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Abstract
Monocular depth estimation is an essential task
for scene understanding. The underlying structure
of objects and stuff in a complex scene is crit-
ical to recovering accurate and visually-pleasing
depth maps. Global structure conveys scene lay-
outs, while local structure reflects shape details.
Recently developed approaches based on convo-
lutional neural networks (CNNs) significantly im-
prove the performance of depth estimation. How-
ever, few of them take into account multi-scale
structures in complex scenes. In this paper, we pro-
pose a Structure-Aware Residual Pyramid Network
(SARPN) to exploit multi-scale structures for accu-
rate depth prediction. We propose a Residual Pyra-
mid Decoder (RPD) which expresses global scene
structure in upper levels to represent layouts, and
local structure in lower levels to present shape de-
tails. At each level, we propose Residual Refine-
ment Modules (RRM) that predict residual maps
to progressively add finer structures on the coarser
structure predicted at the upper level. In order to
fully exploit multi-scale image features, an Adap-
tive Dense Feature Fusion (ADFF) module, which
adaptively fuses effective features from all scales
for inferring structures of each scale, is introduced.
Experiment results on the challenging NYU-Depth
v2 dataset demonstrate that our proposed approach
achieves state-of-the-art performance in both qual-
itative and quantitative evaluation. The code is
available at https://github.com/Xt-Chen/SARPN.

1 Introduction
Monocular depth estimation, which aims to predict the depth
value of each pixel from a given RGB image, is crucial for un-
derstanding scene geometry, and can be applied to facilitate
other vision tasks, such as semantic segmentation [Park et al.,
2017] and hand tracking [Qian et al., 2014]. It is an ill-posed
problem because of the inherent ambiguity due to perspective
projection. Recently, CNN-based approaches have achieved
significant success in monocular depth estimation [Laina et
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Figure 1: Problems in depth prediction: (a)(b) inaccurate depth val-
ues on large planar regions, such as walls. (c)(d) blurry boundaries
and missing details (chair legs). Our approach simultaneously re-
covers large planar structures and object details.

al., 2016; Fu et al., 2018; Xu et al., 2018b; Hao et al., 2018;
Hu et al., 2019]. To resolve the ambiguity, they typically em-
ploy an encoder-decoder architecture to implicitly fuse fea-
tures that represents object appearance, geometry, semantics,
spatial relations, etc. The encoder gradually extracts multi-
scale features, and the decoder employs multi-stage upsam-
pling as well as shortcut connections to restore object details
in high-resolution predictions.

Though a great improvement on average pixel-wise met-
rics has been made, the underlying structure of objects and
stuff is not well preserved by current CNN-based methods.
The problem becomes especially challenging when the size
of objects and stuff varies widely in complex scenes. As
Figure 1 shows, it is challenging for existing approaches to
accurately recover the large-scale geometry (walls) and local
details (boundaries and small parts) at the same time. This in-
accurate inference at regions of diverse scales motivates us to
fully exploit the hierarchical scene structure in depth predic-
tion. Scene structure, depicting the organization and arrange-
ment of multiple interrelated elements in a complex scene,
varies widely according to the element type. The global struc-
ture represents the spatial arrangement of large-size elements
such as walls, floors, and furniture objects. Local structure
describes geometric details of objects and their parts. The
natural hierarchy of scene structure provides essential con-
straints between the depth values of pixels in multiple scales.

https://github.com/Xt-Chen/SARPN


Although previous CNN-based techniques extract multi-scale
image features and gradually fuse them to predict a depth
map, the underlying hierarchical structure of the scene has
not been taken into account.

In this paper, we introduce a Structure-Aware Residual
Pyramid Network (SARPN) to fully exploit scene structures
in multiple scales for depth prediction. A Residual Pyra-
mid Decoder (RPD) is proposed to predict multi-scale depth
maps in a coarse-to-fine manner. Depth maps in upper lev-
els in the pyramid represent the global scene structure, while
depth maps in lower levels capture more local structures of
objects or parts. To convey the global structure and constrain
the generation of finer details, we proposed a residual refine-
ment module to predict residual depth maps, which progres-
sively add details on the scene structure on a larger scale.
In order to fuse multi-scale features extracted from the in-
put image for residual prediction, we propose an Adaptive
Dense Feature Fusion (ADFF) module to adaptively select
more effective features for each scale. Integrating the residual
pyramid decoder and adaptive dense feature fusion module,
our method simultaneously preserves the hierarchical scene
structures and produces accurate depth estimation for both
large-size shapes and fine details of small object parts, as Fig-
ure 1 shows. Our contributions are summarized as follows:

• We propose a Structure-Aware Residual Pyramid Net-
work (SARPN), which takes the underlying scene struc-
ture in multiple scales into account for accurate depth
prediction.

