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We propose a novel and efficient volumetric method for registering 3D shapes with non-
rigid deformations. Our method uses a signed distance field to represent the 3D input
shapes and registers them by minimizing the difference between their distance fields.
With the assumptions that the sampling points in each cell of the object volume follow
the same rigid transformation, and the transformations of the sampling cells vary smoothly
inside the object volume, a two-step method is used for the non-rigid registration. The first
step is the locally rigid registration, which minimizes the difference between the source
and target distance fields of the sampling cells. The second step is the globally non-rigid
registration, which minimizes the difference between the transformations of adjacent cells.
In just a few iterations, our method rapidly converges for the registration. We tested our
method on several datasets, and the experimental results demonstrate the robustness
and efficiency of our method.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Non-rigid shape registration is a fundamental problem
in geometric modeling and model acquisition. The devel-
opment of real-time 3D scanners makes non-rigid registra-
tion increasingly important. There are various types of
non-rigid shapes in our daily life, like the human body, ani-
mals, etc.

The goal of non-rigid registration is to find a global
deformation for the source shape to match the target
shape. Semantic correspondence of two shapes is very dif-
ficult to compute if the shapes are non-rigid. A vast amount
of work has been devoted to this problem. The general
framework has been to preserve the local geometry and
regularize the globally non-rigid deformation. Volumetric
methods have attracted more and more attention recently
due to their improved registration compared to using sur-
face-based methods. However, registration of large defor-
mations remains very challenging for the existing
volumetric methods.

In this paper, we propose a fast and robust volumetric
method for non-rigid registration, which can regularize
the global deformation while preserving the local geome-
try. We do not require an initial template, or other shape
priors, or explicit correspondences. Our approach works
well on several datasets, including the synthetic data gen-
erated by morphing the source surface, and the mesh pairs
from a scanning system. The local geometry is preserved,
while a natural global deformation is achieved with our
volumetric scheme.
2. Related work

Shape registration is a classic problem in computer
graphics and computer vision. A substantial amount of
research has been devoted to static shape registration.
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The representative method is Iterative Closest Point (ICP)
[1], which uses the closest points as correspondences,
and then calculates a rigid transformation by minimizing
the distance between the correspondences. Recently, the
KinectFusion algorithm [2,3] was proposed, which uses a
fusion method to reconstruct a consistent volumetric
representation [4] and achieves realtime performance.

Non-rigid registration has become an active area of
research due to the development of high-performance 3D
scanners. Most of the work focuses on measuring the simi-
larity between shapes and regularizing the global deforma-
tion. Ref. [5] introduces a method that looks for the optimal
transformation for each corresponding element, and regu-
larizes the globally non-rigid transformation using the
dynamic sampling graph [6]. It is used in [7] for capturing
a room-sized dynamic scene. Their later work uses a tem-
plate as a prior to prevent the erroneous topologies, so that
the method can handle large deformations [8]. Chang and
Zwicker [9] present a registration method for articulated
objects using feature points and a reduced deformation
model. Ref. [10] introduces an articulated global registra-
tion algorithm using the dynamic sample graph to align
multiple range scans of an articulated model. Another
method uses a subspace deformation model for registra-
tion of non-rigid shapes with fixed topology [11]. All of
the above methods above perform surface-based
registration.

Recently, volumetric methods have been proposed for
non-rigid registration [12,13]. Ref. [12] uses a vector field
to register local geometry and Incremental Free-Form
Deformation (IFFD) to achieve global deformation. Ref.
[13] introduces a method that uses a signed distance field
[14] for geometry representation, and then uses Free-Form
Deformation (FFD) as the deformation model to regularize
the globally non-rigid deformation. Our method utilizes a
similar scheme, but applies a rigid cell deformation model
[15] to achieve a more robust registration.

