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CONCATENATED WITH A CONVNET
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ABSTRACT

Synaptic cleft is an important area for neuroscientists to an-
alyze the macromolecular complexes related to neurotrans-
mitter transmission. However, the large amount of noise and
low signal-to-noise ratio in raw electron micrographs make it
challenging to extract this region automatically. In this paper,
we propose a simple but effective framework to automatically
extract accurate boundaries of synaptic cleft regions. Our ap-
proach concatenates a novel contour growing algorithm to a
fully convolutional network (FCN), so that it takes both ad-
vantages of large receptive field of FCNs and fine-level local-
ization of contour evolution. The contour growing algorithm
is based on the flexible evolving tension and synchronous
growing controlling to localize the opening contour of clef re-
gion. With consideration of both global localization and local
segmentation, our approach is more robust to noisy electron
micrographs and outperforms all existing single-model FCNs
on accurate segmentation of synaptic clefts.

Index Terms— Synaptic cleft, fully convolutional net-
works, active contours, contour growing, segmentation

1. INTRODUCTION

Electron micrographs (Fig. 1 (a)) are obtained by cryo-
electron tomography (CET) [1, 2], which can visualize the
native environment of neurones [3]. Among several studies
on CET data [4, 5], synaptic cleft regions are one of the
hottest study areas [6], as they play an important role in
neurotransmission. In this paper, we propose an automatic
approach to accurately extract synaptic cleft regions from
noisy electron micrographs (Fig. 1 (b)).

Automatic segmentation of synaptic cleft is challenging
in many aspects. Firstly, the synaptic cleft region is typi-
cally a quite small fraction of a high-resolution 2D electron
micrograph, which requires a high precision of segmenting
small objects. Secondly, only the cellular cleft adjacent to
one synapse and receiving neurotransmitter molecules from
another synapse is the desired synaptic cleft. This requires
the segmentation technique to encode more global biologi-
cal knowledge for judgement. Thirdly, as the most of con-
cerned macromolecules exist on the surface of presynaptic
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Fig. 1. (a) A synaptic cleft region is indicated by red rectangle
in the electron micrograph. (b) The yellow and green curves
are respectively the presynaptic and postsynaptic membranes,
which are exactly the contours of the cleft region.

membranes, it puts forward a high demand on accurate con-
tour localization.

Active contour was first introduced by Kass et al. [7],
which is a popular tools in contour-based segmentation. Co-
hen et al. [8] added a constant balloon force to drive the curve
away from flat regions. Xu et al. [9] proposed a gradient vec-
tor flows method for a larger caption field. Later, open ac-
tive contour models have been proposed for medical image
analysis to extract tree-shaped structures [10] by evolving and
growing. These methods require a good contour initialization
and a clean image quality, both of which are unsatisfied in
electron micrographs. Recently, fully convolutional networks
(FCN) and deep learning [11, 12, 13, 14, 15, 16] have made
a significant progress in image segmentation. The famous U-
net [17] utilized the skip-connection to retain more details.
Chen et al. [18] proposed a dilated convolution to enlarge the
receptive fields for fewer pooling operations. Moreover, PSP-
Net [19] uses the powerful ResNet [20] and a pyramid pool-
ing module to extract better context features. However due to
successive downsampling layers, FCN based methods fail to
give accurate contour localization in this segmentation task.
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Fig. 2. A brief view of our algorithm. First, a FCN-style network provides a coarse segmentation mask, which gives an initial
curve (green line) for next evolving. Then, the initial curve is respectively evolved along opposite directions to attach to both
membranes. Finally, two curves synchronously grow to localize the whole synaptic cleft region (encircled by red solid curves).

In this paper, we propose an segmenting framework for
electron micrographs by combining intelligent FCNs and a
novel contour growing algorithm. Our method consists of
two steps. First, a FCN-based segmentation is employed to
coarsely segment the synaptic cleft region. Then, our pro-
posed contour growing algorithm will result in precise con-
tour localizations of target synaptic cleft region with previous
coarse segmentation.

Especially, our contour growing method is a self-correcting
model, consisting of contour evolving and synchronously
growing algorithms. With a coarse segmentation of the tar-
get region, we first generate an initial centric curve and then
evolve it twice to attach to two synaptic membranes using
our contour evolving algorithm. Different from GVF [9],
we propose a novel updating strategy that is more robust to
image noise. Finally a synchronously growing algorithm is
developed to gradually grow both curves to encircle the entire
target region. Especially, the growing of both curves are syn-
chronous, and terminates according to the distance between
the two membranes. The whole framework is shown in Fig. 2
In summary, our main contribution is twofold: 1) We propose
an effective framework to accurately segment synaptic cleft
regions in electron micrographs; 2) A novel updating strategy
of active contours is developed, which is more robust and
effective for accurate extraction of synaptic cleft regions.

