricks in a LEGO set, the best fitting bricks for cylindrical shapes
cannot be found before a model’s scale s is chosen. We first choose
candidate bricks according to the angles. Circular bricks with θ =
π

2 are chosen as brick candidates for cylindrical shapes with θ =
π

2 , π, 3π

2 , and circular bricks with θ = 2π are chosen for cylindrical
shapes with θ = 2π . Then, with a selected model scale, the best
fitting brick is determined by its desired radius.

5.2. Model scale selection

An input 3D model can be converted into brick sculptures with
different scales. For brick sculptures made of cuboid bricks, the
complexity of a sculpture rises in tandem with its resolution. Higher
resolution is generally preferable since it allows the sculpture to
reproduce more details from the input model. However, brick sculp-
tures with versatile bricks do not follow this rule. A structure, such
as a cylinder, can only be preserved using certain bricks of certain

(a) (b) s = 1

Invalid

(c) s = 1.5 (d) s = 2

Figure 5: Brick blocks generated with different scales s. (a) Two
target shapes: a slope (top) and a semi-circle (bottom). The slope is
composed of standard sloping bricks with increasing s. The semi-
circle with r = 2 is built by stitching two standard quarter-circle
bricks together when s = 1 and s = 2. However, when the target
model size increases by s = 1.5, there are no circular bricks with
r = 3. A cylindrical shape is best represented by brick blocks with
a few fixed scales.

sizes. When a block’s resolution becomes too large or too small,
the shape may be difficult to represent well. As shown in Figure 5,
when a model’s scale increases, a brick block’s resolution should
become larger. For a sloping shape, we can generate a brick block
with higher resolution by stacking sloping bricks. However, for a
semi-circle shape, using standard LEGO bricks, there are only two
suitable scales, as shown in Figures 5(b) and (d). When the scale
changes, it is not necessarily possible to simply alter the resolution
in order to build a specific shape with a particular circular brick. If
s = 1.5 and we continue to use the circular brick block with s = 1
to represent this shape, the shape difference will increase.

In order to produce a less distorted brick sculpture, we utilize
brick blocks with the same scale, and s is chosen globally to best
preserve all of the shape details with LEGO bricks. For slopes,
simply stacking LEGO bricks could replicate the target shape using
different scales that are above the minimum scale smin. Below this
scale, the block size will be smaller than one brick. Therefore, we
define the scale energy for a sloping shape as

Eslope

(
s, sB

min

) =
{

0, s ≥ sB
min

sB
min − s, s < sB

min

. (3)

where s is the current scale, and sB
min is the minimum scale for a

component if using the brick type B.

Cylindrical shapes cannot be built by simply stacking circular
bricks. The best scale sB

cylindrical is definite for a specific circular
brick B. Therefore, we define the scale energy for a cylindrical
shape of a brick as

Ecylinder

(
s, sB

cylinder

) = ∣∣s − sB
cylinder

∣∣ . (4)

Considering all the slopes and cylindrical shapes in a model, the
energy for a scale s is defined as
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Escale(s) =
∑

{slope}
Eslope

(
s, sB

min

) +
∑

{cylinder}
Emin

cylinder

(
s, sB

cylinder

)
. (5)

Each cylindrical shape has several brick candidates with different
sB
cylinder , and we use the one with the minimum Ecylinder to compute

Escale(s). We choose the scale s∗ with the minimum cost from all
possible sB

min and sB
cylinder .

Even if a scale s∗ is globally the best, it is sometimes inappropriate
for a specific slope or cylindrical shape. In order to avoid extremely
large shape deviation, we run a post-process for each component.

If s∗ < 0.5sB
min for a slope, or

|s∗−sB
cylinder

|
sB
cylinder

> 0.5 for a cylinder, the

component shape is no longer preserved using specialized bricks.
We then just use cuboid bricks to compose it in the later brick layout
generation step.

5.3. Block construction

After selecting an appropriate scale for an input model, we then
construct a brick block Lrs = {B1, . . . , Bnrs

}, which is composed
of a set of bricks, for each component. In the final sculpture, several
repeating component’s instances can be represented using the same
brick block with different transformation matrices {Ti}. Figure 3(c)
shows two generated brick blocks for a slope and a cylindrical
shape, respectively.

For a rectangular slope, a brick block’s layout is composed of
nw × nh sloping bricks. nw and nh are computed as

⎧⎨
⎩

nw =
⌊

s×wslope

wbrick

⌉
nh =

⌊
s×hslope

hbrick

⌉ , (6)

where �x� computes the closest integer of x.

