Junction Detection based on Line Segments

Zhefu Tu
Dept. of Electrical Engineering and Information Science,
University of Science and Technology of China,
Hefei 230027, P.R.China
Email: tuzhefu@mail.ustc.edu.cn

Abstract—We present a novel method for junction detection.
A junction is defined as the point where several lines intersect.
Given the line segments in the image, our junction detector
consists of three steps. First, potential junctions are located from
a small neighborhood around the intersection of each pair of
lines. Second, our detector searches the branches connecting to
each potential junction in a circular neighborhood according to
its scale. Finally, the actual junctions are selected using a two-step
method according to their connecting branches and their distance.
We test our algorithm on a variety of images. The experiment
results demonstrate that the proposed algorithm can robustly
detect junctions in different scenes.

I. INTRODUCTION

Local geometrical structure is an important part for many
problems in computer vision. While carrying the topology of
lines, junctions play a critical role in many visual tasks, such as
figure/ground separation [1], [2], [3], image segmentation [4],
[5], object recognition [6], [7], 3D modeling, and so on. In the
past decades, corner detection has been an active research area
in image analysis. However, most of the existing methods look
for features at high-curvature location in the gradient domain.
They are very sensitive to varieties of intensity patterns.
Junctions, defined as the image points where two or more
edges meet, present more geometrical information for further
processing.

Many works have been done for the corner or junction
detection. They can be generally divided into two types, one
is region-based and the other is edge-based. Region-based
methods [8], [9], [10], [11], [12] use the information of the sur-
rounding area of a pixel, while edge-based methods [12], [13],
[14] use the edge detection result of an image as reference.
The famous region-based corner detector, Harris corner detec-
tor [8] is widely used in many computer vision algorithms.
It computes the Hessian matrix of a square window to check
if there are two dominant edge directions in the region. [9]
sets a circular mask over pixels and computes corner response
function. These edge-based methods do not distinguish differ-
ent junction types, such as Y-junction, L-junction and so on.
Therefore, they are only suitable for key point extraction with
little geometrical information. The junction detector proposed
in [10] constructs a junction template consisting of sector
partitions and uses a template deformation framework to detect
the radial partitions of the template. Its application is very
limited because of its high computation complexity. The scale
of a corner is taken into account by making use of linear scale-
space in [11]. However, the precision of location and scale is
not precise enough for applications such as segmentation and
3D modeling.

Xuejin Chen
Dept. of Electrical Engineering and Information Science,
University of Science and Technology of China,
Hefei 230027, P.R.China
Email: xjchen99 @ustc.edu.cn

Two Bayesian methods are proposed for both region-
based and edge-based corner detection [12]. The region-based
method identifies the corner by several regions of homoge-
neous intensity around it. It computes the average intensity
along each direction diffused from each potential corner and
maps them to a 1-D intensity profile. Smooth regions are
found from the profile by a growing algorithm. The edge-based
method identifies the junction by several converging edges. A
different profile is computed and the edges forming a junction
are found at the contrast peaks in the profile. The junction
detector presented in [13] generates inspiring results. However,
it requires the user to tune a set of parameters every time.
Moreover, the edge continuity requirement in the algorithm
is so strict that some junctions whose branches are fractured
are ignored. Junctions are considered as local visual events
under a contrario methodology in [14]. However, its heavy
computation makes it inapplicable in real-time scenarios.

This paper proposes a new and fast junction detection
algorithm to accurately locate the junctions and classify the
junctions into different types according to their connecting
branches. By combining the region-based and edge-based
methods, our method firstly compute the locations of potential
junctions from the intersections of every two line segments.
Then a circle region around each potential junction is traversed
to find the supporting branches that converge at the point.
Using straight line segments in the image to find the junctions,
the proposed algorithm can robustly detect junctions in the
scenes of architectures and man-made objects. The obtained
junctions can be used as features for further applications, such
as scene reconstruction, structure analysis, etc.