All these methods treat the deformation model as an
important component for non-rigid registration.
Deformation models can be roughly classified into sur-
face-based models, and volumetric or space models.
Embedded deformation [6] and as-rigid-as-possible sur-
face manipulation [16] are typical surface-based deforma-
tion models. Embedded deformation builds a graph on the
surface of the shape, and finds the optimal affine
Fig. 1. System overview: (a) signed distance fields of the source and target sha
transformations by solving a nonlinear minimization prob-
lem. The as-rigid-as-possible method solves for a global
deformation, while preserving the local rigidity. Surface-
based deformation models are efficient and easy to imple-
ment. However, the volumetric model is demonstrated to
be more robust when applied to large deformations
[15,17].

Volumetric deformation models use a volumetric graph,
instead of a surface-based graph, to solve the global defor-
mation of the volumetric graph. In the Free-Form
Deformation (FFD) [18] method, the shape is embedded
in space grids consisting of control points and deformed
by moving the control points of the FFD grids. The
Volumetric Graph Laplacian method [17] introduces a
volumetric graph that consists of boundary edges and
interior edges. Then, the shape morphing problem can be
solved using a method like Laplacian surface manipulation
[19]. To achieve the global deformation, the difference of
adjacent space grids is minimized to achieve a global
deformation [15,20].
3. Overview

A volumetric scheme is used in our registration of the
deformed shapes. The entire pipeline is shown in Fig. 1.
With the signed distance field (SDF) representation, as
shown in Fig. 1(a), the registration problem of these two
shapes becomes the registration of the two signed distance
fields. Our system iteratively runs a two-step process to
obtain both the locally rigid registration and the globally
non-rigid registration. The first step is performed by mini-
mizing the difference between the source and target
signed distance fields for each sampling cell. In the second
step, a non-linear deformation model is employed to gen-
erate a natural globally non-rigid deformation, given the
locally rigid registration results, as Fig. 1(b) shows. The
final optimal non-rigid registration, as Fig. 1(c) shows, is
achieved after several iterations.
4. Signed distance field representation

In our system, we employ the signed distance function,
also called Signed Distance Field (SDF) [14], as the volu-
metric representation for 3D shapes. For simplicity, we
pes, (b) locally rigid registration, and (c) globally non-rigid registration.
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Fig. 2. The signed distance is calculated by finding the closest element
and the angle weighted pseudonormal of the element.
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explain it in a 2D case, which can be easily extended to 3D
cases.

Given a 2D shape, denoted as A, for an arbitrary point,
denoted as x, in the 2D space, we find the closest element
(point, face or edge) on the shape, denoted as ax, as shown
in Fig. 2. The signed distance of x is defined as
/AðxÞ ¼ sgn nax � hðx;axÞð Þjhðx;axÞj; ð1Þ
where hðx; axÞ is a vector from the closest point on the ele-
ment to the point x; nax is the angle weighted pseudonor-
mal of the element ax, and sgnðÞ is the sign function. An
important advantage of this volumetric representation is
its resistance to surface noise; however, the disadvantage
is its large memory cost. By using a distance field com-
putation method called Parallel Banding Algorithm (PBA)
[21], the computation time can be greatly reduced. Some
work using the implicit representation omitted the field
far from the surface in order to reduce the computational
cost (i.e., narrow-band representation). However, the field
that is far from the surface but still inside the surface car-
ries useful information for robustness in the system.
Therefore, we retain all parts of the distance field. We sam-
ple the space by uniformly spreading the sampling points,
like a uniform lattice. By calculating the signed distance at
each sample point, we generate the SDF UA of the shape A.
Fig. 3 shows the computed signed distance field for a
human body model.
Fig. 3. Generated signed distance field for a human body model. The
yellow and red areas denote the points with positive signed distances,
which means that these points are outside the surface. The green and blue
areas represent the points inside the surface. We cut the SDF by different
planes to demonstrate the generated SDF. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
5. Locally rigid, globally non-rigid registration

Given the signed distance field representations for the
source and target shapes, we register the non-rigid object
using a volumetric registration framework assuming that
the shape is locally rigid. In order to maintain the local
rigidity, we divide the space into regular cube cells. Each
cell contains the same number of sampling points. All sam-
ple points in a cell follow the same transformation in the
deformation process.

