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Figure 1: Examples of 3D tree models generated from freehand sketches. From left to right: three sketches, and corresponding tree models.

Abstract

In this paper, we describe a new system for converting a user’s free-
hand sketch of a tree into a full 3D model that is both complex
and realistic-looking. Our system does this by probabilistic op-
timization based on parameters obtained from a database of tree
models. The best matching model is selected by comparing its 2D
projections with the sketch. Branch interaction is modeled by a
Markov random field, subject to the constraint of 3D projection to
sketch. Our system then uses the notion of self-similarity to add
new branches before finally populating all branches with leaves of
the user’s choice. We show a variety of natural-looking tree models
generated from freehand sketches with only a few strokes.

Keywords: Sketching, tree modeling, geometric modeling,
Markov random field.

1 Introduction

Achieving realism is one of the major goals of computer graph-
ics, and many approaches ranging from physics-based modeling to
image-based rendering have been proposed. Unfortunately, creat-
ing new content for realistic rendering remains tedious and time
consuming. The problem is exacerbated when the content is be-
ing designed. 3D modeling systems are cumbersome to use and
therefore ill-suited to the early stage of design (unless the design is
already well-formulated).

Designers therefore continue to favor freehand sketching for con-
ceptual design. Sketching appeals as an artistic medium because
of its low overhead in representing, exploring, and communicating
geometric ideas. Indeed, such speculative representations are fun-
damentally different in spirit and purpose from the definitive media
that designers use to present designs. What is needed is a seamless
way to move from conceptual design drawings to presentation ren-
dering; this is our focus. This paper extends sketch-based modeling
to complex and realistic-looking 3D tree models and thus addresses
one of the still existing gaps in this area.

We introduce a new, easy-to-use, and flexible method for creating
tree models from freehand sketching. It allows the user to very
quickly generate a variety of unique 3D models of trees. Given
the 2D sketch, our system searches for a 3D interpretation whose
projection matches the sketch and is natural-looking. We formu-
late the problem within a graphical modeling framework, using a
database of trees as priors. Inference is done in two steps. First, the
initial shape is obtained by bottom-up local optimization at each
branch segment from tree root to the rest of the drawn branches.
Second, this shape is then refined to avoid interpenetration between
branches.

Once the 3D branches have been recovered, the model is augmented
with more branches using self-similarity as a guiding principle.
Subtrees are randomly selected and appropriately scaled and ori-
ented before being attached to end branches. Finally, the user can
select the leaves to be automatically added to the branches based
on botanical rules. This completes the 3D tree model. Examples of
tree models generated from sketches can be seen in Figure 1.

2 Related Work

Rule-Based Plant Modeling. Techniques for computer-
generated plants were introduced as early as 1966 by Ulam [1966].
They are soon followed by the introduction of L-systems as
a formalism for simulating the development of multicellular
organs in terms of division, growth, and death of individual
cells [Lindenmayer 1968]. Prusinkiewicz et al. [1996] derived a
systematic description for using L-systems to model plants. Other
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Figure 2: Overview of our sketch-based tree modeling system.

approaches have also been proposed, ranging from parameterized
algorithms [Oppenheimer 1986; de Reffye et al. 1988; Holton
1994; Weber and Penn 1995] to combined approaches such as the
xfrog system [Lintermann and Deussen 1999]. However, all these
rule-based systems require the user to manually finetune a number
of parameters in order to create the desired model.

Rule-based systems are difficult for the novice user to operate be-
cause they require not only specialized knowledge on biomechan-
ics and biology for effective parameter specification. The user
must also understand how the rules are applied or even formulated
evenly. In a number of such systems, the global shape of trees is
difficult to control—slight changes in the local rules may result in
significant changes in the global shape.

The xfrog system and subsequent graphical L-system edi-
tors [Prusinkiewicz et al. 2001] allow the user to manipulate com-
plex parameters graphically. Despite the increased ease of use,
such systems still require the user to specify the less intuitive func-
tion plots, curves, and surface parameters that govern appearance
(which are separate from the model shape).

In comparison, our sketching system generates a 3D tree model by
having the user merely sketch the desired tree shape. The user does
not need to understand what L-systems are or know what param-
eters need to be manipulated. Our system solves the inverse pro-
cedural modeling problem by inferring the generating parameters
and 3D tree shape from the drawn sketch. While L-systems require
parameters to be predefined and manipulated, our sketching system
provides the user a highly intuitive way to produce the desired 3D
tree models.