• Our Adaptive Dense Feature Fusion (ADFF) module
adaptively selects features from all scales to predict
residual depths at different structure scales.

• The proposed method achieves state-of-the-art perfor-
mance on the challenging NYUD v2 dataset. More im-
portantly, the visual quality of recovered depth maps is
significantly improved.

2 Related Work
In recent years, CNNs have become the most successful tech-
niques for various visual tasks, and were firstly used for
monocular depth estimation [Eigen et al., 2014] in a multiple
scale scheme. Later on, fully convolutional network (FCN)
was proposed for semantic segmentation [Long et al., 2015]
and has been widely used in many dense prediction tasks, in-
cluding depth estimation.

When FCN-based architecture was first adopted for depth
estimation, the resolution and accuracy ware largely im-
proved by using ResNet to extract features and up-projection
blocks [Laina et al., 2016]. In order to improve the qual-
ity of depth estimation for local details, many strategies have
been introduced. Applying conditional random field as post-
processing [Li et al., 2015] or integrating it in CNNs [Xu et
al., 2017] largely improves the prediction quality for small
objects. Later, an attention model is integrated to improve
the estimation performance [Xu et al., 2018b]. Multi-scale
architecture becomes a common solution to avoid the loss of
local details caused by spatial pooling and convolutions [Fu
et al., 2018]. Instead of multi-scale network structure, dilated

convolution is used to extract multi-scale features for depth
estimation [Hao et al., 2018]. Hu et al. [2019] proposed an
effective multi-scale feature fusion module to produce clear
object boundaries. Although these methods have achieved re-
markable results by fusing multi-scale features, they still face
the problem of inaccurate prediction for complex scenes of
which the structure varies largely in scales, from large room
layout to fine object details.

In order to better restore structure details, a few methods
design new loss functions to explicitly constrain scene geom-
etry. Zheng et al. [2018] proposed an order-sensitive softmax
loss to constrain global layouts. Similarly, Fu et al. [2018]
used an ordinary regression loss. With respect to clear bound-
aries and details, a loss function is designed by combining
depth, surface normal and gradient in a local neighborhood
of depth maps [Hu et al., 2019].

Due to the strong correlation between many visual tasks,
such as depth estimation, semantic segmentation, and nor-
mal estimation, many approaches employ a joint task learning
framework. A multi-scale CNN was designed to simultane-
ously perform semantic segmentation, depth estimation, and
normal estimation [Eigen and Fergus, 2015]. A set of inter-
mediate auxiliary tasks are utilized to guide the final depth
estimation and semantic segmentation [Xu et al., 2018a].
Zhang et al. proposed a novel joint task-recursive learning
method to recursively refine the results of depth estimation
and semantic segmentation [Zhang et al., 2018]. A synergy
network is proposed to automatically learn information shar-
ing strategy between depth estimation and semantic segmen-
tation [Jiao et al., 2018]. Moreover, based on the observed
long-tail distribution of depth values, an attention-driven loss
is also designed to improve the accuracy [Jiao et al., 2018].

3 Methodology
Our network consists of three main parts: an encoder for
multi-scale feature extraction, an adaptive dense feature fu-
sion module, and a residual pyramid decoder, as Figure 2
shows. We first introduce the network architecture in Sec. 3.1.
The residual pyramid decoder and adaptive dense feature fu-
sion module are explained in Sec. 3.2 and 3.3, respectively.

3.1 Structure-Aware Residual Pyramid Network
Our approach begins with an encoder which extracts multi-
scale features {Fi

ex}Li=1 from the input image, where Fi
ex

indicates the feature maps extracted at the i-th level. L is
the number of layers in our network. Following the state-
of-the-art approach [Hu et al., 2019], we use SENet [Hu et
al., 2018] as the backbone of our encoder. It extracts more
effective features by re-weighting features of different chan-
nels. Given an input image with size W × H , the size of
these feature maps are respectively [W2i ,

H
2i ], and they carry

both high-level semantic information and low-level detail in-
formation. Then, these multi-scale feature maps are simul-
taneously fed to our dense feature fusion module to produce
a Fused Feature Pyramid (FFP). These feature maps in FFP
are represented by {Fi

fs}Li=1, where Fi
fs indicates the fused

feature maps at the i-th level of the pyramid of fused features.
In the decoder part, different from the previous methods

that directly predict a depth map by sequentially upsampling



Figure 2: The network architecture. Our Structure-Aware Residual Pyramid Network consists of an encoder which extracts multi-scale
visual features, a Residual Pyramid Decoder (RPD) which progressively infers depth maps in a coarse-to-fine manner, and an Adaptive Dense
Feature Fusion (ADFF) module for dense feature fusion. The residual pyramid effectively adds structure details in each level based on the
scene layout predicted at a coarser level.