Our non-rigid registration algorithm consists of two
steps. In the locally rigid registration step, we look for the
rigid transformation for each cell individually by minimiz-
ing the difference between the SDFs at the sample points in
the source and the target shapes. In the globally non-rigid
registration step, we minimize the difference between the
transformations of adjacent cell pairs. The details of the
algorithm are described in the following sections.

5.1. Locally rigid registration

Assuming that each cell preserves its rigidity during
deformation, we compute the rigid transformation Ti for
the cell Ci from the source distance field to the target dis-
tance field. We extend Fujiwara’s approach [13] to a 3D
application for the locally rigid registration. While all the
sampling points in a cell follow the same transformation,
each cell is registered by minimizing the differences
between the SDFs at the points in the source shape and
the transformed points in the target shape. We use a
quaternion q to represent the 3D rotation. Therefore, a
rigid transformation T can be determined by its rotation
and translation parameters w ¼ fq; tg.

The error function of locally rigid registration is:

Elocal ¼ dðUA;UBÞ ¼
X
Ci2A

Eli

¼
X
Ci2A

X
pj2Ci

/B Tðpj; wiÞ
� �

� /AðpjÞ
� �2

; ð2Þ

where UA and UB are the signed distance fields for the
source shape A and target shape B respectively. pj is a sam-
ple point in the cell Ci in the source shape A. wi represents
the parameters of the rigid transformation for the cell Ci.
Tðpj;wiÞ is a function that transforms the point pj with
the transformation parameters wi.

Minimizing the expression in Eq. (2) is a non-linear
optimization task. This is because the transformation func-
tion T is non-linear in w, and the signed distance function
/ðpÞ is generally non-linear in p. In fact, the signed dis-
tance /ðpÞ is essentially unrelated to the point coordinates
p. We use an iterative registration method proposed by
Lucas and Kanade [22] to solve the minimization problem.
The parameter wi is updated iteratively with the incre-
mental values Dwi in each iteration as wi  wi þ Dwi.

Each cell is registered independently. We separately
minimize the local error function Eli for each cell with
respect to Dwi in each iteration as

Eli ¼
X
pj2Ci

/B Tðpj; wi þ DwiÞ
� �

� /AðpjÞ
� �2

: ð3Þ



Initial meshes Iteration 1 Iteration 2 Iteration 3

4 R. Zhang et al. / Graphical Models 79 (2015) 1–11
The Lucas–Kanade algorithm can be regarded as a
Gauss–Newton gradient descent non-linear optimization
algorithm. A first-order Taylor expansion is used to lin-
earize the target SDF /B respect to wi. Then the local
registration error is written as

Eli ¼
X
pj2Ci

/B Tðpj; wiÞ
� �

þr/B
@T
@wi

Dwi � /AðpiÞ
� �2

; ð4Þ

where r/B is the gradient of the target distance field. It is
computed using the Sobel operator.

Minimizing the expression in Eq. (4) is a least squares
problem and has a closed-form solution, which can be
derived by setting the partial derivative of the error func-
tion Eli with respect to Dwi to zero:

@Eli

@Dwi
¼ 2
X

pj

r/B
@T
@wi

� �T

/B Tðpj; wiÞ
� �

þr/B
@T
@wi

Dwi �/AðsÞ
� �

¼ 0:

ð5Þ

This yields the value of parameter Dwi:

Dwi ¼ H�1
i

X
pj

r/B
@T
@wi

� �T

/AðpjÞ � /B Tðpj; wi
� �� 	

; ð6Þ

where Hi is the Gauss–Newton approximation to the
Hessian matrix written as:

Hi ¼
X

pj

r/B
@T
@wi

� �T

r/B
@T
@wi

� �
: ð7Þ

We update the parameters by adding the incremental
values Dwi to the initial parameters wi. This process is
iteratively computed until it converges (see Fig. 4).
Fig. 4. Look for the locally rigid transformation to minimize the differ-
ence between the two SDFs in an iterative way. T0 is the initial
transformation. T� is the optimal transformation to transform the source
cell (red) into the target model (blue cell). (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
5.2. Globally non-rigid registration

From the locally rigid registration, we get the trans-
formation for each cell that aligns the source and target
shapes. However, the computed local transformation for
each cell is a local optimal. It may be semantically incorrect
due to the non-rigid deformation. Consequently, additional
global constraints are needed to regularize the trans-
formations. Starting from the locally rigid transformation,
we use the deformation model proposed in [15] that pro-
duces the global deformation for a volumetric
representation.