2. PROPOSED ALGORITHM

The pipeline of our algorithm is shown in Fig. 2, which con-
tains three steps: a) pre-segmentation by FCNs; b) contour
evolving based on initial curves; ¢) synchronous growing.

2.1. FCN segmentation

In Fig. 2, we obtain the coarse mask using the DeepLab vari-
ant (ResNet-101), whose classifier is modified to a binary

classifier and loss function is weighted for mitigating the un-
balanced label problem. Then, an centric curve is generated
from the coarse mask as the initial curves of the following
steps. Explicitly, the initial curve is obtained by fitting a
quadratic spline on all the positive pixels in the mask and
truncating the middle part in a small length ,such as the green
dotted line in Fig. 2.

2.2. Curve evolving

Similar to the traditional snake model [7], the initial curve
is expressed by a parameterized model v(s) = (z(s),y(s)),
where s € [0, 1] is the arc-length along the curve. Our goal is
to minimize the following energy function:

Brotal = Jy Bint(v(8)) + Bewe (v(s))ds 1)
Eint = alv'(s)? + BV (s)?
Begt = I(v(s)) + &G (v(s)),

where v’ (s) and v () are the derivatives of v (s), controlling
the curve to be smooth. G is the gradient magnitude map,
which drives the curve to the edge region. According to [7],
Eq. (1) can be minimized by iteratively updating the equation:

X1 = (A + D)7 (% — £o(x¢,¥1)) )
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where x,y € R"» are coordinates of n,, controlling points. A
is a pentadiagonal banded matrix [7], -y is a step size and £, f,,
are the gradient maps calculated from E.,; using Gradient
Vector Flow (GVF) algorithm [9].

As we know, f(x;,y:) is sensitive to image noise. Thus
gradient guided evolving is improper in our electron micro-
graphs with high noise. For example in flat regions, the gradi-
ents are too weak for efficiently evolving, which puts higher



demand on initial curves. And in noise region, the gyrate ten-
sion caused by noisy gradients easily trap the control points.
Thus in this section, we propose a new updating strategy by:

Xi+1 = (A + YD) 7%t + Eegt (X, yi)0y) 3)
Yirr = (A +9D) "y + Eear(xt, yi)ny),

where n;, n, € R"» make up the normal vectors of n,, con-
trolling points with consistent orientations.

In Eq. (3), the direction of external tension is fixed as the
normal direction of each controlling point, whose magnitude
is F. . rather than a constant value in Ballons model [8]. The
advantages of Eq. (3) are as follows: a) the capture range of
external tension is much larger, due to fixed external tension
along normal direction; b) the external tension in noisy re-
gions is no longer gyrate. c¢) our external tension will soon
vanish in contour region due to small E.,;, which makes the
updating more robust. By setting two opposite normal vec-
tors (n4 and n_ in Fig. 2), the centric curve will be evolved
along two opposite directions and well attach to the presynap-
tic and postsynaptical membranes. The final evolved curves
are respectively denoted as c; (s) and ca(s).

2.3. Synchronous growing

With the two initial pieces of contour c;(s) and ca(s), we
then grow them to localize the whole cleft region. The chal-
lenge of this part is that they should be grown correctly and
synchronously to compute the exact distance between two
membranes for termination judging.

First, we formulate the process of growing a contour c(s)
as iteratively finding a piece of straight line segment with
length [ and unit vector v;:

l
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where q is the current endpoint of c(s), and v, is the tangent
vector of q on the curve. Similarly, we use [ points to repre-
sent the target straight line length for convenience. The first
term of Eq. (4) expects c(s) to grow along the membranes
with small E.,;, while the second term prefers the growing
direction following the previous direction of the contour. p
is a tradeoff parameter, and 7 adds a hard constraint on the
growing direction to be not changed too much. Optimal solu-
tion of Eq. (4) can be obtained by alternatively updating [ and
v;. First, we fix [ as a small value (5 pixels) to find an optimal
vy, and then fix v; to find a better [. Experiments show that
two iterations are good enough for most cases to generate a
satisfying piece of new growing membrane.

To synchronously grow cq(s) and cy(s), we split the
growing process into several periods and decide which curve

grows in each period. Especially, we set two variables gi“

Fig. 3. Different situations of Eq. (5). The green lines are new
growing contours, and the red lines are previous contours.

and g§+1 (1 for growing and 0 for waiting) to determine the
growing state of c!(s) and c}(s) at stage ¢ + 1 by:

0,1 if ¢ <90°andf§ < 90°
gL gttt = ¢ 1,0 if ¢ > 90° and 6 > 90° (5)
1,1

, else.