feature maps [Laina et al., 2016; Hu et al., 2019], our resid-
ual pyramid progressively predicts multiple depth maps in a
coarse-to-fine manner. The depth map at the top level with
size W

32 ×
H
32 is predicted first as the initial scene layout. We

utilize a 1 × 1 convolution operation to reduce the channel
number of the feature maps FL

ex to the same as the channel
number of feature maps FL

fs of fused feature pyramid and
concatenate them together. A residual block is used to pre-
dict a depth map DL in size of [W

2L
, H
2L

] from the concatenated
feature maps. Then we gradually refine the depth prediction
by our proposed residual pyramid decoder.

3.2 Residual Pyramid Decoder
Our residual pyramid decoder predicts depth maps of mul-
tiple scales in order to restore the hierarchical scene struc-
tures in a coarse-to-fine manner. As shown in Figure 2, the
depth maps in lower resolutions depicts more global scene
layout, while the depth maps in higher resolutions contain
more structure details. In each level of the pyramid decoder,
we predict a residual map instead of a dense depth map from
fused image features in FFP. The residual map and the depth
map predicted at the upper level are integrated together to
produce a refined depth map in the current scale using our
Residual Refinement Module (RRM). The components of
each RRM are shown in Figure 3. The depth map Di+1 pre-
dicted at the upper scale is upsampled to the current scale
by bilinear interpolation. A residual depth map Di

res is gen-
erated by utilizing the fused features Fi

fs. After adding the
residual map and the upsampled depth map, a residual block,
which contains three convolutional layers, is employed to re-
fine the prediction and outputs a depth map Di at the i-th
scale. This residual architecture induces our network to effec-

tively represent the structure details at each scale and hierar-
chically refine scene structures. Meanwhile, the global scene
layout is well preserved by our residual pyramid decoder.

Figure 3: A Residual Refinement Module (RRM) for the i-th level.

3.3 Adaptive Dense Feature Fusion
In general, due to pooling operations and convolution oper-
ations with strides in CNNs, a large amount of low-level vi-
sual features are lost. As a result, it is difficult for the de-
coder to recover the lost low-level structure details. However,
both low-level features and high-level features are critical for
predicting residual maps in all layers, because the residual
maps convey additional details on a global scene structure,
as the residual pyramid illustrates in Figure 2. In order to
provide sufficient information for the prediction of a resid-
ual map in each level, we propose an Adaptive Dense Feature
Fusion (ADFF) module. This dense fusion module consists
of L Multi-scale Feature Fusion (MFF) modules to predict L
fused feature maps, which compose a fused feature pyramid
for residual prediction.

In each layer, the MFF adaptively selects eligible features
from all feature scales when predicting the depth map for
each individual scale. We follow the detailed implementa-
tion of MFF proposed in [Hu et al., 2019]. The L feature



Table 1: Comparisons with state-of-the-art depth estimation approaches on NYUD v2 Dataset. Note that joint task learning is employed in
the methods marked by *. The best results on each metric among the single-task approaches are marked in bold type. The results better than
ours are marked in italics.

Method REL RMS log 10 δ < 1.25 δ < 1.252 δ < 1.253

Ladicky et al. [2014] - - - 0.542 0.829 0.941
Li et al. [2015] 0.232 0.821 0.094 0.621 0.886 0.968
Eigen et al. [2014] 0.215 0.907 - 0.611 0.887 0.971
Laina et al. [2016] 0.127 0.573 0.055 0.811 0.953 0.988
Xu et al. [2017] 0.121 0.586 0.052 0.811 0.954 0.987
Xu et al. [2018b] 0.125 0.593 0.057 0.806 0.952 0.986
Hao et al. [2018] 0.127 0.555 0.053 0.841 0.966 0.991
Fu et al. [2018] 0.115 0.509 0.051 0.828 0.965 0.992
Qi et al. [2018] 0.128 0.569 0.057 0.834 0.960 0.990
Jiao et al. [2018] 0.126 0.416 0.050 0.868 0.973 0.993
Hu et al. [2019] 0.115 0.530 0.050 0.866 0.975 0.993
Our Baseline 0.123 0.547 0.052 0.854 0.969 0.992
Our Baseline + RPD 0.115 0.528 0.050 0.871 0.975 0.993
Ours: Baseline + RPD + ADFF 0.111 0.514 0.048 0.878 0.977 0.994
Eigen and Fergus [2015]* 0.158 0.641 - 0.769 0.950 0.988
Xu et al. [2018a]* 0.120 0.582 0.055 0.817 0.954 0.987
Zhang et al. [2018]* 0.144 0.501 - 0.815 0.962 0.992
Jiao et al. [2018]* 0.098 0.329 0.040 0.917 0.983 0.996

