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Abstract

Learning-based methods suffer from a deficiency of clean an-
notations, especially in biomedical segmentation. Although
many semi-supervised methods have been proposed to pro-
vide extra training data, automatically generated labels are
usually too noisy to retrain models effectively. In this paper,
we propose a Two-Stream Mutual Attention Network (TS-
MAN) that weakens the influence of back-propagated gra-
dients caused by incorrect labels, thereby rendering the net-
work robust to unclean data. The proposed TSMAN consists
of two sub-networks that are connected by three types of at-
tention models in different layers. The target of each attention
model is to indicate potentially incorrect gradients in a certain
layer for both sub-networks by analyzing their inferred fea-
tures using the same input. In order to achieve this purpose,
the attention models are designed based on the propagation
analysis of noisy gradients at different layers. This allows
the attention models to effectively discover incorrect labels
and weaken their influence during the parameter updating
process. By exchanging multi-level features within the two-
stream architecture, the effects of noisy labels in each sub-
network are reduced by decreasing the updating gradients.
Furthermore, a hierarchical distillation is developed to pro-
vide more reliable pseudo labels for unlabelded data, which
further boosts the performance of our retrained TSMAN. The
experiments using both the HVSMR 2016 and BRATS 2015
benchmarks demonstrate that our semi-supervised learning
framework surpasses the state-of-the-art fully-supervised re-
sults.

Introduction
Recently, many successful deep networks have been pro-
posed to segment 3D magnetic resonance (MR) data (Yu
et al. 2017a; Tseng et al. 2017; Çiçek et al. 2016; Yu et
al. 2017a; 2017b). However, the scarcity of clean, labeled
data severely hinders further development of deep learning
methods for real applications. Even for manual annotation,
it is inevitable that even experts may make mistakes due to
the effects of fatigue and human error. Thus, it is urgently
important to improve the robustness of networks to noisy la-
bels and generate more reliable machine annotations. In this
paper, we design a network that is less disturbed by noisy
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Figure 1: The pipeline of our self-training framework. The
hierarchical distillation first generates reliable pseudo labels
for unlabeled data, and then mixed data is used to retrain
the two-stream mutual attention network, which is robust to
noisy labels.

labels and propose a simple but effective distillation model
to generate reliable pseudo labels.

Self-training is a typical semi-supervised method, which
generates pseudo labels for unlabeled data by using trained
models. Obviously, the quality of pseudo labels is crucial to
the performance of a final retrained model. Among existing
methods that generate labels automatically, model distilla-
tion (Hansen and Salamon 1990; Gupta et al. 2016) is one
of the most widely used methods, which aggregates the in-
ferences from multiple models for better pseudo labels. Dif-
ferent from model distillation, Radosavovic et al. (2018) re-
cently proposed a data distillation that aggregates the infer-
ences from multiple transformations of a data sample; this
method proves to be superior to model distillation. Although
both distillation methods are effective, the generated pseudo
labels are still noisy, which limits the performance of self-
training.

To resolve the problems caused by unclean data, Malach
and Shalev-Shwartz (2017) propose training two models and
only updating them when their predictions are different.
They believe that the same predictions usually occur when
two models obtain both right or wrong answers to easy or
hard samples, respectively. Thus, removing the hard sam-
ples with the same wrong predictions can effectively prevent



incorrect updates, because annotations for hard samples are
more likely to be noisy. This inference procedure using pre-
diction disagreement is useful for discovering noisy updates
caused by incorrect labels; however, Malach and Shalev-
Shwartz (2017) ignore that the intermediate information dur-
ing generating prediction is also important.

In this paper, we propose a two-stream mutual attention
network (TSMAN) by comprehensively exchanging multi-
level features between two networks in different layers, in-
cluding their predictions. To give an example, our intuition
tells us that if two students share a teacher, it is important
to analyze the nature of these students mistakes to deter-
mine whether the errors are unique or result from instruc-
tional gaps. Based on this intuition, we use attention mod-
els in multiple layers to discover potential incorrect predic-
tions and weaken the corresponding gradients during back-
propagation. A vital challenge is how to provide useful clues
about noisy gradients for attention models to infer noise dis-
tribution. To address this issue, a two-stream architecture
is developed by connecting two sub-networks with multi-
attention models, which collect information from two sub-
networks to discover noisy gradients. By analyzing the noisy
label propagation process, three kinds of attention models
are designed for different layer depths, which successfully
weakens the noisy gradients propagated by the loss layer.
By weakening the noisy gradients in multiple layers, our
TSMAN is robust to noisy labels in biomedical data and
performs comparably to fully-supervised learning methods
when only partial annotations are used.