Different situations of Eq. (5) are shown in Fig. 3. The

distance between two membranes is calculated by:

lla’ — pf||+ [|lg"* — p' |
2 b

d' = (6)
where q* and p’ are the endpoints of two membranes. Once
d! is beyond the a reasonable cleft width, the growth stops.

3. EXPERIMENTS

Dataset. Synaptic images are obtained by cryo-electron to-
mography (CET), from which we can directly observe a na-
tive environment of synaptic structures in a high resolution
(about 1500 x 1500). In this paper, our goal is to extract the
synaptic cleft region, which is adjacent to a synapse and re-
ceives neurotransmitter molecules from another synapse. And
only the cleft between two synapses, whose width is about
20 ~ 30 nm (20 ~ 70 pixels in our electron micrographs),
might be the desired synaptic cleft. We build a dataset of
synaptic electron micrographs, including 400 synaptic images
for training and 159 images for testing. All the image are ob-
served in the raw resolution and labeled by experts.
Implementation details. The training strategy of our DeepLab
module follows the original paper [18]. For such a high reso-
lution of electron micrographs, we crop 321 x 321 patch from
original image as the input to DeepLab. In order to avoid
overfitting, we fine-tune the weights of lower layers on the
off-the-shelf model, which has been well trained on natural
images. The data augmentation, including rotations and flip-
pings in [18] is also applied. During the contour evolving, a,
B, k in Eq. (1) and 7 in Eq. (3) are respectively set as 0.2, 0.2,
0.3 and 1, which can give the best performance in our dataset.
For synchronous growing, p = 2.5 and 7 = % in Eq. (4) to

constrain the growing direction deviating [—7, 7] from the
previous growing direction. When d* in Eq. (6) is beyond the

range of [20, 90], the growth is terminated.



(a) Input Image

(b) FCN [11] (c) U-net [17]

(d) DeepLab [18] (e) PSPNet [19] (f) Ours

Fig. 4. Results produced by state-of-the-art segmentations methods and our model. The red regions in input images are the

ground truth, while the others are predicted target regions.

Table 1. Results of comparing with state-of-the-art methods.

Methods Pixel Accu. | mean IOU
FCN [11] 0.9923 0.5258
U-net [17] 0.9939 0.6359

DeepLab [18] 0.9951 0.7164
PSPNet [19] 0.9949 0.7195
FCN+GVF 0.9724 0.6145
FCN-+balloon 0.9794 0.6345
FCN+CG (ours) 0.9974 0.7848

Table 2. Contour growing with various pre-segmentations.

Methods Pixel Accu. | mean IOU
Contour Growing+FCN 0.9956 0.6339
Contour Growing+U-net 0.9962 0.7720
Contour Growing+DeepLab 0.9974 0.7848
Contour Growing+PSPNet 0.9961 0.7683

Evaluation metrics. We use two metrics to evaluate our
method on the segmentation task: a) pixel accuracy, which
evaluates the percentage of true predicted pixels over the
whole pixels; b) pixel intersection-over-union (IOU) aver-
aged across different classes (two labels in our task).
Results We compare our algoritm with several state-of-the-art
methods, including FCN [11], U-net [17], DeepLab [18] and
PSPNet [19]. Especially, DeepLab indicates the ResNet101
version of [18]. Furthermore, we also compare our evovling
model with Eq.(3) to the GVF [9] and bollon model [8].
Table 1 reports the pixel accuracy and mean IOU of dif-
ferent methods. Our method outperforms any single FCN.
The common high pixel accuracy is caused by extreme unbal-
anced labels, most of which are background. Fig. 4 compares
the cropped segmentation results of different methods, which
shows that our localized contours are much more precise and
complete. It can be also observed that FCNs can localize the

correct positions of synaptic cleft in most cases, but their con-
tours are not precise enough for further analysis. More results
with the raw-resolution are provided in supplementary materi-
als. Especially, U-net performs better than FCN, due to richer
features extracted by the U-shaped architecture. And pyra-
mid pooling module in PSPNet really benefits the contour lo-
calization. Finally compared with GVF, our superior results
indicates that the proposed updating strategy performs better
than GVF and ballon model in handling such noisy images.

In order to further demonstrate the robustness of our ap-
proach to different initial segmentation, we explore the effects
of various pre-segmentation modules on our contour growing
results. From the results in Table 2, it demonstrates that our
contour growing algorithm can obviously improve the results
of different pre-segmentation models. And more visual re-
sults are provided in the supplementary material.

4. CONCLUSION

In this paper, a segmentation method is proposed for synap-
tic cleft in cryo-electron tomography. With the initial curve
from FCN, a contour growing algorithm is developed to lo-
calize the accurate contours by evolving and growing. In-
stead of GVF, a novel updating strategy for contour evolving
is proposed which is more robust to image noise. Our future
work will connect FCN and contour growing as an end-to-end
framework, which may benefits both of them.
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