maps {Fi
ex}i=1,...,L are first resized to the resolution of cur-

rent scale using bilinear interpolation and refined with a resid-
ual refine block. The refined feature maps are concatenated
and fed into a conv-layer to reduce the number of channels.

3.4 Loss Function
In order to train our residual pyramid network for predict-
ing accurate depth maps while preserving scene structures in
various scales, we compute the difference between the pre-
dicted depth map Di and the ground-truth Gi at each scale
and combine the losses of all scales together. For each scale,
we follow the definition of the loss function proposed in [Hu
et al., 2019]. It consists of three terms, ldepth considering the
pixel-wise difference between the predicted depth Dl and the
ground truth Gl, lgrad which penalizes errors round edges,
and lnormal to further improve fine details. Combing all the
L scales, our loss function for the entire network is formu-
lated as

L =

L∑
i=1

lidepth + ligrad + linormal. (1)

4 Experiments
To demonstrate the effectiveness of the proposed approach,
we evaluate our approach on the challenging NYUD v2
dataset [Silberman et al., 2012]. We compare our approach
with a couple of state-of-the-art approaches and show the su-
periority of the proposed method on both quantitative and
qualitative evaluations.

4.1 Experimental Setup
The NYU-Depth v2 dataset [Silberman et al., 2012] con-
tains 464 video sequences of indoor scenes captured with Mi-

Figure 4: Comparison with [Jiao et al., 2018]. The depth maps pre-
dicted by our method preserve much more accurate depth around
object boundaries and keep finer structures, as highlighted in the
boxes.

crosoft Kinect. 654 aligned RGB-Depth pairs are provided
for testing depth estimation methods for indoor scenes. All
images have a resolution of 640 × 480. To training our net-
work, we use the training dataset which contains 50K RGBD
images, select and then augment in the same way as [Hu et
al., 2019]. Each image is downsampled to 320 × 240 using
bilinear interpolation, and then center-cropped to 304 × 228.
The predicted depth maps are in a resolution of 152 × 114.
For testing, the predicted depth maps are upsampled to match
the size of the corresponding ground truth using bilinear in-
terpolation.

We implement the proposed model using PyTorch [Paszke
et al., 2017]. The encoder, SENet, is initialized by a model
pretrained on ImageNet [Deng et al., 2009]. The other lay-
ers in our network are randomly initialized. We use a step
learning rate decay policy with Adam optimizer, and starting
from an initial learning rate of linit = 10−4. It is reduced



Figure 5: Qualitative results on the NYUD2 dataset.

to 10% every 5 epochs. We use β1 = 0.9, β2 = 0.999, and
weight decay as 10−4. The proposed network was trained for
20 epochs with a batch size of 6.

4.2 Performance Comparison
Quantitative Evaluation. Following previous studies, we
adopt four metrics including average relative error (REL),
root mean squared error (RMS), mean log 10 error (log
10), and accuracy with three thresholds, to quantitatively
evaluate our depth estimation performance. Table 1 shows
the results of our SARPN and recent approaches. Among
the approaches of single task learning, our approach per-
forms the best on REL, log 10 error, and accuracy with
three thresholds. We are in the third position with respect
to RMS. We speculate that the methods [Fu et al., 2018;
Jiao et al., 2018] pay more attention to the absolute pixel-
wise accuracy when designing their networks and loss func-
tions, ignoring fine structures of target scenes. As a result,
these methods achieve higher performance in RMS, but per-
forms worse on the REL metric and other metrics.

We also compare our method with four approaches that
employ joint task learning [Eigen and Fergus, 2015; Xu et
al., 2018a; Zhang et al., 2018; Jiao et al., 2018]. The results
demonstrated that our method outperforms three methods and
achieves comparative performance with [Jiao et al., 2018],
even they use a large number of extra labels for semantic seg-
mentation during the training process. Moreover, the depth
maps produced by [Jiao et al., 2018] present very blurry ob-
ject boundaries and miss geometric details. We compare the
predicted depth maps in Figure 4 to demonstrate the capa-
bility of our method on restoring clear object boundaries and
finer details.