For a cylindrical shape, the candidate brick with minimum(|s −
sB
cylinder |) is used to build this block. Circular bricks are then stacked

to fit the height of the cylindrical shape. The number of stacked
bricks is computed as

nh =
⌊

s × hcylinder

hbrick

⌉
. (7)

6. LEGO Sculpture Generation

After brick blocks are generated for each shape detail, we then
assemble them together and fill in the rest to complete a stable
LEGO sculpture. The brick block assembly stage computes the
block positions, and the filling stage computes the brick sets for the
rest of the model.

In the block generation part, we obtain a set of bricks with their
orientations θ and type, and the relative positions p. To assemble the
blocks, we must compute the position of each block within the global
model. While standard LEGO bricks are manufactured to exact
dimensions, simply putting them together according to the digital
model’s prescribed positions does not make them compatible in the

(a) s = 1 (b) s = 1.5

Figure 6: 2D examples of collisions (a) and gaps (b) between brick
blocks with different scales. The blue rectangles in the first row
represent four aligned instances of a repeating component. The
grey dashed line represents the voxel grid. In the second row, we
replace each instance with a 1 × 2 brick and put each brick in the
nearest integral position to generate the brick layout. In (a), as
shown in a red circle, two bricks are placed into the same voxel,
and a collision occurs. In (b), two bricks are separated and a gap
appears between them as the empty voxel shows. The layout pattern
of these instances is lost in both examples.

(a) (b)

Figure 7: 2D examples of irregular and regular positions of repeat-
ing instances. The dark green and dark blue rectangles represent
two repeating instances of the same component. The grey dashed
line represents the voxel grid. The light green and light blue voxels
represent each instance’s corresponding voxel occupation. In (a),
irregular instance positions result in different voxel occupations for
two repeating instances. When both instances are moved to integer
positions (b), their corresponding voxel occupations are the same.

voxel space. To illustrate this, a 2D example is shown in Figure 6. An
input model (the blue mesh) is first segmented into four instances.
Once we find a global scale s, we generate brick blocks for these
four instances and then assemble them together. Intuitively, we align
each block with the lower left corner of its corresponding instance
in the input model. However, block collisions or block gaps may
occur with different scales.

Besides shape details, we must also preserve all repeating in-
stances’ shape patterns. Each instance’s shape in the brick sculpture
is defined by its voxel occupation. As shown in Figure 7(a), two
repeating instances could have different voxel occupations in voxel
space. This irregularity also results in lost shape patterns in the
sculpture. In order to fit a voxel space, we must place the blocks in
the voxel space while keeping their layout pattern and ensuring the
same voxel occupation for repeating instances. This is equivalent
to deforming a model’s shape so that it can be represented by a
LEGO sculpture.
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(a) (c)(b)

v1

v1
1 v1

2 v1
1v1

2

Figure 8: 2D examples of resized shape details and consistent
topologies. The grey dashed line represents the voxel grid. (a) The
two rectangles represent two adjacent shapes. After enlarging them
to fit the voxel grid while maintaining their positions, v1 is split
into two vertexes v1

1 and v2
1 (b). By moving one shape until the split

vertexes merge, the shape topology is restored (c).

6.1. Model deformation

The goal of this deformation is to generate a mesh model for which
all repeating instances’ positions are integers, and the patterns of
these repeating instances are preserved. The overall shape defor-
mation should also be minimized. We take all of the positions
of the detail shapes {pi}Ndetail

i=1 and all of the vertexes {vi}Nv

i=1 of
the mesh as variables to deform the model. The objective func-
tion consists of three parts: topology consistency, regularity and
planarity.

Topology consistency. We first resize shape details to make them
match the size of their corresponding brick blocks. As shown in
Figures 8(a) and (b), we resize each shape feature to the bounding
box of its corresponding brick block. We regard all resized shapes as
a rigid body and use their corners p to represent their positions. After
the resizing step, the topology of the model is slightly changed due
to the split vertexes. Then, we try to keep the shape details’ original
layout by restoring the consistency of the topology. As shown in
Figure 8(c), after we move the split vertexes back together, the
original regular layout of these two shape details is restored. We
define the energy for topology as

Etopology =
ns∑
i=1

∑
vm,vn∈V i

s

|vm − vn|, (8)

where ns is the number of split vertexes and each vertex is split into
a set of new vertexes V i

s . Since we regard each resized shape detail
as a rigid body, the value of each vm ∈ V i

s can be inferred by a shape
detail’s corner position p.