5.2.1. Deformation model
Given the rigid transformation Ti of an cell Ci, the defor-

mation model generates a rigid transformation Tj for its
adjacent cell Cj by minimizing the difference of Ti and Tj.
This leads to a global smoothing of the cell
transformations.

The difference of the two transformations is defined by
the squared distances of the transformed shapes of the two
adjacent cells with both transformations [23]:

Eij ¼
Z

Ci

S
Cj

kTip� Tjpk2dp; ð8Þ
Iteration 4 Iteration 5 Iteration 6 Iteration 7

Fig. 5. Close-up views of the registration progress.

Fig. 6. (a) Space discretization of the input human body model. The green
cubes are the sampling cells. (b) Deformed cells after the global, non-rigid
registration. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)



Table 1
Performance statistics. Ncell: Cell Number. Niter : Iteration Number. Ereg :
Registration Error (relative to the bounding cube diagonal). T: Time.

Dataset Ncell Niter Ereg ours

(10�4)

Ereg [12]

(10�4)

T ours
(s)

T [12]
(s)

Human 809 14 5.6 5.1 37 67
Samba 589 15 7.3 9.8 20 32
Dance 807 10 10.6 11.5 34 75
Swing 580 16 10.4 6.27 21 33
Plant 490 23 9.57 26.1 14 18
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where Ci and Cj are two adjacent cells. For simple cell
shapes, such as tetrahedra or hexahedra, the above integral
can be evaluated analytically. In our system, all cells are
uniform cubes, so the integral can be analytically
calculated.

The smooth energy of the deformation model is defined
as a sum of all pairs of adjacent cells Ci and Cj:

Esmooth ¼
X

i;j

EijðTi;TjÞ: ð9Þ
5.2.2. Weighted cell transformations
Minimizing Eq. (9) assumes that each transformation Ti

has the same effect as other transformations. However, the

initial transformations Tloc
i generated in the locally rigid

registration step lead to different registration errors for dif-
ferent cells. The transformations that accurately register
the corresponding cells should be preserved, while the
poorly registered transformations require significantly
adjustments. We introduce the weighted fitting energy
Efit written as

Efit ¼
X

i

li

Z
Ci

Tip� Tloc
i p


 �
dp; ð10Þ

where Ti is the rigid transformation to be optimized for cell

Ci. Tloc
i is the transformation generated in the locally rigid

registration step for cell Ci, and li is an adaptive weight
for the cell Ci determined by its fitting energy:

li ¼
emax � eloc

i

emax
þ e; ð11Þ
(a)

(c)

Fig. 7. Synthetic data registration: (a) Deformed surfaces of selected iterations. I
shape. (b) Registration results from two different views, (c) Error maps of selec
bounding cube diagonal). (For interpretation of the references to color in this fi
where eloc
i is the local registration error for cell Ci after the

locally rigid registration step. emax is the maximum error of
all the cells. e is added so that the transformations with
large registration errors are not neglected. After an experi-
mental analysis (see Fig. 14), we decided to use e ¼ 0:001
in our experiments.
5.2.3. Optimization of globally non-rigid registration
Combining Esmooth in Eq. (9) and Efit in Eq. (10), we define

the globally non-rigid registration energy function as:

Eglobal ¼ Esmooth þ afitEfit; ð12Þ

where afit is introduced to balance the smoothing and fit-
ting energies during the iterative optimization.