We also analyze the contribution of each component in our

Table 2: Accuracy of recovered edge pixels in depth maps under
different thresholds.

Thres Method Prec Recall F1

0.25

[Laina et al., 2016] 0.489 0.435 0.454
[Xu et al., 2018a] 0.516 0.400 0.436
[Fu et al., 2018] 0.320 0.583 0.402
[Hu et al., 2019] 0.644 0.508 0.562

Ours 0.645 0.520 0.570

0.5

[Laina et al., 2016] 0.536 0.422 0.463
[Xu et al., 2018a] 0.600 0.366 0.439
[Fu et al., 2018] 0.316 0.473 0.412
[Hu et al., 2019] 0.668 0.505 0.568

Ours 0.663 0.523 0.578

1.0

[Laina et al., 2016] 0.670 0.479 0.548
[Xu et al., 2018a] 0.794 0.407 0.525
[Fu et al., 2018] 0.483 0.512 0.485
[Hu et al., 2019] 0.759 0.540 0.623

Ours 0.749 0.554 0.630

proposed network. We use a simple UNet-like architecture
as our baseline, where SENet [Hu et al., 2018] is employed
as the backbone of our encoder. The decoder in our baseline
employs a multi-stage upsampling scheme to recover a depth
map. A variant (baseline+RPD) is implemented by adding
the proposed RPD on the baseline model. As shown in Ta-
ble 1, the performance is gradually improved by incorporat-
ing RPD and ADFF. More specifically, after adding the pro-
posed RPD, performance among all the metrics are improved
by a large margin from the baseline, while REL decreases
by 6.5%, RMS decreases by 3.5%, log 10 error decreases by
3.8%. After adding the ADFF module, the performance is
further improved, while REL decreases by 3.5%, RMS de-



Figure 6: 3D projection from predicted depth maps. Our method
better preserves the scene structure of various scales, especially the
flat shape of large planar regions.

creases by 2.7% and log 10 error decreases by 4%.
In order to prove the effectiveness of our method on pre-

serving object details, we also compute edge accuracy to
measure the quality of recovered edge details, same as [Hu et
al., 2019]. Precision, Recall, and F1 score are computed ac-
cording to edge pixels in the ground truth map. From Table 2,
we can see that our F1 score surpasses all other methods un-
der three different thresholds. This indicates that our method
restores the most structure details.
Qualitative Evaluation. We compare a series of depth
maps predicted by our method and other state-of-the-art
methods [Laina et al., 2016; Xu et al., 2017; Fu et al., 2018;
Hu et al., 2019] in Figure 5. It can be seen that the depth maps
predicted by our method are visually better than other meth-
ods. Scene structures are well preserved in different scales,
especially for large planar regions and object details. For ex-
ample, our method predicts accurate geometric details for the
bookshelf in the first row, the chair in the third row, and the
sofa in the fifth row. For large planar regions (the upper-left
wall in the second row, and the floor of the third), our method
also generates better results.

To better illustrate the capability of our method on preserv-
ing scene structure of large planar regions, we project the
predicted depth maps as 3D point clouds and render them
in novel views. As Figure 6 shows, our reprojected results
are the closest to ground truth. In particular, the large wall
regions recovered by our method are much more flat, while
other methods suffer from severe distortions.
Model Generalization. In addition to the NYUD v2
dataset, we further explore the generalization ability of our
proposed network on other datasets. We test our network,
which is trained on the NYUD v2 dataset only, on ScanNet
dataset [Dai et al., 2017] and SUN-RGBD dataset [Song et

Figure 7: More results by applying our model on SUN-RGBD
dataset (a)(b) and ScanNet dataset (c)(d).

al., 2015], which contain more diverse RGBD data. As shown
in Figure 7, even the data distribution of these two datasets
and NYU Depth v2 is greatly different, our method could
recover structures in various scales, including smooth large
planar regions and object details. Moreover, our method also
fills holes in the ground truth depth map automatically while
maintains the scene structure.

5 Conclusion
In this paper, we propose a Structure-Aware Residual Pyra-
mid Network for accurate monocular depth estimation. A
residual pyramid decoder is introduced to predict multi-scale
depth maps, which takes the underlying hierarchical scene
structures into account. The residual pyramid induces our
network to progressively add finer structures at a specific
scale while preserving the coarser layout predicted at the up-
per level. Meanwhile, by using the proposed adaptive dense
feature fusion module, the image features from all scales are
adaptively fused when predicting the residual depth map for
each scale. Experiment results demonstrate that our method
achieves state-of-the-art performance in both quantitative and
qualitative evaluation.
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