The rest of the paper is organized as follows. Section II
gives an overview of the algorithm. The algorithm details are
described in Section III. Section IV shows a series of exper-
imental results on different types of images to demonstrate
the effectiveness of our junction detector. Finally, we make a
conclusion in Section V.

II. OVERVIEW

Our junction detection algorithm consists of three parts:
potential junction localization, branch searching, and junction
verification, as Fig. 1 shows. In the first step, we compute
the intersections of each pair of line segments and choose the
intersections near the line segments as junction candidates. In
the second step, we search the connecting branches to each
junction candidate in a circular region with adaptive radius.
Finally, the junctions are verified according to the number of
branches and the distance to the branches.

4 /‘
.

—& v

(a) Input Image

i~ 4
I,”_”‘\ \@

(b) Line Segment Detection (c) Potential Junction Localization

(e) Junction Verification

Fig. 1. System overview.

o

(a) L-Junction (b) T-Junction (c) Y-Junction (d) X-Junction

Fig. 2. Example junction templates.

III. JUNCTION DETECTION

A junction is defined as the intersection point of two or
more line segments. We model a junction by a parametric tem-
plate J = {x,y,r, M,{0;}},}, where (z,y) is the location
coordinate, r is the scale, M is the number of branches, 6; in
the orientation of the *" branch.

The junction is classified based on the number of interact-
ing edges and the intersection angles. Four types are used in
our work, which are adequate for describing most man-made
scenes. The L-junction is a corner. The Y-junction is a common
vertex of three line segments. The T-junction is a special case
of the Y-junction, while the two line segments of the three are
collinear. The X-junction is a point where four or more lines
meet. Example junction templates are shown in Fig. 2.

Line segment detection. In order to compute the junction
candidates, long straight edges are detected from the input
image. Line Segment Detector (LSD) [8] is able to detect
most of the straight line segments with acceptable computation
complexity. Fig. 1(b) shows the line segments detected from a
grayscale image. This step can be replaced by any other line
detectors to obtain a series of line segments from the image.

A. Potential Junction Localization

By applying the line segment detector on the input
image, we get a set of line segments L = {l;|l; =
[ai, bi,ci,len;, ang;, pstart, p¢™d]}, where a;z+b;y = c; is the
parameter expression of l;, len; is the length, ang; is the line
direction, the last two terms represent the line’s two endpoints.

To find the true junctions, we first compute the intersections
of each pair of the line segments /; and /; unless the angle
between them is smaller than 7, which means they are nearly
parallel. Because the length of line segments is not infinite,
the true junctions usually locate at the endpoints of the
line segments. We simply filter the intersection points using
their belonging distance to their connecting line segments.

dp,)=0 d(p,l) = min(dy,d;)

(a) p is on the line segment I. (b) p is not on the line segment {.

Fig. 3. Computing the belonging distance.

Fig. 4. Potential junctions in an image. The zoom-in figure shows all the
potential junctions in a 30x30 regions.

We define the belonging distance d(p,l) between a point
p and a line segment | as Eq. 1. Fig. 3 shows the two
cases for computing the belonging distance. In order to get
reliable junction candidates, we choose the intersections whose
belonging distances to their connected two line segments are
both smaller than Ty as potential junctions. On the other hand,
the intersection point might not be the exact junction because
of the error of line detection and fitting. Therefore, we set
all the nine pixels in the 3 x 3 small window around the
intersection of line segments /; and [; as potential junctions.
Fig. 4 shows the potential junctions in an image. From the
zoom-in, we can see that very dense candidates are generated
from the image.

if p is on the segment [,
otherwise.

(¢))

",

d(p,1) = {0’

min(||lp, p;t"t ||, |lp, p§

B. Branch Searching

In order to identify an actual junction, we look for its
supporting branches. For each junction candidate p obtained
from two segments /; and [;, we search its supporting branches
in its surrounding circular region. We present an adaptive
searching range to identify the junctions of different scales,
as the junctions A and B in Fig. 5. Generally, the junction
formed by the short line segments should have a small search
region while the junctions formed by long line segments should
have a larger search region to get strong support.