Sketch-based Tree Modeling. Sketch-based systems were de-
veloped to provide a more intuitive way of generating plant mod-
els. For example, Okabe et al.’s system [2005] reconstructs the
3D branching pattern from 2D drawn sketches in different views
by maximizing distances between branches. They use additional
gesture-based editing functions to add, delete, or cut branches.
Moreover, example-based editing is supported to generate branches
or leaves using some existing tree models.

Their system, however, requires the user to draw many branches to
describe detailed structures. Because their system does not support
automatic propagation of branches, a complex tree would require
extensive user interaction. In comparison, our system allows the
user to generate 3D models by merely drawing a few strokes in
single view and optionally defining the overall shape of the tree by
loosely sketching the contour of the crown.

Ijiri et al.’s system [2006] is based on L-systems. The user draws a
single free-form stroke to control the growth of a tree. The change

in the shape of the stroke is used as a graphical metaphor for modi-
fying the L-system parameters. However, this system supports only
two simple production rules, and the user is not allowed to control
the overall shape of the tree. This severely limits the expressive
power of the system. In contrast, our system is capable of generat-
ing complex, natural-looking tree models from a limited number of
strokes to describe the tree shape.

Image-Based Plant Modeling. Rather than requiring the user to
manually specify the plant model, there are approaches that instead
use images to help generate 3D models. For example, Shlyakter et
al. [2001] use an L-system-based growth mechanism that is con-
strained by the visual hull produced from photographs. A purely
image-based modeling approach is described by Reche-Martinez et
al. [2004]. Here, a set of carefully registered photographs is used
to determine the volumetric shape and opacity of a given tree. The
data is stored as a huge set of volume tiles and therefore requires a
significant amount of memory. Furthermore, its generic volumetric
representation makes it hard to edit.

Neubert et al. [2007] proposed a method to produce 3D tree models
from several photographs based on limited user interaction. Their
system is a combination of image-based and sketch-based mod-
eling. From loosely registered input images, a voxel volume is
achieved with density values which are used to estimate an initial
set of particles. A 3D flow simulation is performed to trace the par-
ticles downward to the tree basis. Finally, the twigs and branches
are formed according to the particles. The user is required to draw
some branches if there is no information about branching in the im-
ages. Density information is critical to simulate the particle. The
user has to draw the foliage density if image information is miss-
ing. The final reconstructed branches does not have the exactly
same shape with the drawn branches.

By comparison, our system only requires the user to draw the
branches with several strokes in single view and generates the same
branch shape through a sketch. With the approach in [Neubert et al.
20071, it is difficult to simulate specific patterns of smaller branches
using the particle flow mechanism. For the trees with very steep
branching angles, it is hard to create the model using flow simula-
tion because the particles merge when getting too close. This limits
the number of achievable plant forms.

Tan et al. [2007] proposed another method to reconstruct the 3D
model from multiple images. The user can also manually edit
the branch structures. However, the system requires a significant
amount of preprocessing work such as segmentation of branches,
leaves, and background. User intervention may be required to cor-
rect errors in the 3D branch extraction or seed branch growth. How-
ever, mismatches between the construction of hidden branches and



observed leaves tend to produce floating 3D leaves.

Image-based approaches have the best potential for producing
realistic-looking plants, since they rely on images of real plants. At
the same time, they can produce only models of preexisting plants.
Designing new plants would be a major issue without manual edit-
ing. Our sketching system is a good compromise that allows a small
amount of intuitive input to produce new and realistic-looking trees.

3 Overview of System

The components of our tree sketching system are shown in Figure 2.
The user needs to simply provide only a few strokes of branches,
and optionally the crown of the tree. The database contains typi-
cal tree exemplars and their associated global parameters. Based
on the shape of the sketch, the system first selects the closest tree
exemplar (“template”); the template’s global parameters are subse-
quently used as a prior for constructing the 3D geometry.

We assume that the sketch is drawn under orthographic projection.
This allows the problem of constructing the 3D geometry of the
sketch to be reduced to estimating the depths of branch segment
endpoints. A reasonable shape of a tree can be reconstructed from
its projection because trees have characteristic shapes, which pro-
vide powerful priors for 3D reconstruction. Such priors allow hu-
mans to perceive tree shapes from sketches. The location of each
branch depends on the location of adjacent branches but the overall
shape is dictated by global tree parameters. The local intercon-
nectivity of information and imposition of global priors makes the
reconstruction problem a natural fit for the use of Markov random
field (an undirected graphical model). There is a direct mapping
of branches to graph nodes, local interconnectivity of branches to
interaction between nodes, and global tree parameters to data terms
at nodes.