Regularity of repeating instances’ positions. In order to preserve
repeating instances’ shape patterns within a sculpture, we place
each instance’s corner at an integer position while their shapes are
resized simultaneously. As shown in Figure 7(b), after the positions
of repeating instances are moved to integer points, their repeating
shape patterns can be maintained in the voxel space. We define a
term to evaluate each instance’s position as

Eint =
∑

vi∈Vinst

|vi − �vi�|, (9)

where Vinst = {vi}Ninst

i=1 is a set of vertexes that represent all of the
repeating instances’ corner positions.

Figure 9: A comparison of the models before and after deformation.
(a) The input mesh with different components shown in different
colours. (b) The deformed model. The roof and the doorstep, marked
by red and orange rectangles, have been resized to fit their brick
blocks’ sizes. The positions of the two windows have also shifted to
fit the voxel grid.

Planarity. In the deformed model, a plane’s vertexes should remain
on the same plane after the deformation takes place. Therefore, we
define a planarity term as

Eplanarity =
nd∑
i=1

nPi∑
j=1

ni ·
(

vj

i − v0
i

)
, (10)

where nd is the number of detected planes and each detected plane
Pi has nPi

vertexes. ni is the normal of Pi , and v0
i represents the

average vertex positions on Pi , defined as v0
i =

∑nPi
j=1 vj

i

nPi

.

Considering three parts of the objective function described above,
the final objective function is defined as

Edeform = Eint + λtEtopology + λpEplanarity, (11)

where λt and λp are two weights for controlling the three terms. We
set λt = 5 and λp = 4 experimentally.

We use the HLBFGS algorithm [Liu] to solve this optimization
problem and obtain a newly deformed model. A comparison of the
model before and after deformation is shown in Figure 9. The shape
of the roof is changed due to the resizing step. The shape and position
changes of doors and windows are caused by Etopology and Eint . The
planes in the deformed model are preserved by Eplanarity . Though
the shapes and positions of instances are changed after deformation,
the input model’s pattern is still retained in the deformed model.

6.2. Brick layout generation

Brick blocks represent the shape details that we want to keep in
the final brick sculpture. So, these blocks have higher priority than
the rest of the sculpture. First, we put brick blocks into a voxel
coordinate. After the deformation step, the position of each brick
block can then be determined by the positions of shape details
in the deformed mesh. Collisions between brick blocks may still
exist in certain cases, so we arrange larger blocks first to maintain
their integrity.

c© 2019 The Authors
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Then, we voxelize the deformed model to generate a voxel rep-
resentation V . Similar to previous systems [TSP13, LYH*15], we
hollow out the voxel representation to reduce the number of bricks.
We generate the rest of the brick layout with cuboid bricks using
a modified brick layout algorithm [LYH*15] to generate the final
brick sculpture. We first put 1 × 1 bricks in all empty voxels in
V . Then, we randomly merge as many of the mergeable pairs as
possible to generate the final layout.

In order to keep the repeating pattern of instances, we add two
constraints in the merging step of the basic brick layout algorithm.
First, corresponding voxels from a component’s repeating instances
merge simultaneously. This constraint ensures that the brick layout
generated for each repeating instance is exactly the same. Second,
the voxels that lie on the sculpture surface and belong to an instance
of a repeating component are not allowed to merge with the voxels
outside of its instance. This constraint maintains a clear boundary
around each repeating instance and therefore retains the shape pat-
tern. Voxels inside the sculpture are not constrained because the
appearance is not affected.

6.3. Stability

Stability is an important factor when building LEGO sculptures.
Since we only focus on architectural models in this paper, the
generated LEGO sculptures are usually stable because of the sup-
portive ground plane and the innate characteristics of architectural
models. We do not consider stability under complicated condition
as in [LYH*15]. A commonly used method to enhance stability
is to regenerate local layouts and ensure that all bricks are con-
nected [TSP13]. However, unsupported bricks may still exist in
our automatically generated results, mainly because of two reasons.
First, thin structures in the input mesh may generate single layer
structures that are not stable in brick-based models. Since bricks
cannot provide horizontal support, any bricks without both upper
and lower layers are not securely supported. Second, in order to
maintain the pattern of repeating instances, some bricks are con-
strained by simultaneously merging in the brick layout generation
step. So, the random re-merging method may not solve the stability
problem in our system.

We adopt a two-step stability optimization method to ensure that
our final brick layout is fully connected and therefore constructible.
First, we use an algorithm that is similar to [TSP13] for rearranging
local brick layouts. If the stability problem cannot be solved, we then
use a greedy algorithm to add a minimum number of supporting
layers under the unsupported bricks, as highlighted in yellow in
Figure 12. In each iteration, the layer with most unstable bricks is
provided with extra support until all unstable bricks are supported
directly or indirectly. The shape of the supporting layers remains
the same as the upper layer in order to provide optimum support.
We use plates, which are similar to bricks except they are a third of
the height, to construct these supporting layers so that a sculpture’s
shape changes are minimized. The same algorithm as in the brick
layout generation is used to create the layout for the supporting
layers. Because these supporting layers are not constrained by an
input model’s pattern, we can easily find a randomly generated
layout that connects all unstable bricks to the main body. In this
way, a sculpture’s stability is ensured.