We determine the radius of the searching region as follows:
First, we compute the possible searching range r; for each
line segment as Eq. 2 to make sure it can be reached in this
range. Second, we set the searching range r as the minimum
of (ry,,r1;,T). We use T, to avoid too large search region
so that the computation can be limited in a reasonable range.
The performance is not reduced since the results tend to be
stabilized when the search range is big enough.

Fig. 5. Junctions at different scales are formed by the line segments with
different lengths.

t

- {max(Td,mm<||p,pff"||, lp.pi 1), if p s on L.

otherwise.

(@)

i len;,

Given the search range r of a potential junction, we search
the supporting branches as follows.

1) Generate a point set CP of all the points on the circle
with radius r centered at p(z,y).

2) For each circle point g; € CP, we select the three-
pixel width band region B; along the line segment
1(p, ¢;) using Bresenham’s algorithm [16], as shown
in Fig. 6.

a) We create a chain from p to g;. For each
row in the band, if there exists an edge pixel,
set the corresponding element in the chain as
value 1; otherwise, the element is 0.

b) If the longest connected path on the chain is
longer than 0.8r, we check if all the pixels
on the link belong to a single line segment. If
s0, I(p, ¢;) is accepted as a branch candidate.
Otherwise it is ignored.

3) The searching operation is repeated with the next
circle point.

4) The distance D(p,(p,q;)) from the junction candi-
date p to each branch candidate I(p, ¢;) is computed.
Ideally, the distance is 0.

5) A non-minimum suppression is used to avoid the
ambiguous lines’ appearance near the edge line. For
each branch candidate, if there exists an adjacent
branch candidate whose distance to p is smaller, the
branch is removed.

If there is only one support branch found for p, we reject
p as a junction. For the junctions with two or more support
branches, we finally verify each candidate according to its
structure.

C. Junction Verification

Because we compute check nine pixels in a small neigh-
borhood of a real junction and a junction formed by more
than two lines is checked twice or more, there are many
redundant responses. We verify the junction candidates having
two or more support branches based on its number of branches
and the distance to the branches. If a potential junction has
only two branches, we compute their intersection angle. If the
intersection angle is smaller than 7, it is removed in order to
avoid the case that the two branches are actually on the same

Fig. 6. A Y-junction in image. Three branches are found in the green band
region along the direction (p, ¢;) ¢ = 1,2, 3.

Junction Candidates

Fig. 7. Different kinds of junctions can be detected in various scales.
The more complex junctions are obtained, and their distance to the furthest
branches are computed. Finally, the central red point is selected with its scale
equal to 2.

line. For the remaining junction candidates, we compute the
number of branches and the direction of each branch.

We verify the junctions using a two-step selection method.
As Fig. 7 shows, a Y-junction candidate is detected three times
from the three pairs of line segments. In the smaller circular
region, three branches are found while only two branches are
found in the other region. For this case, the real junction can
be easily picked out with the largest number of branches. After
this, if there are more than one junction in a 3 x 3 window,
we select the candidate having the smallest distance to all its
supporting branches. With this two-step verification process,
our junction detector finally obtains high accurate detection
rate and low false detection rate.

IV. EXPERIMENTAL RESULTS

We test our algorithm on a computer with a 3.30GHz CPU
and 2.0GB RAM. The three thresholds used in our system
are set as belonging distance threshold 7y = 10, intersection
angle threshold 7 = 15°, and scale upper limit 7;. = 30 after
numerous experiments.

We first test our junction detector on the synthetic images.
Our system is able to extract all the junctions in the synthetic
square image containing a set of rectangles with different
rotation angles and grey values, as Fig. 8§ shows. We also
compare our method with the popular Harris detector [8] and
the recent JUDOCA method [13] on the noised image and
a natural image. From Fig. 9, we can see that our method
outperforms the other two detectors as the Harris detector
produces many false corners in the noise regions and the
JUDOCA misses many real junctions. In comparison, our
method produces more robust results without false detection.

There are more types of junctions in natural images.
We classify the junctions according to the number of their
connected branches and the intersection angle. Our method
is able to clearly detect the junction locations and classify

Fig. 8. The algorithm is applied in synthetic square image.