Minimizing Eglobal can be regarded as a shape matching
problem, which can be solved using a Newton-type solver.
We adopt the nonlinear minimization algorithm proposed
in [20]. In each iteration, the rigid transformation Ti can be
(b)

(d)

nitially, the pink model is the source shape and the blue one is the target
ted iterations, (d) Maximum error and RMS error curves (relative to the

gure legend, the reader is referred to the web version of this article.)
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linearized to an affine transformation represented by lin-
ear and angular velocities vi; xi 2 R3:

Tip � Aip :¼ pþ ðxi � pÞ þ vi: ð13Þ

Substituting the affine approximations Ai for the rigid
transformations Ti in Eq. (12) leads to an energy quadratic
in the linear and angular velocities vi; xi. Eq. (12) can be
minimized by solving a sparse linear system. This process
results in the affine transformation for each cell. Finally,
the affine transformations are projected onto rigid trans-
formations, and then solved by using SVD decomposition
of the covariance matrix.

5.3. Iterative locally rigid, globally non-rigid registration

The locally rigid, globally non-rigid registration of the
source and target shapes can finally be obtained by itera-
tively performing the locally rigid registration and globally
non-rigid registration. Each iteration consists of two steps:

� Minimizing Eq. (2) to look for an optimal trans-
formation for each cell, as described in Section 5.1.
� Minimizing Eq. (12) to compute the globally optimal

transformations for the cube cells, as described in
Section 5.2.

Initially, a0
fit ¼ 1. During the iteration, we increase akþ1

fit

to 2ak
fit at the kþ 1 iteration until afit P 100. This is

because that at each iteration, the locally rigid registration
error for each cell is minimized. To begin with, each cell is
Fig. 8. Real data registration. (a) Source shape (pink) and target shape (blue). (
registration. (e and f) Iterations. (g) Final registration. (For interpretation of the
version of this article.)
registered at a local neighborhood in a Gaussian–Newton
manner. It is difficult to find a good rigid transformation
for the cells with large motion. Therefore, globally smooth-
ness is employed to correct the locally rigid trans-
formations with large fitting error. This allows the rigid
fitting error to decrease with each successive iteration.
Consequently, the optimization energy will be less and less
affected by the global smoothness. These two steps are
iteratively computed until convergence. Finally, a robust
locally rigid globally non-rigid registration is obtained.
Fig. 5 shows the registration progress of a local part of
the input meshes.
5.3.1. Space discretization
As mentioned, for simple shapes, Esmooth can be evalu-

ated analytically. We choose a space discretization scheme
using uniform cubes, i.e., each cell is a uniform cube. The
cells located outside the shape do not preserve distance
field rigidity during deformation. Therefore, the cells that
do not contain the sample points inside or on the surface
are not taken into account. The space discretization result
for a human body model is shown in Fig. 6.
5.3.2. Surface warping
Once we obtain the transformation Ti for each cell that

maps the cell from source to target shape, we construct a
space deformation for the distance field using trilinear
interpolation, i.e., interpolate a transformation for each
mesh vertex using trilinear interpolation of its eight neigh-
boring cells.
b and c) The SDFs of the source and target shape, respectively. (d) Initial
references to color in this figure legend, the reader is referred to the web
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6. Experiments

6.1. Accuracy

The primary mechanism for evaluating a registration
algorithm is its registration accuracy. Several methods
have been used to measure the registration error [5,12].
We use a volumetric measurement that is the average dis-
tance between the distance fields around the target shape
and the deformed source shape.

Emeasure ¼
X

/A0 ðpÞ<doff

/A0 ðpÞ � /BðpÞð Þ2 ð14Þ

where /A0 is the distance field of the deformed source
shape, and /B is the distance field of the target shape. p
is the sample points in the space, and doff is an offset value.
Only the sample points that satisfy /A0 ðpÞ < doff are taken
into account. In our implementation, doff ¼ 20.