Figure 10: This generated LEGO model consists of six repeating
brick block sets that correspond to six repeating components.

7. Experiments and Results

We evaluate our system using a variety of architectural models, and
we compare our method with previous voxelization-based methods
based on the quality of the generated LEGO sculptures. We also
construct real LEGO sculptures according to the results generated
by our algorithm to demonstrate our models’ stability.

Visual features. The final brick sculpture generated by our sys-
tem consists of a set of repeating brick blocks. As shown in
Figure 10, six detected repeating components correspond to six
repeating brick block sets. The smooth slope of the house’s roof
is replicated with sloping bricks. The repeating blocks not only re-
tain the geometric patterns of the input model, but also facilitate
the model assembly process. Users can easily build several iden-
tical blocks first and place them in different positions within the
final sculpture.

Figure 11 shows three more complicated LEGO sculptures gen-
erated by our system. The roofs and columns are well represented
by sloping bricks and circular bricks. Repeating components are
also preserved by using identical blocks. Most instances are slightly
deformed to fit standard LEGO brick sizes. For example, the ob-
long windows in Figure 11(2) are deformed to a square shape in
order to fit a 1 × 1 cuboid brick. The patterns of brick sculptures
are not affected by local changes in size. Furthermore, we compare
our results with manually designed LEGO products in Figures 11(b)
and (c). Due to the limited range of brick types and features in our
system, some detailed structures in the real products cannot be gen-
erated by our system. For example, we do not have suitable bricks
to build the fine structures on the top of Figure 11(1-c) and the
flag in Figure 11(2-c), as marked by red rectangles. Nonetheless,
our method still preserves most of the features, such as the sloping
roofs, supportive pillars, as well as the regularity and symmetry in
the generated LEGO models.

Model stability. Some bricks are not stable in the automatically
generated brick layouts. This is due to a lack of connections be-
tween the upper and lower layers since only geometric features
are considered in the layout generation process. As shown in Fig-
ure 12(a), the bricks marked in red are not connected to the main
body marked in white, and they have no lower layers or upper layers
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Figure 11: LEGO models generated by our system. We show two views of the input models (a), the generated LEGO sculptures (b) and the
manually designed LEGO products (c), respectively.

Figure 12: Additional structures to ensure the stability of sculp-
tures. (a) Unstable bricks are marked in red. (b) Thin yellow sup-
porting layers made of plates are added. The supporting layer con-
nects the unstable bricks to the body and provides support.

to support them. In order to ensure stability and connectivity, we
add additional supporting layers (marked in yellow) in Figure 12(b)
to reinforce these unstable bricks. These fortifying layers are used
as bridges to connect unstable bricks to the main body, allowing the
entire structure to be assembled together.

Comparison with a voxelization-based method. A comparison
between a voxelization-based method [TSP13] and our method is
shown in Figures 13(b) and (d). The voxelization-based method
only uses cuboid bricks to build the sculpture. The shape details,
including slopes and cylinders, are lost, as shown in Figure 13(b).
Moreover, because the brick layout is randomly generated based
on the voxel representation, repeating patterns in the input model
cannot be preserved in the brick sculpture. As highlighted by red
rectangles in Figure 13(b-1), the brick layouts of two repeating
roofs are different. Therefore, the voxelization-based results may
not depict the input model’s symmetry and repeating structures as
well as our results.

Figure 13: Comparison with a voxelization-based method
[TSP13]. (a) Input model. (b) Brick layout result constrained by
voxel representation. (c) Brick sculptures generated without repeat-
ing component detection. (d) Brick sculptures generated by our
system.

The voxelization-based method also leads to inaccurate colour
boundaries. Figure 14 shows an example of colour aliasing in
Figure 13(2). Note the thin plate in Figure 14(c) is added as a
supporting layer to connect the unstable blocks on the top to the
building body, as shown in Figure 12(a). The boundaries of four
small separated windows are distorted by the voxelization-based
method. This artifact is caused by the colouring algorithm. In our

c© 2019 The Authors
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Figure 14: Voxels’ colour flaw in the voxelization step. (a) Input
mesh. The red grid represents a projected voxel grid on this wall.
(b) and (c) are the results of the voxelization-based method [TSP13]
and our method. Due to the feature detection, our result has a clear
colour boundary and retains the repeating patterns, such as the four
small windows on the wall.