Furthermore, a hierarchical distillation method is pro-
posed to combine data distillation (Radosavovic et al. 2018)
and model distillation (Hansen and Salamon 1990). With the
high quality of pseudo labels generated by our hierarchi-
cal distillation, the performance of TSMAN in self-training
tasks can be further improved.

The whole self-training process of our method is shown in
Figure 1. The overall contributions are summarized as fol-
lows:
• We propose a novel, two-stream mutual attention network

that is robust to noisy labels and can be flexibly extended
to many applications when clean annotations are difficult
to acquire.

• The proposed hierarchical distillation is more effective
than either data or model distillation in generating reliable
pseudo labels.

• The proposed self-training segmentation framework with
TSMAN and hierarchical distillation is superior to exist-
ing methods.

Related Work
In this section, we briefly discuss two categories of related
work: networks that are robust to noisy labels and self-
training methods that use distillation.

In supervised learning models, the topic of improved re-
silience to noisy labels has been widely studied. Barandela
and Gasca (2000) remove the labels that are suspected to
be incorrect before retraining. Inspired by the minimum en-
tropy regularization in (Grandvalet and Bengio 2004), Reed

et al. (2014) propose adding a regularization term, which
is related to the current prediction, to the network’s loss
function. Mnih and Hinton (2012) use a probabilistic model
to calculate the probability of each label being incorrect,
and avoid updating in case incorrect labels occur. McDow-
ell et al. (2007) propose novel generalizations for three com-
parison algorithms that examine how cautiously or aggres-
sively each algorithm exploits noisy intermediate relational
data. Goldberger and Ben-Reuven (2017) apply the Expecta-
tion Maximization (EM) algorithm by iteratively estimating
true labels and retraining the network, which requires two-
phase training to optimize two distinct softmax layers. Re-
cently, Malach and Shalev-Shwartz (2017) tackle this prob-
lem by training two predictors with different initializations
and only updating when there is a disagreement between
their predictions. Han et al. (2018) present an effective
co-teaching learning paradigm by simultaneously training
two models and removing noisy samples from each mini-
batch of data, which is conceptually similar to our method.
However, in our method for segmentation, each sample has
densely arranged labels, which is different from the form
of classification in (Han et al. 2018). Thus, exploring the
spatial relationship among labels helps us learn from noisy
labels in the segmentation stage; this significant step is of-
ten ignored in existing methods. To this end, multiple at-
tention models are used between layer pairs in two simul-
taneously trained networks to weaken noisy gradients. This
process not only considers the prediction disagreement but
also exchanges the evidence during inference.

The self-training approach is the earliest for semi-
supervised learning, and it uses the predictions of a
model on unlabeled data to retrain itself for better perfor-
mance. Without using post-processing, many distillation ap-
proaches have been widely adopted for self-training. Gupta
et al. (2016) propose the cross model distillation for tack-
ling the problem of limited labels. Laine and Aila (2016) ag-
gregate the inferences of multiple checkpoints during train-
ing to avoid training multiple models. Besides model dis-
tillation, data distillation is also an effective method to ex-
plore new information from data transformations. Simon
et al. (2017) obtain extra data from different views to re-
train models, which yields an excellent performance in hand
keypoint detection. Moreover, Radosavovic et al. (2018)
demonstrate that an inference to multiple transformations of
a data point is superior to any of the predictions under a sin-
gle transform. Inspired by the above methods, we propose
combining data distillations and model distillations in a hi-
erarchical way to incorporate the unique advantages of both
model and data distillation.

Two-Stream Mutual Attention Network
In this section, we first analyze the propagating process of
noisy labels during training and then give a detailed de-
scription of the formulation and implementation of the two-
stream mutual attention network.