As such, we formulate the problem as Markov random field, with
each branch segment as a node and its depth as a variable. More
specifically, we are dealing with a Markov tree. (For a detailed
description, please refer to textbooks such as [Bishop 2006].) In
addition, we impose rules governing the tree shape as spatial rela-
tionships between neighboring nodes. These relationships are made
explicit by introducing additional nodes, producing what is called a
factor graph (a bipartite graph with two kinds of nodes).

Solving the factor graph produces the 3D shape of the drawn
branches. The system then propagates branches using the principle
of self-similarity: it randomly selects replication blocks, scales, and
reorients them, and then attaches them to open branches. If drawn,
the crown constrains the overall shape of the tree during branch
propagation. If the crown is not drawn, the branches are propagated
by a fixed number of generations. To complete the tree model, the
user can either select a leaf template from the tree database, or use
the default leaf associated with the preselected template. The sys-
tem populates the tree based on botanical rules. While this is only
an approximation of natural diversity, the variety of trees shown in
this paper demonstrates the visual modeling power of our system.

In the next section, we first describe the tree data structure before
detailing our 3D reconstruction technique.

4 Tree Data Structure

The tree is composed of a set of branch segments. Each branch
segment b has its local coordinate system, the position of end point
p and the segment vector v. With each branch segment as a node,
we build a Markov random field of the whole tree. Each segment
is the parent of all its outgoing branch segments. Since there is one
and only one path between each pair of nodes, the Markov random

Figure 3: Illustration of tree parameters described in Section 4.

field is converted to a Markov tree. For example, from the sketch
(Figure 4 (a)), the Markov tree is Figure 4 (b).

The relation between parent-child branch segments is represented
by the geometry transformation. In the local coordinate system of
the parent b, the scaled rotation from the segment vector V,’; of by
to its child segment vector vZ is defined by a scale s and two rotation
angles ¢ and ¢ around the x and y axis of the parent coordinate

system respectively. Then we have vZ = sRy (@) R () vh.

The branching shapes are typically spatially variant for the whole
tree. To account for this, we use Gaussian distribution to charac-
terize the probability distribution of the tree parameters. The scale
s of each pair of parent-child segments has the identical distribu-
tion, that is s ~ 4 (s, 05). However, for the rotation angles, the
distribution is not identical.

For a parent segment b, having K child segments {b.,,...,bc,},
the apical segment b, is distinguished. Assume the divergence an-
gles and the orientation adjustment angles of all the apical segments
have identical distribution, that is .4 (g, 0q) and A" (Ly, oy) re-
spectively. The other child segments are lateral. The divergence
angle of all the lateral segments have identical distribution, that is
A (1g,0p). The distribution of orientation adjustment angle de-
pends on its label. Based on the different orientation adjustment
angle, the child segments distribute evenly around their parent seg-
ment. As shown in figure 3,

L If K=1, ¢, ~ A (Ug,0q) and @, ~ A (lUy,0y). The
distribution parameters of first child segment is 6; =
{.uom G(X7:u’)/> G)/}'

2. If K = 2, the rotation angles of the two child seg-
ments are ¢L‘l ~ {/V(»u'avGOCL(PL‘[ ~ ‘/V(;u"}’? G’)’) and ¢C2 ~
N (U, 0p), Pc, ~ A (ly + T, Oy) respectively. The two sets
of distribution parameters are 6; = { Lo, G, ly, Oy} and 6, =
{“B70ﬁ7ﬂ7+”7 0-'}’}'

3. If K > 2, the rotation angles of apical segment is ¢, ~
N (Mo Oa); Pc, ~ AN (ly,0y). For the other child (lateral)
segments, their rotation angles are ¢, ~ A (lg,0p), P, ~

A 1y + 272(:1) ,0y), i =2,...,K. The corresponding pa-

rameter for each child segment is: 0; = {lq, Oa, Uy, Oy} and

6= {15, 0.y + K 07} i=2,0 K.