(a) 10×10×7 (b) 19×16×14 (c) 38×32×31

Figure 15: Brick models with different mesh-voxel ratios. Each
model’s voxel resolution is shown below the model.

Figure 16: Fabrication results based on examples shown in
Figure 10 and Figure 11. The number of bricks used in each ex-
ample is shown in the upper left corner.

Figure 17: Limitations of our system. Bricks aligned in multiple
orientations (a) and bricks of various thicknesses (b) are not sup-
ported by our current system.

experiment, we assign each voxel’s colour to the closest point on
the mesh, as in [TSP13]. More sophisticated methods could be used
to compute voxel colours, such as computing the overlapping areas
between triangles and the voxel. However, this problem is not easy
to eradicate. With visual feature detection and deformation, mesh
segments with different colours are segmented into different repeat-
ing components. Our method easily preserves instance layouts and
avoids colour aliasing.

In order to emphasize the importance of the repeating component
detection, brick sculptures generated without this step are shown in
Figure 13(c). Similar to results generated by the voxelization-based
method, part of the repeating patterns is not kept as highlighted in the
blue rectangles, and the colour aliasing also exists, as highlighted in
the yellow rectangle. Without repeating component detection, part
of shape details cannot be detected and deformed in the deforma-
tion step, then the colour aliasing and irregularity occur. Therefore,
repeating and symmetric characteristics of an input model cannot
be well preserved.

Model scale. Our system automatically chooses an apposite scale
that retains most visual features. A user can also specify differ-
ent scales to generate sculptures with different levels of detail.
Figure 15 shows an example. The automatically generated result
is shown in Figure 15(b), and the corresponding voxel dimensions
are 19 × 16 × 14. When we manually scale the desired model size
to half or two times the best scale, the corresponding results are
shown in Figures 15(a) and 15(c). In the three LEGO sculptures, the
roof is built with the same sloping bricks but with different numbers
to fit the desired scale. In contrast, the half-round step shown in
brown cannot be flexibly constructed at any scale because of the
specific size of the circular bricks. In Figure 15(c), four 4 × 4 round
corner bricks are used to construct the half-round step. However, as
in Figure 15(a), there are no suitable circular bricks for such a small
size, so a 2 × 1 cuboid brick is chosen. Note that the resulting sculp-
tures’ voxel dimensions do not change as the model’s scale changes.
The vertical dimensions increase from 14 to 31, while the model’s
scale doubles from (b) to (c). Since each feature component is con-
structed according to a set scale, the model is globally deformed to
fit into the voxel space. Preserving the repeating patterns and the
regularity of the sculpture are higher priorities.

Real sculptures. Finally, we build several real LEGO sculptures
(Figure 16) according to the automatically generated results. Re-
peating components are very useful during the building process.
Once a user has built one brick block for one instance of a repeating
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structure, it is simple to build brick blocks for other instances using
the exact same process. In this way, a user becomes skilled in build-
ing these repeating blocks and builds sculptures easier and faster.
However, there are also drawbacks of the randomly generated lay-
out. Disordered layouts require a user to refer to the instructions
each time they place a brick.

8. Conclusion and Future Work

In this paper, we present an automatic system to convert an archi-
tectural model into a brick sculpture while preserving the original
model’s visual features. We propose a new pipeline for brick layout
generation that supports various brick types. Our pipeline extracts
visual features from an input model and retains these visual fea-
tures in the subsequent brick sculpture using brick blocks. A model
deformation algorithm is presented to make the model compatible
with separately generated brick blocks. The results illustrated by
various sculptures demonstrate that our system fully utilizes the
characteristics of bricks and expands the possibilities of automati-
cally generated brick sculptures. A comparison between our method
and voxelization-based techniques shows that our system produces
more vivid and appealing brick sculptures.

Though our method generates diverse brick sculptures with more
brick types, there are still a few limitations. First, we only detect
simple geometry features, such as slopes and cylindrical shapes, to
replicate with bricks from the database. In the future, we would like
to add more brick types into our database to sculpt architectural
models with a higher level of sophistication both internally and
externally. Second, adding layers of plates under unstable bricks
is not always the best solution. An entire layer may need to be
added because of one unstable brick. A simple user interface could
be designed to help a user check for unstable bricks and manually
re-merge them. Moreover, the techniques of placing bricks in differ-
ent directions and adding thin plates are also widely used in LEGO
sculptures, as shown in Figure 17. Extending vertical connections to
multi-directional connections to generate more complicated sculp-
tures is another direction for future work.
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