Problem Formulation
We denote x as an input data sample with N elements and
ỹ as the observed labels, possibly with some noise. For ex-
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Figure 2: The diagram of TSMAN. For readability, we present the parameters of Conv, pooling, and Deconv layers on the
operation units. Each DenseBlock consists of 12 BN+ReLU+Conv units.

ample, in a binary segmentation task, x can be a 2D array
with N pixels, and ỹ = {±1}N is the label array indicat-
ing which class each pixel belongs to. Our goal is to train a
model on {x, ỹ} that is comparable to {x,y}, where y is
the clean label array. For simplicity, we denote y = {±1}N .
Then, ỹ can be written as ỹ = θ. ∗ y, where .∗ denotes
element-wise multiplication of two arrays. For most pixels
whose labels are correct, θi = 1. θi = −1 indicates that the
label is wrong for pixel i.

Without losing generalization, a fully convolutional net-
work is trained on {x, ỹ}, in which the weights updating
layer d are represented by:

∂Ls(p,θ. ∗ y)
∂wd

=
∂Ls(p,θ. ∗ y)

∂od
∂od

∂wd
, (1)

∂Ls(p,θ. ∗ y)
∂od

=
∂Ls(p,θ. ∗ y)

∂od+1

∂od+1

∂od
, (2)

where od is the output features of layer d, wd is the convo-
lutional weights, Ls is the objective function, and p is the
prediction of the network. Therefore, the target is to weaken
the gradients from yi with θi = −1 in Eq. (1) and Eq. (2).

To this end, an intuitive way is to obtain an attention
model fatt, and then:

∂Ls(p,θ. ∗ y)
∂p

⇒ ∂Ls(p,θ. ∗ y)
∂p

fatt(p,h). (3)

Ideally, when θi = −1, fatt(pi,h) is expected to be 0 with
the extra information h. Next, we will introduce how to
provide useful extra information h to indicate the potential
noisy gradients in the network.

Two-Stream Architecture
We believe that the inference processing of another net-
work is helpful to discover incorrect updates in this network.
Thus, we train two networks with the same inputs and use
the predictions p̂ from the other network as h in Eq. (3):

∂Ls(p,θ. ∗ y)
∂od

⇒ ∂Ls(p,θ. ∗ y)
∂od

fkatt(p, p̂) (4)

However, as the information in p̂ is unable to indicate
all wrong gradients in ∂Ls(p,θy)

∂od
, some noisy gradients will

be propagated to previous layers. To this end, multiple
fkatt(o

d,hd) are applied in different layers to weaken noisy
gradients in the whole network as much as possible by:

∂Ls(p,θ. ∗ y)
∂od

⇒ ∂Ls(p,θ. ∗ y)
∂od

fkatt(o
d, ôd). (5)

Our two-stream mutual attention network is thus designed as
a symmetric two-stream architecture, as shown in Figure 2.
The four attention models take in both feature maps from
two sub-networks and two feedback attention maps to indi-
cate their potential wrong gradients. Three types of attention
models are used: loss attention (LA), spatial attention (SA),
and channel attention (CA). These attention models will be
introduced in detail in the following section.

Finally, the loss of the TSMAN is:

L = Ls(p,θ. ∗ y) + Ls(p̂,θ. ∗ y) (6)

The final prediction for a test sample is obtained by averag-
ing the softmax outputs of two networks.

Loss Attention
In our task, a reasonable hypothesis is that the same pre-
dictions from two sub-networks usually occur when the
input sample is extremely simple or hard. The extremely
simple samples are easy to predict correctly by both sub-
networks, which means that the loss can be ignored in back-
propagation for model fine-tuning. The extremely hard sam-
ples are more likely to be annotated falsely, which means
that their labels are unreliable and can also be ignored in
back-propagation. Based on this hypothesis, the loss atten-
tion model (LA) is designed to remove these two kinds of
samples by:

f4att(p, p̂) = ω(p⊕ p̂) (7)

where⊕ is the voxel-wise exclusive OR operations, andω is
the weights of a Gaussian smoothing convolution operation
that is applied to (p ⊕ p̂). f4att(p, p̂) serves as a binary loss
selector. Although checking disagreements between predic-
tions effectively removes the voxels with the same pi and p̂i,
it ignores a special case when pi, p̂i are both wrong but ỹi is
correct. In this special case, the correct labels are useful but
ignored in back-propagation by only using ⊕. To this end,
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Figure 3: The black pixels in (b) indicate that the predictions
of two sub-networks for (a) are different. (c) is obtained by
applying Gaussian smoothing to (b), which corresponds to
Eq. (7). After smoothing, more voxels in the input image (a)
are involved for back-propagation to improve the networks.