Let ® = {Ls, Oy, Lo, Oa, g, O ; Ly, Oy} denote the global tree pa-
rameters, we can deduce the Gaussian distribution parameters 6; of
the rotation angles of each child segment b, according to its label
i. We now describe how we reconstruct the 3D branches within our
graphical modeling framework.
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Figure 4: Mapping sketch to factor graph. (a) The sketched tree,
(b) corresponding Markov tree, (c) final factor graph. Each node in
the graph represents a branch segment in the sketch.

5 Branch Reconstruction

The strokes in the sketch are first split into a set of inter-connected
branch segments. Since we assume orthographic projection, given
the sketch (Figure 4(a)), we need to only extract the depths associ-
ated with the branch segment ends.

5.1 Factor Graph Construction

Each branch segment b; is represented by the position of its end
point p; and its direction v;. Given a parent segment b, and its
child segment b¢, Vo = p. — P, The transformation of these two
vectors are modeled by a scale s and rotation matrix R such that
Ve = sRpcvp. Note, however, that the tree parameters ® specify
the rotation R” between parent segment and child segment in the
parent’s local coordinate system while the observed (x,y) and un-
known z are defined in the global coordinate system. We need to
convert the coordinate systems from local to global:

Ve =SRpcVp = SRORPREY), 6))

where Rjc = Rng R{, Rl is the rotation matrix from the global
coordinate system to the local coordinate system of the parent seg-
ment, Rg is the inverse.

The rotation angles ¢ and ¢ of each pair of parent-child branch seg-
ments can be deduced from the rotation matrix R”. Our target is to
look for the optimal depth z; of each branch so that the transforma-
tion parameters have the largest probability according to the Gaus-
sian distribution. As indicated in Section 4, for a parent segment
with K child branches, there are K sets of parameters 6;,i=1,...,K
associated with the rotation angles. To differentiate between the
type of child branches, we introduce another variable, the label for
the child segment, /; = {1,2,...,K} to get the distribution from @.
Given O, the joint probability of the two branch vectors v;, v, and
label /; of the child segment is

P(vi,Vp;,1i|®) o< P(si|®)P(¢:|6,)P(i|0},). )

From the 2D strokes drawn by the user, 2D coordinates of the
branch nodes X = {xy,...,xy} and Y = {y1,...,yn} are observed
for the N branch segments in the tree. We look for the optimal value
for the unknown depths Z = {z, ..., zy } of the segment vector and
labels L = {I1,...,Iy} for all the branch segments to maximize the

posterior given the sketch and global parameters ©:
N
P(Z,LIX,Y,0) o< [[P(vi,vp,,1i|®), 3)
i=1

assuming independence between child segments (for simplicity).
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Figure 5: The framework of Markov tree inference.

The posteriors in (3) are made explicit by introducing the factor
nodes in the factor graph. The child segment label /., between each
pair of parent-child segments is introduced as another variable node
to the factor graph. The square node P, between between b, and
by, represents the conditional joint probability defined in (2). By
multiplying all the factor nodes in the factor graph, we arrive at the
posterior P(Z,L|X,Y,®) in (3) for the whole tree.

5.2 Markov Tree Inference

By inferring the unknown variables of the branch segments, the 2D
sketch is mapped to the 3D branches by relying on the tree param-
eters ® of the template selected from the database (Section 7). The
default behavior of our system is to jointly estimate the depths of
the branch segments and ©, using the template values as initializa-
tion. As a result, in optimizing the tree shape based on the sketch,
the final tree parameters may drift from those of the template. The
user can choose to override this default behavior and insist that ®
be preserved in the optimization. The characteristics of the final re-
constructed tree would be the same as those of the template, but at
a cost of sub-optimality of fit to the sketch.

Overriding the default behavior makes the optimization simpler, be-
cause O is unchanged throughout the optimization. We describe
this case first (Section 5.2.1). Branch interaction (ensuring good
spatial distribution and avoiding interpenetration) is accounted for
in the optimization. We then describe the default system behavior
in Section 5.3, where both tree shape and ® are optimized in an
EM-like (expectation-maximization) fashion (Figure 5).

5.2.1 Inferring Branches with Fixed Parameters

In Formula (2), the calculation of rotation angles between child and
parent segment vectors depend on rotation matrix Roi linking local
to global coordinate systems, as shown in Formula (1). Unfortu-
nately, there is no closed-form solution for the objective function
defined in Formula (3).