Our non-rigid registration method has been imple-
mented on a platform using core i7 with 3.4 GHz CPU
and GTX570 GPU. The proposed method has been tested
on both synthetic data and real data. In all experiments,
the distance field resolution is 256� 256� 256 for the
bounding cube of the shape. Each cell is an 8� 8� 8 cube.
Fig. 9. Comparison between the results of our method (the first and third
rows) and [12] (the second and fourth rows). We produce similar
registration results with [12]. However, the computational time is longer
than ours.
6.2. Results

6.2.1. Synthetic data
We use a human model from [24] as the source shape,

and then we use our deformation model to deform the
source shape as a synthetic target shape. Our method reg-
isters the two shapes in 14 iterations. The deformed mesh
and the registration error are shown in Fig. 7. As demon-
strated, our method has the capacity to rapidly converge
after several iterations. The final registration error for the
source and target distance fields is listed in Table 1.
(3-0)(1-0) (2-0) (4-0) (5-0) (6-0)

(b)

(c)

(d)

Fig. 10. Registration results of six pairs of meshes with different
deformations and different ways to assign afit . Left to right: mesh1–
mesh0, mesh2–mesh0, mesh3–mesh0, mesh4–mesh0, mesh5–mesh0,
mesh6–mesh0. We use the same target mesh (blue) in these six pairs
to demonstrate the robustness of our algorithm on different deforma-
tions. Top to bottom: (a) Input meshes from two points of view. (b)
Registration results from two viewpoints by assigning akþ1

fit ¼ 2ak
fit . (c)

Registration results from two viewpoints by assigning akþ1
fit ¼ 1:2ak

fit . (d)
Registration results from two viewpoints by assigning akþ1

fit ¼ ak
fit þ 1. (For

interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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6.2.2. Real data
We tested our method on several datasets (street dance,

samba, swing) from [24] as well. A series of examples is
Fig. 11. The convergences with different methods of assigning afit . For
both pairs of meshes with small deformation (mesh1–mesh0) and large
deformation (mesh4–mesh0), our algorithm converges fast with
akþ1

fit ¼ 2ak
fit .

Fig. 12. Registration results of five pairs of meshes in the bouncing
sequence [24]. Each row shows the two input meshes and the registra-
tions results from two different points of view. The last row shows a
limitation of our method. The left two columns are input meshes and
registered result from a point of view. The right two columns are input
meshes and registered result from another point of view.
shown in Fig. 8. Our method registers the source and target
shapes accurately in just over 15 iterations. Fig. 9 includes
a comparison to [12] and depicts various views of the
deformed mesh from different viewpoints. The results
demonstrate that our method is capable of registering a
wide range of data accurately.

6.2.3. Statistics
For the tested datasets, the statistics are listed in

Table 1. We can see that our algorithm converges in less
than 25 iterations for various data sets. Ref. [12] produces
similar registration results but the computational time is
longer than ours.

6.3. Large deformation

Cases with large deformations often present significant
hurdles for conducting non-rigid registration. By using the
locally rigid and globally non-rigid registration framework,
our method can successfully register two shapes with large
deformations and no significant topology change. Three
sets of results are shown in Figs. 10, 12, 13.
Fig. 13. Registration results of five pairs of meshes in the samba sequence
[24]. Each row shows the two input meshes and the registrations results
from two different points of view. The last row shows a limitation of our
method. The left two columns are input meshes and registered result
from a point of view. The right two columns are input meshes and
registered result from another point of view.
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6.3.1. Assigning afit

Our algorithm is robust for large deformations with dif-
ferent parameters. We have tested our algorithm in differ-
ent ways to assign the afit in Eq. (12) to six pairs of meshes
from the swing sequence [24]. We use the same target
mesh in these six pairs to demonstrate the robustness of
our algorithm on different deformations.

The registration results are shown in Fig. 10. Our algo-
rithm generates convincing results of registering meshes
with large ranges of deformations. The first two columns
are meshes with smaller deformations, and the other four
columns exhibit much larger deformations between the
source and target meshes, especially at the arms, skirts,
and legs.

The iterative progress of our algorithm as applied to dif-
ferent pairs of meshes is shown in Fig. 11. We can see that
our algorithm converges at a very small registration error
with different parameters. In comparison, assigning
input model

= 0ε

= 100.0ε

= 10.0ε

= 1.0ε

Fig. 14. Registration results of the same meshes using
e ¼ 0; e ¼ 0:001; e ¼ 0:01, and e ¼ 0:1, from top to bottom, respectively.
akþ1
fit ¼ 2ak

fit leads to the fastest convergence, while the
minimum energy remains similar.