we introduce ω to alleviate this problem. We observe that
the disagreements of pi and p̂i usually occur on the bound-
aries (black voxels in Figure 3 (b)). The voxels near these
boundaries are challenging for sub-networks, but they are
relatively easier for experts to annotate. This means that an
xi that is near boundaries is more likely to have both wrong
pi, p̂i and a correct ỹi. Therefore, we employ a smoothing
operation on the attention map to partially preserve the vox-
els near boundaries during back-propagation; the attention
map for this is shown in Figure 3 (c). After smoothing, f4att
in Eq. (7) becomes non-binary.

Spatial and Channel-wise Attention

Since loss attention only extracts information from the final
predictions of two sub-networks, we also exploit the mutual
information between the feature maps extracted by the two
models. Two types of attention models are introduced: spa-
tial attention models and channel-wise attention models.

By defining odi ∈ RC as the feature vector at i-th posi-
tion on the feature maps of layer d, where C is the number
of the feature map channel, we know that the shallow lay-
ers receive more noisy gradients than deep layers, due to
the larger receptive field on ∂Ls(p,θy)

∂od
. Furthermore, if odi

has a small d, it is more likely to receive a noisy gradient.
Based on these observations, we apply a spatial attention
(SA) model to f3att since it is close to the loss layer and few
gradients of odi are noisy. Therefore, a spatial attention map
is expected to weaken the noisy gradients in a small num-
ber of regions, which is efficient and feasible to implement.
For f1,2att , the attention models are too far from the loss layer,
which means that the propagated gradient for almost all odi
have been polluted by Eq. (2). Therefore, the spatial atten-
tion becomes inappropriate because the gradients of all fea-
ture vectors are noisy and should be weakened, which leads
to a slow convergence. To this end, the channel-wise atten-
tion (CA) is used for f1,2att to select useful feature channels.
Both SA and CA serve as feature selectors during inference,
as well as gradient selectors during back-propagation. Fig-
ure 4 gives the detailed implementations of both SA and CA.
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Figure 4: The spatial attention (a) and channel-wise attention
(b) diagrams. The blue circles indicate the element-wise ad-
ditions, and the parameters in the convolution block indicate
the kernel sizes. M , C respectively represent the size and
channel of the feature map.

Hierarchical Distillation
While the proposed TSMAN provides an effective training
strategy when there is noise in labels, a hierarchical distilla-
tion method is also proposed to reduce noisy labels (ỹi with
negative θi) in pseudo labels. Our hierarchical distillation
method integrates data distillation and model distillation to-
gether. We define L as the labeled data space, U as the unla-
beled data space, and f as the well-trained model on U . The
model distillation and data distillation respectively produce
pseudo labels for U by:

PMD(I) = g
(
{ft(I)|t = 1, · · · , T}

)
(8)

PDD(I) = g
({

~−1
k (f(~k(I)))|k = 1, · · · ,K

})
(9)

where I ∈ U and ~k are the k-th transformation for I , which
include rotation and flipping, while ~−1

k is the correspond-
ing inverse transformation. g({·}) is the voting function. It is
important to note that data distillation aggregates inferences
of K transformations of input data, which proves to be su-
perior for model distillation. However, this requires enough
labeled data to train a suitable f . Model distillation is more
robust when the labeled data is insufficient, as it explores
complementary information from T models.

Both model and data distillation methods are effective in
improving the reliability of pseudo labels for self-training,
but they distill knowledge from different views. Therefore,
we combine them in a hierarchical way to take advantage of
both of them:

PHD = g
(
{PDD

t (I)|t = 1, · · · , T}
)

(10)

where PDD
t is the data distillation operation using ft. The

experiments support our point that hierarchical distillation is
superior to both data and model distillations individually.



Experiments
In this section, several ablation studies are first given to
prove the effectiveness of the proposed method, and then
comparisons with brand-new methods are introduced on
HVSMR 2016 challenges (Pace et al. 2015) and BRATS
2015 (Kistler et al. 2013) benchmarks.