We approximate global inference in Formula (3) with a two-step
approach. The first step is bottom-up inference which computes a
local solution at each generation of parent-child branches, starting
from root and ending with the terminal segments in the sketch. The
second step refines the first step’s results using the Iterated Condi-
tional Mode (ICM) (see [Bishop 2006]).

Bottom-up Inference To handle the rotation chain in the tree, we
use ancestral sampling [Bishop 2006] to get the best sample of the
unknown variables z;, [; of each branch b; generation by generation,
starting from the root segment. Generally, the root branch segment
b,’s local coordinate system is consistent with the global coordinate
system R(,) = I (identity 3 x 3 matrix) and z, = 0. Then, we estimate
the hidden variables of its descendant branch segments generation
by generation. The rotation between the local and global coordinate
systems of a child segment is propagated as R? = R?,Rf .



o br‘
b, b, oo,
2 "“‘ l’ l(“: 1 [N
I=2- L=>
b, b, b,
OR
(@ () (©)

Figure 6: Illustration of optimization for one generation: (a) Sketch,
(b) two hypotheses of labels for the child segments, and (c) given
the hypothesis, search depth z (here, for b, ).

Suppose a parent branch segment b, has segment vector v, and

local-to-global rotation R?,. Suppose, also, that b, has K child
branches b.,,i = 1,...,K. For this generation, while fixing v, we
look for the optimal values of z.,, I, i = 1,...,K associated with
the child branches to maximize the posterior [TX | P(v,,,vp, L, |®).
The label I, of all the child segments of b, must be unique. We
test all combinations of the labels and choose the best solution at
each generation. By optimizing child branches from root to termi-
nal nodes, we can approximate the posterior in Formula (3).

Take Figure 6 as a simple illustration of the local optimization.
Here, the parent segment b, has two child segments b, and b,,
whose labels I;,, I, and depths z¢,, z¢, are unknown (Figure 6(a)).
There are two possible combinations of labels of b., and b., (Fig-
ure 6(b)). Under each hypothesis of segment labels, the correspond-
ing parameter prior 6y and 6, for b, and b, are extracted from ®
as described in Section 4. For each child segment, we search for
the optimal z., to maximize the posterior P(v.,,V,,/|®) given the
hypothesized branch label [, (Figure 6(c) shows the case for child
segment b, ). Finally, the solution under the label hypothesis that

maximizes Hiz:1 P(V¢;,Vp,lc,|®) is chosen as the solution.

By optimizing the unknown variables at each node from the root of
the terminal nodes generation by generation, we now have an initial
3D shape of the drawn branches. The next step is local refinement
to account for branch interactions (competition between branches
and avoiding interpenetration).

ICM Refinement Since the process of bottom-up inference pro-
duces local solutions at every generation, we follow up with Iter-
ated Conditional Mode (ICM) [Bishop 2006] to refine the result.
In order to avoid the complexity caused by the mapping between
different branch coordinate systems, the depth z; of each vertex is
directly refined to make the divergence angle and scale of each pair
of child and parent segment as consistent with the corresponding
global parameters as possible.

More specifically, for a pair of parent-child segment b; and b,
the distributions of scale s; = |v;|/|vp,| and divergence angle ¢; =

ViV, .
cos~! (\V'HV” ‘> are respectively defined as s; ~ A4 (s, 0;) and
iV,

0 ~ N (Ua,0q) if [; = 1, otherwise ¢; ~ A (ug,0p) (see Sec-
tion 4). The probability considering these two items is defined as
an(vi7vﬂi ‘ll7®) = I_EV:] P(Sl|®)P(¢l7ll|®)

During the growth of a tree, each branch competes with others
to get as much space as possible. As a result, the tree branches
typically distribute uniformly within the tree volume. We model
this competition between branches as probability field to affect
the inference. The 3D space constrained within the crown is dis-
cretized to voxels (in our experiments, we use a grid of N, =
25 x 25 x 25), with each voxel’s branch density being d; at its cen-

ter p,,. The probability of a segment growing to the point p; is
P;i(p;) = Hi\i] exp{ﬁ}, where k, is the branch interac-
tion factor. Its default value is 5. By encouraging the branch to

grow to the position where the density of the branches is low, the
branches attempt to get as much free space around them as possible.

At each step of ICM, we update one node by (1) — () =

a?;M‘{Vj},.izl,_wN? j+i while fixing the other nodes to increase

Piem = TIY., Pua(Vi, V), |li,®)Py(p;). The refinement terminates
when the changes in the nodes Y'Y |z§t+l) — z§t>| <e(e=0.01).