6.3.2. e in Eq. (11)
In Eq. (11), each cell is assigned a weight in the global

optimization step to suppress the propagation of the trans-
formations with large fitting errors. e is added so that the
transformations with large registration errors are not
neglected. We show four registration results of the same
meshes using different e in Fig. 14, and the convergence
in Fig. 15. The results show that e ¼ 0; e ¼ 0:001, and
e ¼ 0:01 generate similar results, while a larger e leads to
very slow convergence. Our algorithm also works well
without e.

6.3.3. SDF resolution
Generally speaking, a larger SDF resolution will increase

the registration accuracy. However, the computational
complexity is Oðn3Þ of the SDF resolution. We compare
the registration results of two meshes with SDF resolution
256� 256� 256 and 128� 128� 128 in Fig. 16. The com-
parison shows how larger SDF resolutions cause the regis-
tered mesh to cover additional spaces on the target mesh.
However, the computational time of 256� 256� 256 SDF
is nearly eight times of that of 128� 128� 128 SDF.

6.4. Discussion

Our non-rigid registration algorithm uses a locally rigid,
globally non-rigid registration method. The locally rigid
registration step provides a rigid transformation for each
cell, which consists of several voxels. Our cell-based
method is able to generate much more stable results than
voxel-based or point-based methods. Meanwhile, the
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Fig. 15. Comparison of registration progress with different e used in Eq.
(11).



Fig. 16. Comparison between difference SDF resolutions. (a)
128� 128� 128. (b) 256� 256� 256. Left to right: SDF of the target
mesh; registration results from three points of view.
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cell-based locally rigid registration method provides a con-
fidence to each cell. With the confidence of each cell,
weighted transformations can be used in globally non-rigid
registration, thereby reducing the influence of mismatched
cells. We show a series of results to demonstrate the
robustness of our algorithm to large deformations. Even
though mismatches exist early on, the globally non-rigid
registration with weighted cell transformations is able to
regularize the global deformation after several iterations.

The proposed method is very efficient due to the volu-
metric deformation model’s reduction of the com-
putational cost. This is accomplished by downsizing the
scale of the volumetric graph in the deformation model
of the optimization. With the weighted cell transformation,
the computational time of the globally non-rigid registra-
tion optimization is also reduced. The results in Table 1
reveal the efficiency of our method.

6.5. Limitations and future work

Our non-rigid registration method relies on the
assumption of locally rigid, globally non-rigid shapes. As
a result, our approach has difficulty handling cases where
the local geometry changes dramatically, especially if the
topology of the source mesh is very different from the tar-
get mesh. This can be seen in Fig. 12(e), where our algo-
rithm was unable to compute a reasonable registration
around the knee of the input model. However, this local
error does not affect the other parts of the mesh. User
interaction could be involved in the future to help improve
the registration results.

For complex shapes with large changes in convexity,
like the fine details on the skirt in Fig. 13(e), our method
fails to align the mesh accurately. The distribution of the
sampling points in a cell like this region is too complex
to lead a good descent direction for the Gaussian–
Newton method. One option is to leverage the com-
putational complexity and registration accuracy by using
a hierarchical scheme, which refines the registration on
different levels of details.

In cases with extremely large deformations, the region-
matching result may be entirely incorrect, or the
deformation model may not regularize the global deforma-
tion accurately. Good initial alignment and explicit
correspondences can be used to rectify this problem. In
the future, we would like to address these issues and opti-
mize the performance of the system. A hierarchical res-
olution for the distance field and a parallelized algorithm
will provide significant increases in speed.
7. Conclusion

We introduce a robust and efficient volumetric registra-
tion algorithm for non-rigid shapes. Through matching the
source and target signed distance fields, our method pre-
serves the local geometry by keeping the local rigidity of
the distance field, and it achieves a natural global deforma-
tion for the volumetric model. The experimental results on
different datasets have demonstrated that our method
gives an accurate registration for non-rigid shapes.
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