Datasets
The HVSMR 2016 dataset consists of 10 3D cardiac MR
scans for training and 10 scans for testing. The resolution
of each scan is about 200 × 140 × 120. All the MR data is
scanned from patients with congenital heart disease (CHD),
which is hard to diagnose. The annotations contain the my-
ocardium and blood pool regions in cardiac MR images. The
testing results are submitted to a public platform and evalu-
ated by the organizer. To alleviate the problem of overfit-
ting, we apply data augmentations, including random rota-
tions and flipping.

The training set for the BRATS-2015 dataset consists of
220 subjects with high-grade gliomas and 54 subjects with
low-grade gliomas. The resolution of each MRI image is
155×240×240. The platform for BRATS-2015 requires dis-
guised evaluation, and most methods have fully-supervised
training without published experimental settings. Thus we
follow (Tseng et al. 2017) by using 195 high-grade gliomas
and 49 low-grade gliomas in the training set, and the re-
maining 30 subjects for evaluation. There are five labels that
correspond to common issues: edema, non-enhancing core,
necrotic core, and enhanced core regions.

Evaluation Metrics
For HVSMR 2016, we use the overall score (higher is better)
provided by the official platform for ablation analysis as our
evaluation metric. In comparison with recent methods from
HVSMR 2016, we report three main metrics from the plat-
form, including the mean Dices (a higher value is better), the
average distance of boundaries, and the Hausdorff distance
(lower values are better). For BRATS-2015, we report the
mean Dices criterion for all the five labels.

Implementation Details
We employ the DenseVoxNet (Yu et al. 2017a) as the sub-
network in our two-stream architecture. The training param-
eters, as well as the data pre-processing, follow the settings
in (Yu et al. 2017a), except for the max iterations, which are
35, 000 due to the disturbance of noisy labels.

For hierarchical distillation, 12 geometric transformations
are applied to each data point, including combinations of
four rotations and three flips. Three models, with different
initializations and max iterations (10000, 15000 and 20000),
are used for the ensemble.

In order to evaluate the robustness of experimental meth-
ods to noisy labels, the training datasets are divided into two
parts; the labels for these parts are provided manually and
by our hierarchical distillation. The proportions of manual
labels are controlled by ξ to imitate different situations of
noisy labels.

Table 1: Comparison of the overall scores of different dis-
tillation methods on HVSMR 2016 with ξ = 30%, 50%,
and 80%. DD indicates the data distillation, and MD is the
model distillation. A, B, and C are three base models to be
aggregated.

ξ A B C MD
30% 0.005 0.154 0.171 0.184

30%(DD) 0.104 0.163 0.168 0.191
50% 0.136 0.279 0.350 0.359

50%(DD) 0.196 0.33 0.356 0.387
80% 0.743 0.764 0.797 0.771

80%(DD) 0.785 0.775 0.806 0.810

Evaluation of Hierarchical Distillation.
In this part, we compare our hierarchical distillation with
data distillation (Radosavovic et al. 2018) and model dis-
tillation (Hansen and Salamon 1990) under different set-
tings. The implementations of data and model distillation
are special cases of hierarchical distillation that use a sin-
gle model or no geometric transformation. In Table 1, we
report the performance of the above methods when we split
the HVSMR dataset with ξ = 30%, 50%, and 80%.

From Table 1, it can be observed that both data and model
distillations are effective in improving the quality of pseudo
labels. However, when ξ = 30%, model distillation per-
forms better than data distillation according to the overall
scores 0.184 and 0.168 (highest among three base models
with data distillation) respectively. The opposite case is true
when ξ = 80%. A possible reason for this is that the perfor-
mance of multi-transformation inferences relies on the abil-
ity of its base models. When the base models are trained
with insufficient labels (30%), the data distillation improve-
ments are weak or even negative, as in the case of model
C. However, model distillation is less dependent on a certain
model, as it distills knowledge from multiple models. There-
fore, it can be concluded that data distillation is more effec-
tive when base models are well-trained with plenty of cor-
rect labels, while model distillation is more robust to insuf-
ficient clean labels. Both advantages of data and model dis-
tillation are crucial due to the various situations of biomedi-
cal datasets. Therefore, our hierarchical distillation is a more
general method as it takes advantage of both model and data
distillations.

The pseudo labels generated by the hierarchical distilla-
tion are used to retrain our TSMAN, as well as other meth-
ods in comparison, in the following experiments.