Interpenetration Between Branches. During the inference of
the depths of branches, branch interpenetration is avoided if pos-
sible. We check for interpenetration right after the bottom-up in-
ference, and, if necessary, move the affected branches away from
each other along the z-axis. The ICM refinement step is then ap-
plied to make the branching shape more consistent. (An example
showing avoidance of interpenetration through the refinement step
can be seen in the video.)

5.3 Inferring both Branches and Parameters

The default behavior of our system is to jointly optimize Z, L,
and the global tree parameter ® to fit the current sketch bet-
ter. To simplify the inference, we adopt an EM-like (expectation-
maximization) algorithm. In the expectation step, the integral of
all hidden variables (Z and L) is computed to estimate the param-
eters ©. We are primarily interested in finding the optimal hidden
variables rather than parameter estimation, and modified the expec-
tation step to reflect this.

At iteration ¢, instead of evaluating the expectation given parame-
ters ®(), we look for the optimal hidden variables Z® and L® of
all the branches that maximizes the posterior P(Z(*), L0 |x,y,0())
(E-step). The maximization step uses Z() and L") to estimate ®)
by maximizing P(©|Z"), L") XY) (M-step):

N
P(OZ", LY X,v) =] P(®lsi, o4, Bi. %) @
i=1

At the E-step, Z\) and L@ are computed using fixed parame-
ters ®) in the same way as described in Section 5.2.1. At the
M-step, the four parameters of the child branches are mapped
to the Gaussian distribution defined by @, that is (s;, &, B, %) ~
{JV(/JM0-3)7‘/1/(.“0(7O-(X)vf/V(“ﬁvcﬁ)w/V(u% O-Y)}' The tree pa-
rameters are updated (G)(’ ) - el +1>) as the average and variance
of the branch rotation angles and scale at iteration 7.

In our experiments, we require fewer than 10 iterations to generate
good results. This allows our system to be interactive. The results
in our paper show that the reconstructed 3D tree model is plausible
even though it is a local solution. After depths of all the branch seg-
ments have been recovered, we use cubic Bezier to interpolate the
shape of the branches and generate meshes [Neubert et al. 2007].

6 Branch Propagation and Leaf Population

The sketch drawn by the user is typically sparse. The resulting 3D
model associated with the sketch alone is unlikely to look com-
pelling due to the lack of complexity. One option would be the
user draws a complicated tree structure, which would be manual-
intensive. While this option is supported by our system, there is a



Figure 7: Effect of crown. Top row: without crown, bottom row:
with crown. From left to right: sketch, two views of the complete
tree model.

better way: our system automatically adds complexity to the model
based on what has been drawn.

This automatic feature is based on the principle of self-similarity
which is widely used in plant modeling [Shlyakhter et al. 2001;
Tan et al. 2007]. Our system randomly picks a replication block
(a parent segment and its child segments) from the model, picks an
open branch segment, scales, and orients the replication block, and
attaches the transformed replication block to the open branch.

The growth of branches is limited by the crown—more specifically,
its surface of local revolution (see [Okabe et al. 2005] for details).
If the new propagated branches reaches this surface, they are scaled
back to touch the surface, and the propagation terminates here. Note
that if the crown is not drawn by the user, the system propagates
the branches by a fixed number of generations. The default is 5
generation, which produces good results. The user can specify a
different number if desired. Figure 7 shows branch propagation
results with and without crown. By drawing the crown, the user
exerts more control over the shape of the tree.

The branch growing procedure is similar to the hidden branch con-
struction algorithm described in [Tan et al. 2007], but with two im-
portant differences. First, they compute the 3D hull from multi-
ple photos, while ours is generated from a 2D curve. Second, in
their system, the branch growth is achieved by randomly orienting
branches before adding them to the tree. In our system, the new
branches inherit the branch angle parameters associated with the
replication blocks, thus fixing their orientations with respect to the
open branches. To make the tree appear more natural, our system
also introduces new lateral branches along disproportionately long
branches caused by inaccurate sketch.

The leaves and twigs (small branches) attach to large branches in
regular and predictable ways. Instead of generating leaf geometry
from a sketch, our system by default uses the leaf model associated
with the chosen template (Section 7). The user can override the
default leaf model by selecting a different one from any other tree
exemplar in the database. The leaves are replicated and placed on
branches based on botanical laws governing leaf arrangement. For
example, the leaves on the same twig can be directly opposite or
alternate with a deviation angle.