(d) (e) ()

Fig. 9. Comparison of Harris corner detector (a, d), JUDOCA (b, e) and
our detector (c, f), Gaussian noise with mean zero and variance 0.002 is
added to the square image. L-junctions are marked in red, T-junctions in blue,
Y-junctions in green, and X-junction in yellow.

the junctions in natural images. Fig. 10 shows a series of
junction detection results on architectural images of different
resolutions and different structure details.

V. CONCLUSION

This paper proposes an edge-based junction detection algo-
rithm. From the intersections of each pair of line segments, we
look for the potential junctions in a small neighborhood. Then
branches are searched in a circular region for each junction
candidates. By selecting the junction with the largest number
of branches and the smallest distance to its connecting edges,
we finally obtained real junctions in the image. The junctions
obtained by our detector have strong ties with the geometrical
and topological structure of the scene. Therefor, it can be used
as a prominent feature in many further applications such as
3D modeling and image segmentation.

REFERENCES

[1] D. Geiger, K. Kumaran, and L. Parida, “Visual organization for fig-
ure/ground separation,” in Proc. of Computer Vision and Pattern Recog-
nition, vol. 0, pp. 155-161, 1996.

[2] X. Ren, C. C. Fowlkes, and J. Malik, “Figure/ground assignment in
natural images,” in Proc. of European Conference on Computer Vision,
vol. 2, pp. 614-627, 2006.

[3] I Leichter and M. Lindenbaum, “Boundary ownership by lifting to 2.1d,”

in Computer Vision, 2009 IEEE 12th International Conference on, pp.
9-16, 2009.

Fig. 10. Junctions obtained by our algorithm for architectural images.

[4] C. Fuchs and W. Forstner, “Polymorphic grouping for image segmen-
tation,” in Proc. of Inter-national Conference on Computer Vision, pp.
175-182, 1995.

[5] T. Lindeberg and M.-X. Li, “Segmentation and classification of edges
using minimum description length approximation and complementary
junction cues,” Comput. Vis. Image Underst., vol. 67, no. 1, pp. 88-98,
1997.

[6] A. Guzman, “Decomposition of a visual scene into three-dimensional
bodies,” in Proc. of Fall Joint Computer Conference, part 1, pp. 291-
304, 1968.

[71 R. C. Bolles and R. A. Cain, “Recognizing and locating partially visible
objects: The local-feature-focus method,” Int. J. Robotics Research, vol.
1, no. 3, pp. 57-82, 1982.

[8] C. Harris, M. Stephens, “A combined corner and edge detection,” in
Proc. of The Fourth Alvey Vision Conference, pp. 147-151, 1988.

[9] S.M. Smith, J.M. Brady, “SUSAN: A new approach to low level image
processing,” Proc. of International Journal of Computer Vision, vol. 23,
pp. 45-78, 1995.

[10] T. Lindeberg, “Junction detection with automatic selection of detection
scales and localization scales,” in Proc. of International Conference on
Image Processing, pp. 924-928, 1994.

[11] R. Hummel, L. Parida, D. Geiger, “Junctions: Detection, classification,
and reconstruction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp.
687-698, 1998.

[12] M.A. Cazorla, F. Escolano, “Two bayesian methods for junction classi-
fication,” IEEE trans. on Image Processing, vol. 12, no. 3, pp. 317-327,
2003.

[13] R. Elias, R. Laganiére, “JUDOCA: junction detection operator based
on circumferential anchors,” IEEE Trans. on Image Processing, vol. 21,
no. 4, pp.2109-2118, 2012.

[14] G.-S. Xia, J. Delon, Y. Gousseau, “Accurate junction detection and
characterization in natural images,” TechReport-HAL-00631609, pp. 1-
33, 2011.

[15] R.G. von Gioi, J. Jakubowicz, J.-M. Morel, G. Randall, “LSD: A fast
line segment detector with a false detection control,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, pp. 722-732, 2010.

[16] J.E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, 1965.