Table 2: Effects of different attention models. The baseline
is our TSMAN without any fatt.

f1
att f2

att f3
att f4

att score
Baseline -1.167

TSMAN

√
-0.737√ √
-0.601√ √ √
-0.576√ √ √ √
−0.561
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Figure 5: Two sections of 3D MRI data. The labels in the
red regions in (b), (c) are wrong, and the gradients in the
yellow regions are weakened by f3att and f4att, respectively.
Notably, the more yellow, the smaller the response in the at-
tention map. (d) and (e) are the predictions before and after
retraining using unlabeled data. The red regions are the my-
ocardium, the green regions are blood pools, and the yellow
regions are incorrect predictions.

Analysis of the TSMAN
In order to demonstrate the effectiveness of the TSMAN’S
proposed design, we first explore the effects of different at-
tention models in TSMAN. As noisy gradients are propa-
gated from deep to shallow layers, we report the results by
sequentially applying attention models from f4att to f1att in
Table 2. From the information in Table 2, adding a fkatt
(k = 1, 2, 3, 4) each time obviously improves the perfor-
mance, which means that all f1,2,3,4att effectively weaken
noisy gradients in their corresponding layers. Besides, we
find that the improvement of fkatt is usually weaker than
fk+1
att . The reason is that noisy gradients in shallow layers

are harder to discover, and some noisy gradients have been
weakened by the latter attention model.

Next, some visual examples of spatial attentions are
shown in Figure 5 (b) and (c) to prove the effects of f3att
and f4att in weakening noisy gradients. From Figure 5 (b)
and (c), we observe that partial noisy gradients, marked in
yellow, have been correctly eliminated by attention models,
which proves the effectiveness of multiple attention models.
Especially for f4att, we also explore the effects of smoothing
operations in Eq. 7, and an 0.1 score improvement is ob-
tained by using ω with a kernel size of 3× 3 and a variance
of 0.5. Finally, after retraining, the segmentation of TSMAN
is obviously better, as shown in Figure 5 (d) and (e).

Comparisons Using the HVSMR 2016 Dataset
In order evaluate the robustness of our method to different
unclean datasets, we compare the TSMAN with state-of-
the-art methods (Malach and Shalev-Shwartz 2017; Tang et
al. 2017; Yu et al. 2017a) by splitting the HVSMR 2016
dataset with ξ = 10%, · · · , 90%. (Malach and Shalev-
Shwartz 2017) is implemented by training two networks and
assigning a non-zero loss weight for a voxel when their pre-
dictions are different. For a fair comparison, we train two

TSMAN

Figure 6: Evaluations of different methods on HVSMR 2016
dataset with different ξ. The overall scores are calculated
using the testing data.

models for the other methods, and the predictions are av-
eraged for the final results. The results are shown in Fig-
ure 6. As illustrated, when the labeled data is insufficient
(ξ ∈ [10%, 20%]), the performances of all the learning-
based methods are unsatisfactory. This is because the quality
of pseudo-labels is insufficient for providing useful informa-
tion for model retraining. When ξ increases, noise decreases
in pseudo-labels and models begin to learn extra knowledge
from the unlabeled data. Then, the performance of our TS-
MAN and (Malach and Shalev-Shwartz 2017) is better than
(Tang et al. 2017) and the baseline. The reason is that stu-
dent models learn more from fewer noisy labels, thus they
have more consistent opinions during learning, which filters
out many noisy labels. Note that our TSMAN is better than
(Malach and Shalev-Shwartz 2017), as shown in Figure 6,
which demonstrates that the exchange of multi-level features
is better than only the predictions. Finally, when ξ = 0.9, our
retrained model even surpasses the fully-supervised model,
which proves that there is also noise in the manual labels.

Next, we compare our TSMAN (using ξ = 0.9) with the
state-of-the-art methods on the leaderboard of the HVSMR
2016 benchmark, which are all trained in a fully supervised
manner. Table 3 shows the comparison results. It should
be noted that DenseVoxNet (Y17) is the baseline and our
two-stream mutual attention network improves the rank-
ing of DenseVoxNet from 3rd to 1st. Compared with Den-
seVoxNet (Y17), we obtain a significant improvement on the
ADB and HDD metrics, which demonstrates that TSMAN is
more robust to noisy labels in the boundary regions. Further-
more, the results demonstrate that the provided labelsin the
HVSMR 2016 dataset are not completely clean, so total trust
in labels may be dangerous.