We now describe our tree database, which is used to supply an ap-
propriate set of tree parameters © as prior to the graphical modeling
framework.

( Database )

Exemplar_1

Exemplar

3D geometry

2D silhouettes {S,}
Leaf template

Figure 8: Structure of tree database.
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Exemplar_M

]

7 Database of Tree Templates

The chances of producing natural-looking tree models are enhanced
if geometry reconstruction is guided by pregenerated natural-
looking ones. Such models can be obtained through image-based
modeling [Reche-Martinez et al. 2004; Tan et al. 2007] or through
careful modeling [Lintermann and Deussen 1999; Neubert et al.
2007]. Our tree modeling technique is agnostic to the method
through which the tree models in the database are generated; our
technique adapts to whatever tree parameters are supplied. In our
implementation, we use tree models that were generated using the
method described in [Neubert et al. 2007] as templates. There are
20 different tree exemplars in our database; they were chosen to
represent a reasonably wide variety of trees.

Our system automatically looks for an exemplar from the database
that best matches the sketch as the template to use for 3D re-
construction. The selection is done by comparing the crown and
branching shapes of the sketch with the 2D silhouettes and pro-
jected branching shapes (respectively) of exemplars in the database.

The user may draw the crown as a single curve or series of curves.
Our system then computes the convex hull of both the crown and
branch strokes except the root branch. This convex hull is used
to match the 2D silhouettes of exemplar in the template selection
process.

We use the footprint descriptor [Lamdan et al. 1988] as curve fea-
tures for matching. It is a simple but robust method to measure the
similarity of curves. First, we normalize the crown curve so that
max(w,h) = 1, where w, h are the width and height of the crown’s
bounding rectangle. Let the center of the normalized curve be C.
We then compute the radial distance distribution from C to the
curve, yielding a Ky dimensional vector f (for Ky regularly sampled
directions). f is the footprint descriptor. Each tree exemplar is asso-
ciated with a set of 2D silhouettes under different views. We com-
pute the footprint descriptor fr for each silhouette in the same man-
ner. The similarity of the crown shape between the sketch S and the
exemplar E under a view v is defined as Lc(S, E|v) = —||fs — fg), |-

To measure the similarity between the branching shapes of the
sketch and exemplar, we calculate the average 2D length ratio and
angle between each pair of parent-child segments of tree. For a par-
ent segment in the 2D sketch, it is not clear if each child segment
is apical or lateral. Our system assumes the child segment with the
smallest 2D angle with the parent segment is apical while the rest
are lateral. Assuming the length ratio spp, apical angle ap, and lat-
eral angles fBp of the 2D branches are Gaussian distributed, we es-
timate their mean and standard deviation: xop ~ .4 (L 2D, O 2D),
where x = s, @, 3. For each exemplar in the database, its 3D geome-
try is projected to 2D under different views. For each 2D projection,
the Gaussian distributions of length ratio s, op, apical angle @, >p,
and lateral angle B, op between each pair of parent-child segments
are similarly estimated: x,op ~ 4 (lye2D,0re2D), X = 5, @, .
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Figure 9: Different results generated from the same sketch, but with
different manually assigned exemplars. (a)(b) are two different ex-
emplars used to guide the inference; (c) is the input sketch; (d)(e)
are corresponding output tree models.

We define similarity of the branching shapes between the sketch
and the exemplar under view v as

— 2
Ly(S.Ely)—— Yy, Wa2p”Hreanh)”

2 2
x=s,a, Gx,ZD + Gx,e,2D|v

If the user draws the crown, the similarity between the sketch and
exemplar (from a given view v) is the sum of similarities in crown
and branching shapes: L(S,E|v) = L.(S,E|v) + Ly(S,E|v). If the
crown is not drawn, the similarity is set as L(S,E|v) = L,(S,E|v).
The exemplar is selected for which similarity between one of its
views and the sketch (given by L(S, E|v)) is maximized. This ex-
emplar (with parameters ®) will be the default template for shape
inference. The user may choose to override the default by simply
clicking a thumbnail to select an exemplar.

Figure 9 shows the results generated from the same sketch but with
different exemplars. This illustrates that our system is capable of
generating models that can look radically different, depending on
which tree exemplar gets chosen.

Note that the selected exemplar serves to provide a good initial
point of the tree parameters; the final parameters inherit tree char-
acteristics from both the selected exemplar and the drawn sketch.
Therefore, perceptually different 3D tree models can be generated
from different sketches based on the same exemplar. From the 20
exemplars in our current database, a good variety of tree models
can be generated (as shown throughout the paper).

The tree exemplars serve to add realism to the output, but are not
absolutely necessary. It is possible to just have preset tree parame-
ters which are then used for all sketches. However, the resulting tree
shapes may not appear as compelling. As with most data-driven re-
covery systems, the more tree exemplars that are available (with a
wider variation of shapes), the better our results are expected to be.

8 Results and Discussions

Figure 10 shows a variety of results generated from sketches of dif-
ferent trees. The complexity of the sketch ranges from a small num-
ber of drawn strokes to a large number, with and without the crown.

Figure 11: Another comparison between the exemplar and resulting
tree model. From left to right: Exemplar automatically selected by
our system, input sketch, and output tree model.

Figure 12: Failure example. From left to right: sketch, two views
of the reconstructed branches.

As shown in (a), a complex and reasonably realistic-looking tree
can be generated from just 8§ strokes. Of course, the user can better
control the specific shape of the tree by drawing more branches and
the crown, as can be seen at (b). Figure 10(c), (d) and (e) show three
other tree models generated from sketches with varying numbers of
strokes, with and without the crown.

Generally, the user can create visually compelling tree models at
interactive rates using our system (for a 2.67 GHz PC). The recon-
struction of simply sketched strokes is accomplished interactively.
After propagating for a few seconds, realistic tree models can be
produced, as shown in Figure 10 (a) and (b). The user has the option
of generating more complicated tree models with more branches, at
the expense of longer propagation time. For example, the propaga-
tion of Figure 10 (e) took about 50 seconds to produce 4,291 branch
segments.

Our system is able to generate complex and realistic-looking trees
having distinct branching structure from freehand sketch. The re-
sults are as good as what the database can provide. The user is
also allowed to creatively generate new trees with irregular shape
(Figure 11). There are significant differences between the exemplar
and the output. However, it is not easy for our system to model
the tree with curvy branches such as liana or calyx canthus. Fig-
ure 12 shows such an example. The user intended to draw a tree
with a curvy main branch growing along one direction. However,
our optimization objective was constructed to make the branches
consistent throughout the whole tree and to make them spread out.
As a result, the generated 3D model does not look very natural (as
seen from a side view).

In our current implementation, our system can generate trees with
a particular type of branching structure. While many tree species
can easily be approximated by a self-similarity, others such as palm
trees or spruces are hard to create. It is possible to modify our sys-
tem to accommodate spatially-varying parameter sets or branching
structures, but this is a topic for future work. The cost is a more
complicated interface which presents the user with more (poten-
tially domain-specific) options.

There are several other possible extensions to our system. It cur-
rently has no editing options—it would certainly be useful for the
user to be able to interactively rotate the completed tree to edit as
desirable. Editing operations include branch removal or addition
and depth changes (and have the system automatically update the
model). Furthermore, in our current implementation, the propaga-
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Figure 10: A variety of results generated from sketches of different trees. From left to right: sketch, after branch reconstruction and propaga-
tion, and two views of the complete tree model.




tion of thousands of branches could not be finished in interactive
rate. In the future, the implementation would be optimized to get
interactive propagation.

The current version of our system does not provide the option for
specifying environmental effects to influence the shape of the tree
model. It may, in certain cases, be desirable to be able to spec-
ify obstacles (e.g., buildings) for the tree to “grow” around. An-
other interesting case is to generate models of several trees in close
proximity to each other, with each influencing the development of
others.

9 Concluding Remarks

We have presented a new, easy-to-use system that is capable of
generating realistic-looking 3D models from freehand sketches.
The key to this system is the graphical modeling framework that
takes a tree template as prior. By modeling the branch interaction
with Markov tree, the 3D shape can be inferred from the drawn
sketches. Our system makes use of a database of pregenerated
realistic-looking tree models, which contributes to the high quality
of the output. Once the depths for the sketch have been extracted,
our system replicates branches to add complexity to the tree model,
followed by leaf population based on botanical rules. In this paper,
we demonstrated a wide range of tree models that can be generated
from sketches of varying complexity.
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