Comparisons using the BRATS 2015 dataset
We further evaluate our method on a larger 3D MRI dataset,
the Brats 2015 benchmark, to prove its effectiveness. Us-



Table 3: Comparison of different approaches using the
HVSMR 2016 dataset. To save space, we use the first ini-
tial of the first author’s last name combined with the last two
digits of the year to indicate the methods, which respectively
refer to [Mukhopadhyay, 2016], [Tziritas, 2016], [Van Der
Geest, 2017], [Wolterink et al., 2016], [Yu et al., 2016] and
[Yu et al., 2017] from top to bottom.

Myocardium Blood Pool Overall
Dice ADB HDD Dice ADB HDD Scores

M16 0.495 2.596 12.8 0.794 2.550 14.6 NA
T16 0.612 2.041 13.2 0.867 2.157 19.7 -1.408
V17 0.747 1.099 5.09 0.885 1.553 9.41 -0.330
W16 0.802 0.957 6.13 0.926 0.885 7.07 -0.036
Y16 0.786 0.997 6.42 0.931 0.868 7.01 -0.055
Y17 0.821 0.960 7.29 0.931 0.938 9.53 -0.161
Ours 0.820 0.824 4.73 0.926 0.957 8.81 −0.024

TSMAN

Figure 7: Evaluations of different methods on BRATS 2015
with different ξ. The mean Dice of five labels are reported in
the validation set.

ing experiments similar to those with the HVSMR 2016
dataset, we compare TSMAN with (Malach and Shalev-
Shwartz 2017), (Tang et al. 2017), MME (Tseng et al. 2017)
and baseline DVN(Yu et al. 2017a) with different ξ. Notably,
we use the public results of MME and 3D U-net in (Tseng
et al. 2017) that use one-phase training, and the mean IOU
for five labels are reported.

Figure 7 gives evaluations of different methods using the
BRATS 2015 dataset with different ξ. From the results, it
is apparent that the performance of TSMAN and (Malach
and Shalev-Shwartz 2017) are better than (Tang et al. 2017)
and baseline DenseVoxNet. This further proves that improv-
ing robustness to noisy labels obviously benefits the semi-
supervised learning performance. Especially since Tseng
et al. (Tseng et al. 2017) only provide the results of fully-
supervised models without codes available, we use this as
a fully supervised baseline. Finally, when ξ = 0.9, our re-

Table 4: Comparison of recent approaches on the BRATS
2015 dataset.

Label 0 1 2 3 4 mean
U-Net 0.923 0.429 0.736 0.453 0.620 0.632
MME 0.966 0.943 0.712 0.328 0.960 0.782
DVN 0.989 0.426 0.730 0.645 0.850 0.728
TSMAN 0.990 0.7760 0.720 0.684 0.790 0.792

trained model also surpasses the fully-supervised (Tseng et
al. 2017).

In Table 4, we compare our TSMAN model (ξ = 0.9)
with U-Net (Ronneberger et al. 2015), MME (Tseng et
al. 2017), and DVN (Yu et al. 2017a), which are fully-
supervised and trained. This also demonstrates that TSMAN
is robust to noisy labels.

Conclusion
In this paper, we propose a two-stream mutual attention
network (TSMAN) that is robust to noisy labels. This net-
work discovers incorrect labels and weakens the influence of
these incorrect labels during the parameter updating process.
Specifically, three kinds of attention models are designed to
connect multiple layers of two sub-networks; the attention
models analyze the layers’ features and indicate potential
noisy gradients. To improve the quality of pseudo labels,
our hierarchical distillation takes advantage of both data and
model distillation by hierarchically combining these two dis-
tillations. Finally, combining TSMAN and hierarchical dis-
tillation in a self-training manner leads to state-of-the-art
performance on the HVSMR 2016 and Brats 2015 bench-
marks.

In the future, we hope that only one sub-network will
be sufficient for completing inferences during testing. This
may be achieved by generating attention maps and apply-
ing them to gradients of feature maps during the training
process. Also, we will explore the effects of using different
sub-networks, which may increase the challenge of design-
ing attention models.
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